CORRECTION TO MODIFIED STEROID HORMONES XXX

D. Burn, M. T. Davies and V. Petrow The British Drug Houses Ltd. Graham Street, London N.1.

Received April 10,1964

In Part XXX¹ of this series the preparation of 16α , 17α -cyclomethylene-19-norpregn-4-ene-3,20-dione, m.p. 169.5° , $[\alpha]_{\rm D}$ + 165° , was described by a route involving lithium/liquid ammonia reduction of 16α , 17α -cyclomethylene-3-methoxy-19-norpregna-1,3,5(10)-trien-20-ol, followed by acid treatment of the product and regeneration of the 20-oxo function by oxidation with the Jones' reagent. Similar treatment of 16α , 17α -cyclomethylene-3-methoxy-19-norpregna-1,3,5(10)-trien-20-one gave a different product, m.p. 124- 126° , $[\alpha]_{\rm D}$ + 117° . This was assigned the structure 17α -methyl-19-norpregn-4-ene-3,20-dione as 16α , 17α -cyclomethylene-3 β -tetrahydropyranyloxypregn-5-en-20-one was converted by the same procedure into what appeared to be 5β -hydroxy- 17α -methylpregn-5-en-20-one (acetate) on the basis of its physical properties (m.p. 182- 184° , $[\alpha]_{\rm D}$ - 30° , 1it.² m.p. 185- 187° , $[\alpha]_{\rm D}$ - 31.6°).

Authentic 17α -methyl-19-norpregn-4-ene-3,20-dione (m.p.142-146°, $[\alpha]_D$ +58°) has now been prepared by Dr. M. J. Weiss et al.³, and as it undoubtedly differs from our material we have now re-examined the structures of our products, with particular attention to N.M.R. data, which was not available to us in 1961.

Repetition of the above two " 17α -methyl" preparations has given products unequivocally identified as 16α -methylpregnan-20-ones. In

addition, the total product resulting from lithium/liquid ammonia reduction of 16α , 17α -cyclomethylene-3-methoxy-19-norpregna-1,3,5(10)-trien-20-one was oxidised with the chromium trioxide-pyridine complex when 3-methoxy- 16α -methyl-19-norpregna-1,3,5(10)-trien-20-one was obtained, 4 unequivocally identified with an authentic specimen. 6

It follows that lithium/liquid ammonia reduction (and re-oxidation) of 16α , 17α -cyclomethylenepregnan-20-ones effects fission of the cyclopropane ring with formation of 16α -methylpregnan-20-ones, whilst the cyclopregnane ring of the corresponding 20-ols is stable under these conditions.

EXPERIMENTAL

N.M.R. spectra were determined on a Perkin-Elmer 40 M^C/s
permanent magnet spectrometer in deuterochloroform with tetramethylsilane as internal standard. Optical rotations were determined on
ca. 1% solutions in chloroform at room temperature.

16α-Methyl-19-norpregn-4-ene-3,20-dione.

The lithium/liquid ammonia reduction, acid treatment and chromium trioxide oxidation of 16α , 17α -cyclomethylene-3-methoxy-19-norpregna-1,3,5(10)-trien-20-one (10g) was carried out as described in Part XXX\(^1\) of this series. The product was twice chromatographed on alumina and crystallised from methanol to give 16α -methyl-19-norpregn-4-ene-3,20-dione, m.p. 131-134°, $[\alpha]_D$ +138° [the previous sample of this product\(^1\) was impure, as evidenced by its constants and by thin layer chromatography] (lit.\(^6\) m.p. 135-137°, $[\alpha]_D$ +143°).

The N.M.R. spectrum had 3-proton singlets at 9.29τ (C18 methyl), 7.87τ (C21 methyl) and a 3-proton doublet at 9.05τ (J=6.2 c/s) (C16 α methyl).

3-Methoxy- 16α -methyl-19-norpregna-1.3.5(10)-trien-20-one.

16α,17α-Cyclomethylene-3-methoxy-19-norpregna-1,3,5(10)-trien-20-one (5g) was reduced with lithium/liquid ammonia as described before. The total product, in pyridine (50 ml.), was added, at room temperature, to a suspension of the complex prepared from chromium trioxide (5g) in pyridine (50 ml.) and kept overnight at room temperature. The product, isolated in the usual way, was crystallised from ether-hexane and methanol to give 3-methoxy-16α-methyl-19-norpregna-1,3,5(10)-trien-20-one as laths, m.p. 113-115°, [α]_D +136.2° (lit. 6 m.p. 116-118°, [α]_D +143°). The N.M.R. spectrum shows singlet, 3-proton peaks at 9.33~ (C18 methyl), 7.86~ (C21 methyl) and 6.24~ (methoxyl). The C16 methyl group appears as a 3-proton doublet centred at 9.03~ (J=6.2 c/s).

3β -Acetoxy- 16α -methylpregn-5-en-20-one.

The lithium/liquid ammonia reduction, chromium trioxide oxidation, acid treatment and acetylation of 16α , 17α -cyclomethylene-3 β -tetrahydropyranyloxypregn-5-en-20-one was carried out as described in Part XXX\(^1\) of this series and the product was purified from acetone. It had m.p. $180-182^\circ$, $[\alpha]_D$ -16° , 7 and clearly differs (mixed m.p., I.R. and N.M.R. spectra) from 3β -acetoxy- 17α -methylpregn-5-en-20-one. Its identity with 3β -acetoxy- 16α -methylpregn-5-en-20-one (m.p. $182-184^\circ$, $[\alpha]_D$ -8°) was confirmed by mixed m.p. and I.R. spectrum. Its N.M.R. spectrum had 3-proton singlets at 9.347

(C18 methyl), 8.98τ (C19 methyl), 7.97τ (acetate) and 7.87τ (C21 methyl). The 16α -methyl group was revealed as a 3-proton doublet at 9.05τ (J=6.2 c/s), the low field component being coincident with the C19 methyl signal.

ACKNOWLEDGEMENTS

We thank Dr. M. J. Weiss for placing his manuscript in our hands prior to its publication.

We also thank Dr. R. Deghenghi of Ayerst, McKenna & Harrison Ltd. for a sample of authentic 3β -acetoxy- 17α -methylpregn-5-en-20-one and a copy of its N.M.R. spectrum.

REFERENCES

- Burn, D., Ducker, J.W., Ellis, B., Hiscock, A.K., Leftwick, A.P., Peach, C.M., Petrow, V., and Williamson, D.M., J. CHEM. SOC., 4242 (1963).
- Plattner, Pl. A., Heusser, H., and Herzig, P.Th., HELV. CHIM. ACTA, 32, 270 (1949).
- Weiss, M.J., Schaub, R.E., Allen, G.R., Poletto, J.F., Pidacks, C., Conrow, R.B., and Coscia, C.J., TETRAHEDRON, 20, 357 (1964).
- 4 Aromatisation of 3-methoxy-2,5(10)-dienes on treatment with chromium trioxide/pyridine has been reported.
- 5 Ringold, H.J., Rosenkranz, G., and Sondheimer, F., J. AMER. CHEM. SOC., 78, 2477 (1956).
- 6 Burn, D., and Petrow, V., J. CHEM. SOC., 364 (1962).
- 7 The rotation reported earlier (-30°) is in error.