Conversion of Guanosine into its N2-Methyl Derivative

By Peter K. Bridson, Wojciech Markiewicz, and Colin B. Reese* (Department of Chemistry, King's College, Strand, London WC2R 2LS)

Summary N^2 -Methylguanosine (1c) may be prepared in satisfactory yield by treating the protected guanosine derivative (5a) with diazomethane and then removing

the protecting groups; (5a), which readily reacts with dimethylamine to give (5c), may be prepared from (4a) in good yield.

It is believed that the N-methylated minor nucleosides which occur widely in transfer ribonucleic acids (tRNA) are formed by enzyme-promoted methylation of the base residues at the macromolecular level. However, of the four simple N-methyl derivatives of guanosine {1-methyl-, N^2 -methyl-, N^2N^2 -dimethyl-, and 7-methyl-guanosines [(1b), (1c), (1d), and (2), respectively \rightarrow \text{found} \text{in tRNA, only (1b)} and (2) have been prepared directly3 by the methylation of guanosine (1a). N^2 -Methyl- and N^2N^2 -dimethyl-guanosines (1c and 1d, respectively) have been prepared from 5-amino-1-β-D-ribofuranosyl-4-imidazolecarboxamide⁴ and also from comparatively inaccessible derivatives of 9-β-D-ribofuranosyl-2-fluoropurine. We now report a convenient method for the preparation of N^2 -methylguanosine (1c) by the direct methylation of a protected guanosine derivative.

Reaction between N²O²'O³'O⁵'-tetrabenzovlguanosine⁶ (4a) and an excess of methanesulphonyl chloride in the presence of triethylamine in dichloromethane solution gives its 6-O-mesyl derivative (5a), which may be isolated as a colourless crystalline compound, † m.p. 156—157 °C, in 75% yield. The structure assigned to (5a) is based on the following evidence. Reaction between (5a) and ca. 3 mol. equiv. of 20% methanolic dimethylamine in dioxan solution to give (5c) is complete within 15 min at 20 °C. Treatment of the latter compound (5c), which may be isolated as a crystalline solid, m.p. 157 °C, in 85% yield, with 33% alcoholic methylamine for 8 days; at 20 °C gives (6) in 92% yield. The product obtained is identical to authentic material prepared by treating 9-(2',3',5'-tri-O-acetyl- β -Dribofuranosyl)-2-amino-6-chloropurine7 with methanolic dimethylamine.

When a solution of (5a) in dichloromethane-methanol (10:3 v/v) is allowed to react with ca. 4-5 mol. equiv. of ethereal diazomethane for 90 min at 0 °C and then for 180 min at 20 °C, a mixture of (5b), a second methylation product believed to be (5; $R^1 = Me$, $R^2 = OMe$; ca. 12%), and some unchanged starting material (5a; ca. 17%) is obtained. The latter compound (5a) is removed by chromatography and the methylated products are then treated with 0.5 m-K₂CO₃ in water-dioxan (1:1 v/v) for 45 min at 20 °C. Fractionation of the products gives $N^2O^2O^3O^5$ -tetrabenzoyl- N^2 -methylguanosine (4b) as a glass in 53% yield. When (4b) is treated with 33% alcoholic methylamine for 16 h at 20°C, N2-methylguanosine (1c), m.p. 235 °C (decomp.), is obtained in 90% yield. The product obtained is identical (1H n.m.r., u.v., and mass spectra; t.l.c. in several systems) to authentic material.

We are unaware of the previous use of an O-mesyl protecting group for base transformations in nucleoside or

HO OH

(1)
$$\alpha_1 R^1 = R^2 = R^3 = H$$
 $b_1 R^1 = R^2 = H, R^3 = Me$
 $d_1 R^1 = H, R^2 = R^3 = Me$

(2)

indeed in any other branch of heterocyclic chemistry. Furthermore, nucleophilic displacement of mesylate ion from (5a) occurs with exceptional ease thereby suggesting a general procedure for carrying out transformations such as $(4a) \rightarrow (5c)$ in heterocyclic chemistry.

We thank the S.R.C. and Roche Products Ltd. (C.A.S.E. Award to P. K. B.) for financial support.

(Received, 29th April 1977; Com. 408.)

† Satisfactory microanalytical and spectroscopic data have been obtained for all new crystalline compounds described.

‡ The O-benzoyl groups are removed within 12 h but the half-time for the removal of the N-benzoyl group with 33 % MeNH₂-EtOH at 20 °C is ca. 24 h. This contrasts with a half-time of 200 min (see ref. 6) for the conversion of N²-benzoylguanosine (1; R¹=R²=H, R³=PhCO) into guanosine under the same conditions.

¹ R. H. Hall, 'The Modified Nucleosides in Nucleic Acids,' Columbia University Press, New York, 1971, pp. 295 et seq.

² R. H. Hall, The Modified Nucleosides in Nucleic Acids, Columbia University Fress, New York, 1971, pp. 295 et seq.

² B. G. Barrell and B. F. C. Clark, 'Handbook of Nucleic Acid Sequences,' Joynson-Bruvvers, Oxford, 1974.

³ A. D. Broom, L. B. Townsend, J. W. Jones, and R. K. Robins, Biochemistry, 1964, 3, 494; J. A. Haines, C. B. Reese, and A. R. Todd, J. Chem. Soc., 1962, 5281; J. W. Jones and R. K. Robins, J. Amer. Chem. Soc., 1963, 85, 193.

⁴ A. Yamazaki, I. Kumashiro, and T. Takenishi, J. Org. Chem., 1967, 32, 3032.

⁵ J. F. Gerster and R. K. Robins, J. Amer. Chem. Soc., 1965, 87, 3752; J. Org. Chem., 1966, 31, 3258.

⁶ C. B. Reese and R. Saffhill, J.C.S. Perkin I, 1972, 2937.

⁷ J. F. Gerster, J. W. Jones, and R. K. Robins, J. Org. Chem., 1963, 28, 945.