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ABSTRACT. A refinable.lunction ~(x  ) : •n ~ R or, more generally, a refinable function vector ~ ( x )  = 

[~b I (x) . . . . .  ~br (x)] T is an L 1 solution t~]'a system of (vecwr-valued) refinement equations involving expansion 

by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal 

if  {qbj(x - ct) : a E Z n, 1 < j < r}.Ibrm an orthogonal set oJ~functions in L2(Rn). Compactly supported 

orthogonal refinable functions and.Ii~nction vectors can be used m construct orthonorrnal wavelet and multi- 

wavelet bases tff'L 2 (]~n). In this paper we give a comprehensive set <?f necessary and sufficient conditions for  

the orthogonality t~f'compactly supported refinable functions and refinable fimction vectors. 

1. Introduction 

Let A be an expanding matrix in Mn (Z), that is, one with integer entries and all eigenvalues 
I~-I > 1. A refinablefunction q~(x) �9 Rn ~ ~ is a solution to a refinement equation with dilation 
matrix A, 

cp(x) = ~ cc~dp(Ax - t~) , (1.1) 
aEZ 

in which  {cu : ot 6 Z} are real coefficients.  More  generally,  a vector  valued funct ion ~ ( x )  = 
[tPl (x)  . . . . .  ~br (x)]  r is ca l led  a refinable function vector, i f  it  satisfies a vector refinement equation 
with di la t ion A, 

q~(x) = ~ Cc~P(Ax -- or), (1.2) 
ct~Z n 
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where each Ca is a matrix in Mr (]R). We call n the dimension and r the vector-multiplicity of the 
refinable function vector. We only consider the case that such functions and vector-valued functions 
have all components in L l (~n). 

Refinable function vectors are natural generalizations of  refinable functions (r = 1). The 
latter have been studied extensively due to their applications in constructing compactly supported 
orthonormal wavelet bases and in approximation theory, see Daubechies [9], [10]. General construc- 
tions are based on multiresolution analysis, for which see Mallat [28] and Jia and Shen [21]. More 
recently, refinable function vectors have been used to construct orthonormal multiwavelet bases, see 
for example Cohen et al. [4], Donovan et al. [12], Goodman and Lee [14], and Goodman et al. [15]. 
Multiwavelets can be made to combine smoothness with small support, an advantage that may be 
important in applications. 

In constructing orthonormal wavelet or multiwavelet bases, one requires that all integer trans- 
lates of  refinable functions or function vectors be orthogonal. A fundamental question in constructing 
orthonormal wavelet or multiwavelet bases is thus: under what conditions does a refinable function 
or function vector ~ (x )  have the property that all its integer translates {~(x - ~) : o~ ~ Z n } are 
orthogonal? 

This paper addresses the above question by giving a collection of  necessary and sufficient 
conditions for orthogonality, derived in terms of the coefficients of  the refinement equations and the 
dilation matrix A. We treat only the case where the vector refinement equation has finitely many 
nonzero coefficients. In this case, if the equation has a solution in L 1 (Rn), then it must be compactly 
supported. 1 Also in this case, there is in principle a finite algorithm to determine whether a given 
vector refinement equation has a nonzero solution which is orthogonal in the sense of Definition 1 
below. The criteria of this paper typically do not make sense in the case of  infinitely many nonzero 
coefficients, but some sufficient conditions have been obtained by Conze et al. [7] in the infinite 
coefficient case. 

Various results regarding the orthogonality of  compactly supported refinable functions and 
function vectors are known, especially for r = 1 and n = 1. Many (but not all) of these results 
generalize to higher dimensions (r = 1 and n > 1), and to compactly supported refinable function 
vectors. However, few of  these generalizations have been documented, and even in those papers 
which discuss higher dimensional cases, the dilation matrix A was usually chosen to be 2In. As we 
see from Theorems 2 and 3 below, orthogonality conditions vary for different dilation matrices A. 
The object of  this paper is to provide a comprehensive set of orthogonality criteria for compactly 
supported refinable functions and function vectors in the most general setting. 

Def in i t ion  1. Let ~ ( x )  be a compactly supported refinable function vector. We say that ~ (x )  is 
orthogonal if f~, ~(x)dx ~= 0 and 

f ~(x--et)~T(x--~)dx= ~6 Z n (1.3) ~,~,~A, Ol , 
n 

where 8a,~ denotes the standard Kronecker symbol, and A is a diagonal matrix with positive diagonal 
entries. 

The condition f~  O(x)dx ~ 0 is necessary 2 for the construction of  multiwavelet bases 
associated to a multiresolution analysis. It is well known that for a compactly supported refinable 
function vector O(x) to be orthogonal the coefficient matrices Ca of  the corresponding vector 
refinement equation (1.2) must satisfy the necessary conditions encoded in (i) and (ii) of  the following 
definition. 

1Tbe converse is false, see Strang et al. [33]. Furthermore, a refinement equation with finitely many nonzero 
coefficients may also have a noncompactly supported L 2 solution, see Malone [29]. 

2This condition is automatically fulfilled under the orthogonal coefficients condition, see Lemma I (4) below. 
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D e f i n i t i o n  2. The vector re fnement  equation (1.2) with finitely many Ca # 0 satisfies the orthog- 
onal coefficients condition (with respect to A, where A is a diagonal matrix with positive diagonal 
entries) if the coefficients Ca satisfy the two properties 

(i) 1 is an eigenvalue of the matrix I de t (A)I - I  Y]u~z" Ca. 
(ii) For/~ ~ Z n, 

CctAC*+A~ = 60.# I det(A)l A .  (1.4) 
~ Z  n 

The necessity of  condition (i) for orthogonality follows from Proposition 1 below. A proof of 
condition (ii) can be found in Flaherty and Wang [13]. 

Unfortunately, the orthogonal coefficients condition is not sufficient for the orthogonality of 
the corresponding refinable function vector ~ ( x ) ,  even for r = 1. The simplest counterexample, 
which has r = 1 and n = 1, is the refinement equation 

~ ( x )  = 4,(2x) + ~ ( 2 x  - 3 ) .  

It satisfies the orthogonal coefficients condition, but the solution ~b (x) = X[0, 3) (x) has non-orthogonal 
integer translates. To ensure ortbogonality of  refinable functions and function vectors, additional 
conditions are needed. In the nonvector case r = 1, n = 1, such conditions were found by various 
authors, and the most prominent of these conditions is Cohen's Criterion, due to Cohen [3]. We shall 
list them in Section 3. It should be pointed out that many of the criteria are given in the contrapositive 
form as conditions for ~ ( x )  not being orthogonal. 

The contents of this paper are as follows: in Section 2 we state the orthogonality criteria for 
compactly supported refinable function vectors with arbitrary vector-multiplicity r, and in Section 3 
we state a larger set of orthogonality criteria that are available for the special case r ---- 1, i.e., for 
compactly supported refinable functions. These criteria are then proved in Section 4 for arbitrary r 
and in Section 5 for r = 1. 

We add a comment  on the novelty of the results. Many of the results for compactly supported 
refinable function vectors stated in Section 2 are new, as is the Generalized Cohen's  Criterion stated 
there. In particular criterion (d) in Theorem 2 is new and (c) is stated for the first time. The proofs 
extend some of the ideas of the r = 1 case stated as Theorem 3 (a)-(d) in Section 3, but have extra 
complexity arising from products of  matrices. The results in Section 3 for r = 1 and arbitrary 
dimension n have not all been stated before, but we do not claim significant novelty in the proofs. 
The most important idea leading to the criteria in Theorem 3 (e)-(f) is a result on transfer operators 
due to Cerveau et al. [2]. Other orthogonality criteria for the case r -- 1 based on this result were 
derived by Conze et al. [7]. Further remarks on previous results appear at the end of Section 3. 

We are greatly indebted to K. Gr6chenig for introducing us to this problem. The results and 
techniques in his paper [16] for the case r = 1 and n = 1 inspired our results. Several of  his proofs 
generalize to dimension n > 1, see the discussion after Theorem 3. We are also indebted to Ingrid 
Daubechies, Andy Haas, Chris Hell, and Jianao Lian for helpful discussions and references. Finally, 
we would like to thank the anonymous referee for carefully reading the manuscript and providing 
valuable comments and suggestions. 

2. Orthogonality Criteria for Refinable Function Vectors 

Throughout this paper we will be concerned with compactly supported refinable function 
vectors. Therefore, we assume that the vector refinement equation 

dp(x) = ~ C~dP(Ax - or) (2.1) 
c~EZ n 
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where Ca ~ Mr(R) has only finitely many nonzero coeff• matrices Ca. In this section we state 
orthogonality criteria; the proofs are given in Section 4. 

Def ini t ion 3. For a given vector refinement equation (2.1) we define its symbol m(~) to be 

m(~) := I det(A)l - l  ~ Cae -2zri(a'~) . (2.2) 
aEZ n 

The symbol m together with the expanding integer matrix A specifies the vector refinement 
equation uniquely, where we view m as a formal object containing all the coefficients Ca. However, 
we also view the symbol as defining a matrix-valued function m(~) : ]~n ~ Mr(C). Suppose that 
q~ (x) is a refinable function vector satisfying (2.1). Then the Fourier transform of q~ (x) satisfies 

where B := A r ,  and the Fourier transform is applied term-by-term to the vector ~(x) .  Denote 

Lrp(Rn):=ldP(x)=[qbl (X)  . . . . .  q)r(X)]T : each~bj(x) ELP(]~n)} . ( 2 . 4 )  

The following is a necessary condition for the orthogonality of q~(x): 

Proposition 1. 
Let �9 (x ) be a compactly supported orthogonal refinable function vector satisfying 

�9 (x) = ~ Ca~(Ax  - or) 
etEZ n 

with finitely many Ca ~= O. Then 1 is a simple eigenvalue of the r x r matrix m(0), and all other 
eigenvalues )~ of m(0) satisfy IXl < 1. 

Proposition 1 is a corollary of a stronger result of Hogan [20], in which the orthogonality 
of q~(x) is replaced by the weaker condition of stability. We include an independent proof of 
Proposition 1 in Section 4 for completeness. 

To state the general orthogonality criteria we must introduce the transfer operator Cm asso- 
ciated to the symbol m and dilation matrix A [and hence to (2.1)]. Let ~'2r• n) denote the linear 
space of r x r Hermitian matrices whose entries are trigonometric polynomials with complex co- 
efficients, i.e., functions of the form g(e -2zri~l . . . . .  e -2ni~n) where g is a Laurent polynomial in n 
variables, with ~ = (~1 . . . . .  ~n) ~ ~n. Note that each F(~) E ~'2r• n) is Zn-periodic, so we may 
view ~rxr(]~ n) as  a subspace of the Hilbert s p a c e  (L2(ffn)) rxr. For any trigonometric polynomial 

F(~) = ~yczn  Eye -2zrily'~) of matrix coefficients we define its support to be 

supp(F) = {}, ~ Z n : Fy ~ 0} . 

Defini t ion 4. The transfer operator Cm is a linear operator o n  ~ r x r ( ~  n) defined by 

d~g 

in which B = A r and g is a complete set of coset representatives of Zn/B(Zn) .  

It is not hard to check, using the computations in Section 4, that Cm(F)  6 ~r•  n) for any 
F a ~2rxr(][~n), and it is independent of the choice of the coset representatives g. Furthermore, 
if (2.1) satisfies the orthogonal coefficients condition with respect to A, then CmA = A. The 
linear space 'a')r• n) is infinite-dimensional, but we will show that when the vector refinement 
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equation with symbol m has finitely many nonzero coefficients we can restrict the action of the 
transfer operator to certain finite dimensional invariant subspaces of ~'2r• n) depending on the 
symbol m and on A which contains the crucial information for orthogonality. 

Wecall anonempty s e t s  c Z n (m, A)-invariant ifforany y r S the elements A? '+~- /~  r S 
for all c~, fl ~ supp(m). An important (m, A)-invariant set is 

Srrt, a := {y E zn : Zrrt.a N (Zm, a -I- y) • 0} (2.6) 

where Tm,A is the attractor of the iterated function system { A - l ( x  + y) : y E supp(m)}. Clearly 
,-qm,a is finite if supp(m) is. 

Proposition 2. 

(i) Sm.m is (m, A)-invariant. 

(ii) Let S be a finite (m, A)-invariant set. Then 

f2r• (R n , $ )  := {F(~) E ~r• (Rn):  supp(F) C S}. 

is a Cm-invariant finite dimensional subspace of  ~r • (]~n). 

By results of Cohen et al. [5] or Heil and Collela [19], if 1 is a simple eigenvalue of m(0) and 
all other eigenvalues L of m(0) have ILl < 1, then for B = A T the infinite (right) product 

j - I  

converges uniformly on any compact set of ~;~n. This defines p(~) : ]R n ~ Mr(On). We have: 

Theorem 1. 
Let r ) be a compactly supported refinable function vector satisfying 

where A 
equation 
while all 

(a) 
(b) 
(c) 

(d) 

dP(x) = Y 2  C u ~ ( A x  - or) 
r n 

E Mn (Z) is expanding and finitely many Ca • O. Suppose that the vector refinement 
satisfies the orthogonal coefficients condition and that 1 is a simple eigenvalue of  re(O) 
other eigenvalues ~ of re(O) satisfy ILl < 1. Then the following statements are equivalent: 

dp(x) is not orthogonal. 

There exists an F(~) E f2r• F(~)  7s a A  for  any a E C, such that C m F  = F. 

Let S be a finite (rrt, A)-invariant set containing Sm,A. The eigenvalue I of Cm restricted 
to Mr xr (~n, ~)  is a multiple eigenvalue. 

There exist rl E R n \ Z n and a nonzero vector uo E C r such that 

uSp0? + ~) = 0, all ot E Z n . (2.8) 

The equivalence of (a) and (b) in Theorem 1 was established by several authors in one dimension 
for the dilation 2, see Plonka [31] and Lian [27]. It was established in all dimensions for the dilation 
matrix A = 2In in Shen [32], and his proof should generalize to work for an arbitrary dilation matrix 
A. In addition, it was shown in [32] that under the hypotheses of Theorem 1 the orthogonality of 
cP(x) is equivalent to the stability of ~(x)  and is equivalent to the L2-convergence of the cascade 
algorithm. Several variations of criterion (b) were also given in [27]. 

R e m a r k .  We shall see in Section 4 that the equivalence of (a) and (c) relies only on the orthogonal 
coefficients condition, not on the assumptions regarding the eigenvalues of m(0). The equivalence 
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of (a) and (c) gives rise to an algorithm for checking the orthogonality of a refinable function vector 
�9 (x), which is a generalization of the algorithm in Lawton [25] for n = 1 and r = 1. In fact, all 
we need is to find a finite (m, A)-invariant set ,S containing Sm,A and check the multiplicity of  the 
eigenvalue 1 for Cm restricted to f2r • r (]~n, S ) .  Such a set is quite easy to find. Since A is expanding, 
there exists a norm I1-11 on ~n such that IIAII >_ s > 1. Let L be the diameter of supp(m). One such 
S is 

S = ol ~ Z n : Ilotll < - -  �9 (2.9) 
- - s - - 1  

The drawback with this S is that it is often much larger than Sin, A, making the dimension of 
~"2rxr(~ n, S) much larger than necessary. Fortunately there is a simple algorithm to find SIn, A. 
Here we skip the details; they can be found in Strichartz and Wang [34]. 

A corollary of Theorem 1 is the following generalization of Cohen's  Criterion. Recall that a 
set K C R n is a fundamental domain of Z n if K is congruent to [0, 1) n modulo Z n. 

Corollary 1 (Generalized Cohen's  Criterion). 
Under the assumptions of Theorem 1, suppose that for each uo E C r there exists a fundamental 

domain Kuo of Z n such that 
u~p(~) ~ 0, all~ E Kuo. 

Then ~(x)  is orthogonal. 

This corollary differs in appearance from the original Cohen's  Criterion in the case r = 1. 
This is due to the occurrence of infinite products of  matrices which do not commute in general. For 
the special case r = 1, u~p(~) # 0 is equivalent to p ( B - J ~ )  # 0 for all j > 1. In this case the 

condition of Corollary 1 is equivalent to p ( B - J ~ )  ~ 0 for all j > 1, where B = A T, on some 
fundamental domain of Z n . This is Precisely the original form of Cohen's  Criterion, see Cohen [3]. 

3 .  O r t h o g o n a l i t y  C r i t e r i a  f o r  R e f i n a b l e  F u n c t i o n s  

More detailed criteria are available for orthogonality in the case r ---- 1, i.e., of  refinable 
functions in ~n. In this section we state such criteria; the proofs are given in Section 5. 

The criteria of  Theorem 1 can be strengthened for r = 1, especially when the dilation matrix 
A is irreducible over Z. A matrix A ~ Mn (Z) is irreducible over Z if  its characteristic polynomial 
fa()O is irreducible over Z. In particular, if A �9 Mn(Z) is expanding and I det(A)l is a prime, then 
A is irreducible over Z. 

Note that if r = 1, then ~'2 r x r (]~n) = ~'21 x 1 ( ~ n )  is the space of all real trigonometric polyno- 
mials over ~n, and we set f2(~ n) :=  f21• Let the invariant set Sm, a be as in (2.6) and set 
~"2(R n, S )  "=  { F ( ~ )  E ~'2(~ n) : supp(F)  c__ S}. 

Theorem 2. 
Let A ~ Mn (Z) be an expanding matrix that is irreducible over Z. Suppose that the compactly 

supported nontrivial c~ (x ) ~ L 2 (Rn) satisfies the refinement equation 

= ~ cagp(Ax - or) , r  
a E Z  n 

which satisfies the orthogonal coefficients condition and has finitely many ca ~ O. Let m(~) be its 
symbol and B -~ A T. Then the following statements are equivalent: 

(a) The refinable function c~(x) is not orthogonal. 

(b) There exists a nonconstant f (~ )  �9 f2(~ n) such that C m f  = f .  
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(c) Let S be a finite (m, A )-invariant set containing Sm, A. The eigenvalue 1 o f  Cm restricted 
to g2 (N n, $ )  is a multiple eigenvalue. 

(d) There exists Oo ~ 1R n \ Z n that has the property: for  each ot ~ Z n there exists a j (or) > 1 
such that m(B-J(a)(Oo + or)) = O. 

(e) There exists ~o ~ R n \ Z  n such that BN~o ~ ~o (mod zn ) forsome  N > O, and m(BJse0) = 1 
for  all j >_ O. 

(f) There exists ~o ~ IR n \ Z n such that BN~o -- ~0 (mod z n ) f o r  some N > O, and rn(BJ~0 + 

B - I t )  = Oforal l  j > Oandal l  l E Z n \ B(Zn). 

We derive Theorem 2 as a special case of  a more general result that applies to an arbitrary 
expanding integer matrix A, given below as Theorem 3, which requires a more complicated gener- 
alization of (e) and (f). To state it, for each l e Z n we denote 

Z'l(~) := (AT) -1 (~ + l ) .  

A rationalsubspace o f R  n is a linear subspace W having a basis consisting of rational vectors v ~ Qn. 
A set of  vectors {zj : 0 < j < N} in 1R # is aperiodic orbit of A r (mod Z n) if 

A T z j + I - - Z j  (mod z n ) ,  0 < j  < N ,  

We let g denote an arbitrarily chosen complete set of coset representatives of  where ZN := ZO. 
Zn / A T (Zn). 

Theorem 3. 
Let A ~ Mn (Z) be an expanding matrix. Suppose that the compactly supported nontrivial 

tp(x) E LE(R n) satisfies the refinement equation 

(p(x) = E cadp(Ax -- or) , 
ctEZ n 

which satisfies the orthogonal coefficients condition and has finitely many ca # O. Let m(~) be its 
symbol and B = A T. Then the following statements are equivalent: 

(a) The refinable function (b(x) is not orthogonal. 

(b) There exists a nonconstant f (~ ) ~ f2(R n) such that Cm f = f . 

(c) Let S be a finite (m, A )-invariant set containing Sm, a. The eigenvalue 1 o f  Cm restricted 
to f2 (N n , $)  is a multiple eigenvalue. 

(d) There exists rio ~ R n \ Z n that has the property: for  each ot E Z n there exists a j (or) >_ 1 
such that m(B-J(u)(r /o + or)) = O. 

(e) There exists a proper B-invariant rational subspace W of  Nn and a periodic orbit {zj : 
0 < j < N} o f B  ( m o d Z  n) with every zj  f[ W + Z n, such that 

(t) 

Im (rl(~))l 2 = 1 (3.1) 
lee 

r I (~)eZj+ 1 +w+Zn 

for  all ~ e zj  + W, where 0 <_ j < N with zN :=  zo and g is a set o f  complete coset 
representatives o f  Z n / B ( Z  n). 

There exists a proper B-invariant rational subspace W of  N n and a periodic orbit {zj : 
0 <_ j < N} of  B (rood Z n) with z j  r W + Z n, such that 

m ( ' r / ( ~ ) ) = 0  i f l E Z n a n d r l ( ~ )  f [ z j + I + W + Z  n 

for  all ~ ~ z j + W, where O < j < N and zN := zo. 
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R e m a r k .  A transfer operator applied to wavelet bases apparently first appears in the appendix of 
Daubechies [9], and such operators were analyzed in Conze and Raugi [8]. The orthogonality criteria 
in Theorem 3 in dimension n = 1 for the case r = 1 were found by Cohen [3], Lawton [25], Conze 
and Raugi [8], and Cohen and Sun [6], and an elegant summary can be found in Gr6chenig [16]. 
The equivalence of (a), (b), and (d) in dimension n > 1 is proved here by generalizing the arguments 
of  Gr6chenig in one dimension. In higher dimensions, Lawton et al. [26] gave an orthogonality 
criterion similar to (b), using the wavelet-Galerkin operator defined on 12(Z n) instead of the transfer 
operator. Criteria (e) and (f) in Theorems 2 and 3 are much harder to prove. The proof  given here 
uses as a principal ingredient a recent result of  Cerveau et al. [2] concerning the structure of  the set 
of  zeros of eigenfunctions of  transfer operators in the multidimensional case. The paper of  Conze 
et al. [7], Section II, applies this result to give various orthogonality criteria, some of which apply 
even when an infinite number of  ca # 0 in (1.2). 

4. Proof of Orthogonality Criteria for Function Vectors 

For a given positive definite Hermitian matrix Q ~ Mr• ) we define the norm II.lla on C r 
by [[xlla :=  ~/x*ax where x* = y r .  This norm induces a matrix norm in Mr•  which we 
also denote by II. II a.  Throughout this section, A denotes a diagonal matrix with positive diagonal 
entries. 

Lemma 1. 

Suppose that the vector refinement equation (2.1) has finitely many Ca ~= 0 and satisfies the 
orthogonal coefficients condition with respect to the diagonal matrix A. 

(1) Let s be any complete set of coset representatives of Zn/B(Z n) where B = A T. Then 
CmA = A. 

(2) Ilm*@)ll^ < l forall~ ~ R n. 
(3) Let v be a left 3.-eigenvector of m(0) with I~.[ = 1. Then v is a left )~-eigenvector of 

Aa := Y]/~EZn Ca+m# for all ot~ Z n. 
(4) For any 1-eigenvector uo of m(0), the vector refinement equation (2.1) has a unique com- 

pactly supported solution ~(x) ~ L~(~ n) such that f~n ~(x) dx = uo. 

P r o o f .  (1) Let q = [det(A)[ and B = A T. Then 

d e e  

= q-2E E E CaAC; e-2~ri{a-~'~+B-'d} 
d e e  a E Z  n f lEZ n 

= q-2 E E CaAC:+~, Ee-2Zri(~"~+S-'d)" 
otEZ n yEZ n dEE 

It follows from 

E e-2JriI~"~+B-ldl = { qe-2~ri(y'~lO otherwiseif y ~ A ( z n ) ,  

d e e  
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that 

161 

CmA = q - I  E E t~ A t *  ,~-27ri(Afl,~) 
~a.c,.,.-.ot+Afl~ 

CteZ n fl~:Z n 

= q-' e C AC § 
t~eZ ~ ~eZ" 

= q-I E e-27ri(m~'~)q~o'~A 
geZ" 

n .  

(2) Choose g so that 0 6 g. By part (1), for any v 6 C r, 

d~,~ 

Thus, Ilm*(~)vll^ < [lull^ for all ~ by taking d = 0, proving (2). 

(3) Let 79 be a complete set of coset representatives of Zn/A(Zn). Then )--~ueT) As = qm(0),  and 
one easily checks that 

E A ~ A A ;  = q A .  
a~D 

The above together with the Schwarz inequality yield 

2 

E vAa <q ~ [[vAall 2 = q21lvl[ 2,  

a ~ D  A ot~D 

and the equality holds if and only if all v A  a are equal. Now 

2 

E vAa ----Ilqvm(0)l[2 = tlq'kvll2 = q2llvll2 " 

otET) A 

So vAu = v0 for all c~ c 79, and ~aeT)  vAa = qvm(0)  = q~.v implies that vo = ~.v. Finally, for 
any fl E Z n there is an a ~ 79 such that A~ = A s. This proves (3). 

(4) For n = 1 and r = 1 this is a well-known result of Mallat [28]. Mallat 's proof generalizes easily 
to the general case. A proof of  this part can be found in Flaherty and Wang [13]. We remark that 
the solution ~ ( x )  is given by ~ ( ~ )  = (VI~=l m(B-J~))uo. [] 

A proof of  Proposition 1 can be found in Hogan [20]. Here we present a different proof. 

P r o o f  o f  P r o p o s i t i o n l .  Let ~ be an eigenvalue of m(0) and u0 be a left ~-eigenvector of  m(0). 
By (2) of  Lemma  1 we have I~.1 - 1. Suppose that I~1 = 1. Define g(x) = Y~aezn (cP(x + or), u~). 
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We view g(x) as a function in L 1 (~n). Observe that 

g(x) : ~ ~ (C#dp(Ax 4- Ao t -  fl),u~) 

=- ~ ~ (CAa-ydP( AX 4- Y),U;)  
otcZ n yEZ n 

: y ~  (A_y*(Ax 4- ~/),u;) 
]/EZ n 

Proof of Proposition 2. 
have 

= ~ (dP(Ax 4- y),A*__yU~) 
y~Z n 

= X g ( A x ) ,  

where A_), = ~-~.ueZ~ CAa-• and A*_yu~ = Xu~ by (3) of Lemma 1. So Ig(x)l = IXlJg(Ax)l. It 

follows from the ergodicity of A on qI "n that ]g(x)] = c for some constant c, so g(x)  E L2('rn).  
Consider the Fourier expansion of g(x)  = ~--~aez" bc~e2~ri(~'x)" The equality g(x) = Xg(Ax) yields 
b~ = 0 for all ~ ~= 0 and bo = 0 if X ~ l, by comparing the Fourier coefficients o f g ( x )  and )~g(Ax). 
If  X ~ 1, then g(x)  -- 0 almost everywhere. But this is impossible because ~ ( x )  is orthogonal. So 
X = 1. In this case, the ergodicity of  A on T n implies that g(x)  = c almost everywhere for some 
constant c. 

We show that 1 is a simple eigenvalue of m(0). I f  not, because ]Jm(0)]] A < 1 for some positive 
definite diagonal matrix A, m(0) must have two independent left 1-eigenvectors u l, u2 E C r. 
Therefore, there exists a nonzero linear combination u of  u l, u2 such that 

< d P ( x - o t ) , , * ) : 0  a .e . .  
oe~Z n 

Again this contradicts the orthogonality of  ep(x). [ ]  

(i) By definition A(Tm,A) = Tin. A 4- supp(m). For any ~, r Sm,a  we 

0 = A (Tm,A I'1 (rm,A + }")) 

= (T1TI,A 4- supp(m))  n (Zm,  A -~- Ay 4- supp(m)) 

= U (Tm,A M (Tm, A 4- Zy 4- ot - ~)) 4- ft.  
a,~supp(m) 

So Ay 4- ot - j6 ~_ Sm, A for all or, /~ ~ supp(m). Therefore, Sm,a is (m, A)-invariant. 

(ii) Let F(~ ) = ~ y ~ s  Fy e-2~ri<• ~ f2r• ~n, S). It is straightforward to check that 

( C m F )  (~) = ~ Gye -2zriW'~}, where Gy = ~ CaFay+fl-aC*~. 
yeZ" a,/~Z ~ 

Suppose that Gy # 0. Thenthereexis ta ,  fl ~ Z n suchthatCaFA• # O, so or, /~ E supp(m) 

and Ay 4- ~ - ote S. It follows that y ~ S. Hence CmF E ~'2rxr(~ n, S ) .  [ ]  

We now prove the orthogonality criteria for refinable function vectors. We first introduce some 
notation to simplify our exposition. For any k > 0 we let mg(s e) denote the (right) product 

k 

rl 0 
j = l  
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where B = A T. Given a complete set of coset representatives E of Z n / B ( Z  n) let 

EB,k := E + BE + ... + B k - I  E . 
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Observe that 

CkmF(~) = Z mk (B-k(s  ~ + d ) ) F  (B-k(~ + d) )mk (B-k(s  e + d ) )  . (4.1) 
dE,ff.B,k 

P r o o f  o f  T h e o r e m  1. The standard Possion Summation Formula gives 

E (fR ~(x)OP*(x+ot)dx)e2~ri(a'~)= E '~(~+ot)~*(~+ot) .  
ctEZ n ctEZ n 

(4.2) 

(a) =~ (b). The proof here is a generalization of the proof in Gr6chenig [16] for the case n = 1, 
r ----- 1. Suppose that ~(x)  is not orthogonal. Then 

F(~):= Z (s ~(x)dP*(x-kot)dx)e2ni(a'~) 
~tEZ n 

is in ~'2rxr(~, n) and F(~) # aA for any a E C. We show that CmF = F. Let E be any complete 
set of coset representatives for Zn/B(Zn). Denote ~d := B-I(~ + d). Then 

CmF(s e) = E m (~d) F (~d) m* (~d) 
dE,~ 

= m + + m *  

dee acZn 

dee aEZ n 

-= E Z ~(~ + d + Bot)~*(~ +d + BoO 
dec otEZ" 

= + o05"(  + 
ot~Z" 

= F(~). 

(b) =~ (c). Since supp(~) ___ TIn,A, we see that supp(F) ___ ,Srn,A. Therefore, F 6 f2r• n, S) 
since S contains ,Sin, a. Observe that 0 6 Sin.a, so G(~) := A E ff2r• n, S), and is also a 
1-eigenvector of Cm. So 1 is a multiple eigenvalue of Cm restricted to ~'-2rxr(~ n, ,~), proving (c). 

(c) =~ (b). Since 1 is a multiple eigenvalue of Cm restricted to ~'2rxr(R n, S), either Cm has 
two independent 1-eigenvectors in ~2rxr(R n, S ) ,  in which case we complete our proof, or C k is 
unbounded in ~2r• n, S) as k ~ cx). We show that the latter is impossible. Assume that it did, 
then there exists a F(~) e ~2rxr(~  n, S )  such that CkF is unbounded as k -+ cx~. By adding aA 
to F for a sufficiently large a > 0 we may without loss of generality assume that F(~) is positive 
definite for all ~. Let F be the positive definite diagonal matrix F := V~-. Then for any ~ e R n and 
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U ~ C r ,  

( r u )* l  -'-~ ( C m F )  ( s e ) r - t ( r u )  = u* ( C m F ) ( ~ ) u  

= Z u*m (~d) F (~d) m* (~d) U 
d~s 

dec  

< pr(F)  Z u * m ( ~ d )  FFm* (~d)U 
d~"  

= pr(F)u*Au 

= p r ( f ) ( r u ) * ( r u ) ,  

where ~d := B - 1 (~ + d) and Pr (F) is the supremum over all ~ of the spectral radii p (F - t F (~) F -  l ). 
Therefore, the spectral radius of F - I ( C m F ) ( ~ ) F  -1 is bounded by pr(F) .  This implies that for 
all k the spectral radius of  F - l ( C k m F ) ( ~ ) F - l  is bounded by pr(F) .  But this would mean that 
F - I ( C k m F ) ( ~ ) F  - l  is bounded for all ~ and k because it is Hermitian. This is a contradiction. 

(b) =r (d). Since F(~)  is bounded and periodic (mod Zn), there exist a+,  a_  ~ R such that 

a+ = inf {a ~ IR: a A -  F is positive definite for all ~ e N,}  , 

a_  = sup {a ~ IR : F - a A  is positive definite for all ~ ~ R n} . 

Let F+(~) = a+A - F(~) and F_($)  = F(~)  - a_A.  Then both F+ and F_  are nonnegative 
definite but neither is positive definite for all ~ e lt~ n. To simplify our notation we let A := m(0). 
The hypotheses of  the theorem implies that A ~ := l i m k ~  A k exists and is a rank one matrix 
whose columns are 1-eigenvectors of A. 

Claim 1. 
Suppose that F+(~) (resp., F_(~)) is singular for ~ ~ Z n only. Then F+(0)v0 = 0 (resp., 

F_(O)vo = O) where vo # 0 is a 1-eigenvector of m*(0). 

P r o o f  o f  C l a i m  1. We prove the claim for F+(~),  the proof is identical for F_(~) .  Let v ~ C r 
such that Ilvll^ = 1, v*F§ = 0. Then it follows from CkmF+ = F+ that 

0 =  v*F+(O)v = Z v*m~ ( B - ~ d )  F+ (B-kd)m*k ( B - k d )  v . (4.3) 

d~gB.k 

Since Cm is independent of the choice of  E we choose 0 ~ ~. Now all F+(B-kd)  are positive 
definite unless B-kd  E Z n, which holds only for d = 0. We thus have m*k(B-kd)v = 0 for all 
d E CB,k, d # 0. Note that the orthogonal coefficients condition gives 

deCB,k 

Hence IIm~(0)ollA = II(~*)kvllA = I. It follows by letting k --+ or that vo :=  ( A ~ ) * v  # 0. 
Clearly v0 is the unique (up to scalar multiples) 1-eigenvector of  A*. By (4.3) v~F+(O)vo = 0, and 
hence F+(O)vo --- 0 by the nonnegative definiteness of  F§ proving the claim. [ ]  

Claim 2. 
Either G(~) = F+(~) or G(~) = F_(~) has the property that A ~ G ( 0 )  # 0 and G(rl) is 

singular for some tl ~ ]~n \ zn. 
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Proof of C l a i m  2. First we observe that F+ (~) + F_ (~) = (a+ - a_) A is always nonsingular, so 
Claim 1 implies that at least one of F+ (~) and F_ (~) is singular for some 0 ~ •n \ Z n. Assume that 
Claim 2 is false. Then either A ~ G ( 0 )  = 0 or G(0) is nonsingular for all O ~ Rn \ zn, where G(~) 
is either F+(~) or F_(~). Now A~(F+(0)  + F_(0)) # 0 because F+(0) + F_(0) is nonsingular, 
so either A ~ F + ( 0 )  # 0 or A ~ F _ ( 0 )  # 0. If both are nonzero then we have a contradiction. 
So without loss of generality we assume that A~F+(0 )  = 0 and thus F-(O) is nonsingular for 
all 0 ~ ~n \ Z n. By Claim 1 we have F-(O)vo = 0, where v0 is a 1-eigenvector of A*. Now, 
V~A c~ * SO = 1) 0 . 

v(~ (F+(0) + F_(0)) vo ---- v~A ~ (F+(0) + F_(0)) vo = 0 .  

This contradicts the positive definiteness of F+ (0) + F_ (0), proving Claim 2. [ ]  

To finish proving (b) =~ (d), let G(~) be F+(~) or F_(~) such that A ~ G ( 0 )  # 0 and G(rl) 
is singular for some r/ 6 ]i~ n \ Z n. Let G(rl)uo = 0 for some nonzero u0 e C r. We show that 
u~p(r/+ or) = 0 for all a 6 Z n. For a given ot~ Z n, we write ~ = Blfl for some/3 6 Z n \ B(zn). 

Choose E so that 0, f l ~  E. Then for all k > l we have ot e EB,k. It follows from C~G = G that 

_- z 
deCB,k 

In particular we have 

It follows by letting k ---> c~ that 

u~p(0 + ~)G(0)p*(0 + ~)uo = 0 ,  

and the nonnegative definiteness of G(0) yields 

u~p(o + ~)G(O) = 0 .  

Observe that p(~) = p(~)A ~ .  So p(~)G(0) = p(~)A~G(0) .  Since A ~ G ( 0 )  # 0 and A ~ has 
rank 1, there exists a nonzero column vl in A~G(0) ,  which is clearly a 1-eigenvector of A. Hence 
all columns of p(~) are scalar multiples of P(~)vl. Thus u~P(O + or) = O. 

(d) :=~ (a). It follows from ~(~)  = p(~)~(0) that u~(O + ~) = 0 for all a ~ Z n. Hence by the 
Poisson Summation Formula, 

Z U~ (fNn dP(x)~*(x--ot)dx)uo e2zri(ct'O)= y ~  u ~ ( r / + o t ) ~ * ( r / + ~ ) u 0  = 0  

r n a~Z n 

Therefore, 

otEZ n 

for any diagonal matrix/~ with positive diagonal entries, and so ~(x)  cannot be orthogonal. [ ]  

Proof of C o r o l l a r y  1. It follows easily from the fact that for any fundamental domain K one of 
r /+  ot in (d) of Theorem 1 is in K. [ ]  
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5. Proof of Orthogonality Criteria for Refinable Functions 

Let qF n be the n-dimensional torus T n :=  ]~n/zn, and Zrn : ~n ~ Tn be the canonical covering 
map. 

L e m m a  2. 
Let V be a subspace of R n. Then rrn(V) is closed in T n if and only if V is a rational subspace 

of R n. 

P r o o f .  We first show that if V is a rational subspace of  ]R n, then zrn(V) is closed in T n. Let 
Wl, w2 . . . . .  Wr �9 Z n form a basis of V. Suppose that z* �9 T n is in the closure of  7rn(V). Then 
we may find a sequence {x j} in V such that l i m j ~  rrn(xj) = z*. Write 

r 

x j  = E bj'kWk " 
k=l 

Since all wk �9 Z n, we may choose all b./,k ~ [0, 1). Therefore we can find a subsequence {jm} of  
{j} such that 

lim b j,,. k = b~, all 1 < k < r .  
t r /- . .+ o o  

Let x* = ~ = 1  b~wk. Clearly, zrn(x*) = z*. Hence z* ~ rrn(W). Therefore, ten(V) is closed in 
~n. 

We next prove the following fact: If  v �9 ~ ' ,  then the closure of  rrn(RV) in ,]~n iS a rational 
subspace. To see this, let v = [/3t . . . . .  fin] T. Without loss of  generality we assume that/~1 . . . . .  /3r 

r are linearly independent over Q whi le /~  = ~ j = l  ak,jt~j with ak,j E Q for all 1 < k < n. The set 

m " (rood Z r) : m � 9  

~r 

is dense in T r (see Cassels [1], Theorem I, p. 64). Now let Vo ---= {Ax : x c li~ r } where A = [a~,j]. 
Then Vo is a rational subspace of R ~, and 7rn (V0) is contained in the closure of  ~n (Rv). But ~n (V0) 
is closed and V0 D__ Nv. Hence the closure of 7r,~ (Rv) is ~n (V0), proving the fact. 

Finally, let vl . . . . .  Vr be a basis of V. Suppose that Wj is the closure of Jrn(Rvj) in T n. Then 
the closure of rrn(V) contains l~'l + .-- + W~. But Wl + .. �9 + l'Vr is closed in T n because it is a 
rational subspace, and it contains 7rn (V). Hence the closure of ~rn (V) is 1~1 + ' - - +  t~r, proving the 
lemma. [ ]  

Corollary 2. 
Let f : ~n _.~ C be continuous and periodic (mod Z n) and V be a subspace of ~n. If  oo + V 

is contained in the zero set of f (x) for some oo ~ R n, then so is vo + W where W is the smallest 
rational subspace of ~n containing V. 

P r o o f .  First, let {Va} be a set of rational subspaces of  ]i~. n. Then z r n ( ~ ,  Va) = A ,  Zrn(Va) is 
closed in T n, so ~ Va must be a rational subspace of  R n. This implies that the minimal rational 
subspace W containing V exists. Since f ( x )  is periodic (rood Z ~) we may view it as a continuous 
function defined on T n. Now, Zrn(VO) + 7rn(W) is the closure of  7rn(vO) + Zrn(V) in 3" n. Hence 
rrn(OO)+ Zrn(W)is in thezerosetof  f : T n --+ C. Thus, oo+ W c_ Zf. [] 

We derive the following key lemma from a result of  Cerveau et al. [2]. First, we define the 
notion of  r-invariance in ~n. Let re(x) be the symbol of a given dilation equation that satisfies 
the orthogonal coefficients condition. Let E be a given complete set of  coset representatives of 
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Zn/AT(Zn). A closed set Y _ •n is r-invariant if for any I 6 C, 

o9 6 Y and Im(vt(og))l > 0 ==~ rl(og) 6 Y �9 (5.1) 

A compact  r-invariant set is minimal if it contains no smaller nonempty compact r-invariant set. 

Proposition 3. 
Let f ( t)  E fm(l~ n) and let Y be a minimal compact r-invariant set contained in the zero set 

o f f ( t ) .  Then there exist a subspace V of I~ n and a periodic orbit {zj : 0 < j < N - 1} of 
A T (mod Z n) such that 

N--I 

r U (zj + v) .  
j=O 

Proof. This is Theorem 2.8 of  Cerveau et al. [2]. The theorem of Cerveau et al. is actually valid 
in a more general setting, where f ( t )  and re ( t )  are allowed to be any real analytic functions. [ ]  

L e m m a  3. 
Let f ( t )  E fm(R n) such that C m f  = f ,  and let E f  :=  {t ~ Rn : f ( t )  = i n f o ~ ,  f(og)}. 

Then there exist a rational subspace W and a periodic orbit {z j : 0 < j < N} of A T (rood Z n) such 
N--I that F := U j=0 (zj + w)  c_ E f  and F is r-invariant. 

P r o o f .  We first observe that E f  is r-invariant. This follows from 

C m f ( t )  = E [m ( ' ~ l ( t ) ) [  2 f ( r l ( t ) )  = f ( t )  �9 

Since ~ t e e  [m(rl( t))[  2 = 1, if t e E f  then all f ( r l ( t ) )  > f ( t )  so equality can hold only if 

r l ( t )  e E f  whenever ]m(rl( t))]  > 0. 

We construct a nonempty minimal compact r-invariant set Y in E f  as follows. Take any point 

t0 e E f  and set X0 = {t0} and recursively define the finite sets {Xj : j > 0} by letting Xj  consist 
of  all points t j  such that t j  = r l ( t j - t )  with t j-I  ~ X j - I  and l e C such that [m(~j)] > 0. Then the 
z-invariance of E f  gives Xj  c_ E f  for all j > 0. The set Uj~=o x j  lies in a bounded region in ~n 
because the mappings rl are uniformly contracting with respect to a suitable norm in R n (cf. Lagarias 
and Wang [23], Section 3). Thus the closure Y0 of [Jj~176 o x j  is compact, and Y0 ___ E f  because 

E~  is a closed set. We show that Y0 is r-invariant. If  co ~ Y0 and ]g(rl(og))] > 0 where l e C, 
tatce a subsequence ~Jk ~ Xjk that converges to o9, so that rl(sejk) ~ rl(og). Now [m(r/(tjk))] > 0 
for k sufficiently large, hence r t ( t j , )  e Xjk+l; SO we may construct a sequence having r/(og) as a 
cluster point, proving ri(og) e Y0. The existence of a nonempty minimal compact  z-invariant set Y 
contained in Y0 follows by Zorn's  Lemma argument. 

It follows now from Proposition 3 that there exist an AT-invariant subspace V and a periodic 
orbit {zj e Y : 0 < j < N} such that 

N - I  

r U (zj + v) E;,  
j=O 

N - 1  with the property that the set U j = o  (zj + v )  is r-invariant. Now let W be the smallest rational 

subspace of ]R n containing V. Since A t ( W )  is also a rational subspace containing V and it has the 
same dimension as W, A t ( W )  = W. Because E f  is the zero set of f ( t )  :=  f ( ~ )  - inf~o f(og), 

Corollary 2 applies to f to give 

N - I  

r _ U (z, + w) E;. 
j=O 
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N - I  N - I  Finally, since Zrn ([.-Jj=0 (zj  "~- W)) is the closure of  ~n (U  j=0 (Zj _1r V))  in T n, we conclude that 
N-1 U j = o  ( z j  "-I- W )  is r-invariant. [ ]  

P r o o f  o f  T h e o r e m  3. Observe that for r = 1 criterion (d) of  Theorem 1 is equivalent to cri- 
terion (d) of  Theorem 3. Therefore, the equivalence of (a)-(d) of  this theorem has already been 
established in Theorem 1. 

(b) =~ (e). Let the nonconstant f ( ~ )  �9 ~,](~n) satisfy C m f  = f .  Without loss of  generality we 
assume that f ( 0 )  # mino~ f(o~), or else we can replace f ( t )  by - f ( t ) .  By Lemma  3 there exists 
an AT-invariant rational subspace W and a periodic orbit {zj : 0 < j < N} of A r (mod Z n) such 

that uN----01.1= (Zj + W)  _c E f  is r-invariant. We prove the following claim: Let  t �9 z j  + W. Suppose 

that Im(vt(~))l > 0 for some l �9 Z n. Then Zl(t) �9 z j+l  + W + Z n, where ZN :=  Z0. 

Assume that the claim is false. Then the r-invariance of [_jN~I (zj  + W)  implies that r / ( t )  �9 

Zk+l + W + Z n (= z j+l + W + Z n. Hence ~ �9 AT(zk+I + W)  + Z n = zk + W + Z n. But this 
could happen only if 

Zk -Jr" W Jr- ~ n  -.~ Z j + W--~- Z n . 

Applying the operator (AT) N-  L to both sides of  the above equality yields 

and adding Z n to both sides then gives 

Zk+l  -~- W + Z n : Z j + I  "+- W @ Z n , 

which is a contradiction. 
It now follows from the claim that for any ~ �9 z j  + W, 

l = Z lm (r / ( t ) ) l  2 = Z lm (r / ( t ) ) l  2 �9 
I E,~ lee 

Tl(~)ezj+ 1 +W+~ n 

Finally, z j  ~ W + Z n because otherwise we would have z j  + W + Z n = W + Z n c E f , 

contradicting 0 r E f .  

(e) =~ (f). It follows from (e) that m(rt(~))  = 0 for ~ �9 z j  + W and l �9 g such that r / ( t )  r 
Zj+l + W + Z n, where ZN := Z0. Now for any l �9 Z n there exists an 1 t �9 g such that rl(~) =-- 
rl,(~) (mod Zn); hence (f) follows. 

(t) =~ (d). Choose any rl �9 z0 + W. Then r l r  7/fl because zo r W + Z n. For any t~ �9 Z n consider 
the sequence 

cok ( A T )  -k  = (r /+t~) ,  k = 0 , 1 , 2 , . - . .  

N-I  zn  Then l i m k ~  w/c = 0. Since U j = o  (zj  + w )  + is locally compact  and is disjoint from Z n, for 

sufficiently large k we must have wk ~- UN--o 1 (zj  + W)  + Z n. Now w0 = r / +  ot �9 z0 + W, so there 
N--I N--1 zn.  exists a ko > 0 such that coko-t E U j = o  (zj  + w )  + z n but wko r U j = o  (zj  + w )  + 

w e  show that m(wko) = 0. Assume that wko-I �9 Zj + W + Z n. So o9ko-1 = to + l for some 
~o �9 z j  + W and l �9 Z n . N o w  

~  A T  - 1  -~- = (~0 "}- l )  = "~l ( tO)  . 

But wko = "el(t0) ~ Zj+I "J- W "J- Z n, where ZN := Z0. So m(a)ko) = 0 by (f), proving (d). [ ]  
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Proof of Theorem 2. A r is i rreducible because it has the same characterist ic po lynomia l  as A 

does.  So the only Ar - inva r i an t  rational subspace W of  ~n  with d i m ( W )  < n is W = {0}, see 

T h e o r e m  III. 12 of  N e w m a n  [30]. Theo rem 2 now fol lows immedia te ly  f rom T h e o r e m  3. [ ]  

References 

[1] Cassels, J.W.S. (1957). An Introduction to Diophatine Approximations, Cambridge University Press. 

[2] Cerveau, D., Conze, J.E, and Raugi, A. (1996). Fonctions harmoniques pour un op6rateur de transition en dimesion 
> l, Bol. Soc. Bras. Mat., 27, 1-26. 

[3] Cohen, A. (1990). Ondelettes, analyses multir6solutions et filtres mirriors em quadrature, Ann. Inst. Poincarg, 7, 
439-459. 

[4] Cohen, A., Daubechies, I., and Feauveau, J.C. (1992). Biorthogonal bases of compactly supported wavelets, Comm. 
Pure Appl. Math., XLV, 485-560. 

[5] Cohen, A., Daubechies, I., and Plonka, G. (1997). Regularity of refinable function vectors, 3". Fourier Anal. Appl., 3, 
295-324. 

[6] Cohen, A. and Sun, Q. (1993). An arithmetic characterisation of conjugate quadrature filters associated to orthonormal 
wavelet bases, SIAM J. Math. Anal., 24, 1355-1360. 

[7] Conze, J.E, Herv6, L., and Raugi, A. (1997). Pavages auto-affines, op6rateur de transfert et crit~res de r6seau dans R d, 
Bol. Soc. Bras. Mat., 28, 1-42. 

[8] Conze, J.E and Raugi, A. (1990). Fonctions harmoniques pour un operateur de transition et applications, Bull. Soc. 
Math. France, 118, 273-310. 

[9] Daubechies, 1. (1988). Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41,909-996. 

[10] Daubechies, 1. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia, PA. 
[ l 1 ] Daubechies, I. and Lagarias, J.C. ( 1991). Two-scale difference equations I: existence and global regularity of solutions, 

SIAM J. Appl. Math., 22, 1388-1410. 
[12] Donovan, G., Geronimo, J., Hardin, D., and Massopust, E (1996). Construction of orthogonal wavelets using fractal 

interpolation functions, SIAM J. Math. Anal., 27, 1158-1192. 

[13] Flaherty, T. and Wang, Y. (1999). Haar-type multiwavelet bases and self-atOne multi-tiles, Asian J. Math., 3(2), 387- 
400. 

[ 14] Goodman, T.N.T. and Lee, S.L. (1994). Wavelets of multiplicity r, Trans. Am. Math. Soc., 342, 307-324. 

[15] Goodman, T.N.T., Lee, S.L., and Tang, W.S. (1993). Wavelets in wandering subspaces, Trans. Am. Math. Soc., 338, 
639-654. 

[ 16] Gr6chenig, K. (1994). Orthogonality criteria for compactly supported scaling functions, Appl. Comp. Harmonic Anal., 
1,242-245. 

[17] Gr/Schenig, K. and Hass, A. (1994). Self-similar lattice tilings, J. Fourier Anal. Appl., 1, 131-170. 

[18] Herv6, L. (1994). Multi-resolution analysis of multiplicity d: applications to dyadic interpolation, Appl. Comput. 
Harmon. Anal., 1(4), 299-315. 

[19] Heil, C. and Collela, D. (1996). Matrix refinement equations: existence and uniqueness, J. Fourier Anal, AppL, 2, 
363-377. 

[20] Hogan, T. (1998). A note on matrix refinement equations, SIAM Z Math. Anal,, 29(4), 849-854. 

[21] Jia, R.-Q. and Shen, Z. (1994). Multiresolution and wavelets, Proc. Edinburgh Math. Soc., 37, 271-300. 

[22] Lagarias, J.C. and Wang, Y. (1995). Haar type orthonormal wavelet basis in R 2, J. Fourier Anal. Appl., 2, 1-14. 

[23] Lagarias, J.C. and Wang, Y. (1996). Self-affine tiles in R n, Adv. Math., 121, 21-49. 

[24] Lagarias, J.C. and Wang, Y. (1997). Integral self-affine tiles in R n, part II: lattice tilings, J. Fourier Anal. Appl., 3, 
83-102. 

[25] Lawton, W. (1991). Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys., 
32, 57-61. 

[26] Lawton, W., Lee, S.L., and Shen, Z. (1997). Stability and orthonormality of multivariate refinable functions, SlAM J. 
MathAnal., 28, 999-1014. 

[27] Lian, J. (1998). Orthogonality criteria for multi-scaling functions, Appl. Comput. Harmon. Anal., 5(3), 277-311. 

[28] Mallat, S. (1989). Multiresolution analysis and wavelets, Trans. Am. Math. Soc., 315, 69-88. 

[29] Malone, D. L2(~) solutions of dilation equations and fourier-like transformations, preprint. 



170 Jeffrey C. Lagarias and Yang Wang 

[30] Newman, M. (1972). Integral Matrices, Academic Press, New York. 

[31] Plonka, G. (1997). Necessary and sufficient conditions for orthonormality of scaling vectors, in Multivariate Approx. 
and Splines, Niimberger, G., Schmidt, J.W., and Walz, G., Eds., ISNM, Vol. 125, Birkh~iuser, Basel. 

[32] Shen, Z. (1998). Refinable function vectors, SIAM J. Math. Anal., 29, 235-250. 

[33] Strang, G., Strela, V., and Zhou, D. (1999). Compactly supported refinable functions with infinite masks, in Contem- 
porary Mathematics, L. Baggett and D. Larson, Eds., AMS. 

[34] Strichartz, R. and Wang, Y. Geometry of self-affine files I, Indiana J. Math., 48, No. 1, 1-23. 

Received April 7, 1999 

Revision received September 6, 1999 

Information Science Research, AT&T Labs-Research, Florham Park, NJ 07932 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 
e-mail: wang@math.gatech.edu 


