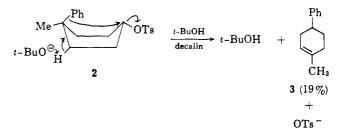
ment of the oxygen atom in the nitrosyl ligand, well established to be a three-electron donor, with a *p*anisylimino group produces the *p*-anisylazo ligand present in the new complex just as replacement of the oxygen atom in the carbonyl ligand with a *p*-anisylimino group produces the *p*-anisyl isocyanide ligand, which has been shown to form complexes with many transition metals¹⁰ similar to metal carbonyls in many respects. Thus the relationship between $C_5H_5Mo (CO)_2NO^{3.6}$ and *p*-CH₃OC₆H₄N₂Mo(CO)₂C₅H₅ appears to be especially close.

Further studies on arylazo derivatives of transition metals are in progress and will be reported in detail in the future.

(10) For a review of isocyanide complexes of metals see L. Malatesta, Progr. Inorg. Chem., 1, 283 (1959).

Mellon Institute R. B. King Pittsburgh 13, Pennsylvania M. B. Bisnette Received October 21, 1964

1,4-Phenyl Migration in a Base-Catalyzed Elimination-Rearrangement Reaction


Sir:

Treatment of 4,4-diphenylcyclohexyl *p*-toluenesulfonate (1) with sodium *t*-butoxide in refluxing *t*-butyl alcohol solution for 4 hr. gave 4,4-diphenylcyclohexanone (7%), 4,4-diphenylcyclohexanol (9%), 1,4diphenylcyclohexene (14%), and 4,4-diphenylcyclohexene (64%). These products were separated by elution chromatography and identified by comparing their melting points, infrared spectra, and g.l.c. retention times with those of authentic samples.¹ A comparable experiment in which dimethyl sulfoxide was used as the solvent increased the yield of 1,4diphenylcyclohexene to 21%. When a refluxing *t*butyl alcohol-decalin solvent mixture was used, the yield of 1,4-diphenylcyclohexene was 16% (determined by g.l.c. analysis).

There is ample mechanistic analogy for the formation of all these products, except 1,4-diphenylcyclohexene. Since the rearrangement reaction fails in the absence of base, a carbonium ion mechanism is unlikely. This view is supported by the failure of 1,4-phenyl migration to occur during solvolysis (acetolysis or formolysis) of tosylate 1, or during deamination of the corresponding amine. Rearrangement via a radical or methylene intermediate appears unlikely, and we have some evidence against the latter inasmuch as preliminary experiments on the base-catalyzed decomposition of the p-tolylsulfonylhydrazone of 4,4-diphenylcyclohexanone have failed to reveal the presence of rearrangement products.

Examination of molecular models shows that the boat form of 1, or of *cis*-4-methyl-4-phenylcyclohexyl *p*-toluenesulfonate (2),² has one of the C-3 hydrogen atoms, the C-3 and C-4 carbon atoms, and the C-C₆H₅ bond in the correct coplanar orientation for a concerted β -eliminative process. Furthermore, the phenyl group is in a favorable location to initiate bonding at the face of the carbon atom opposite to that holding the *p*toluenesulfonate grouping. Conceivably, then, 1,4diphenylcyclohexene could arise from 1 by a one-step concerted reaction—a merged elimination (E2) and intramolecular displacement (SNi) process.

This mechanism predicts that during the reaction the double bond is generated between the C-3 and C-4 carbon atoms, rather than between the C-1 and C-2 carbon atoms. The reaction of 1 gives no evidence on this point, but when applied to 2 this mechanism predicts that the rearrangement product will be 1methyl-4-phenylcyclohexene (3), rather than 4-methyl-1-phenylcyclohexene.

Treatment of 2 with sodium *t*-butoxide in a refluxing solution of t-butyl alcohol and decalin gave 3 (19%), 4-methyl-4-phenylcyclohexene (26%), 4-methyl-4-phenylcyclohexanone ($\sim 5\%$), and a mixture of *cis*- and trans-4-methyl-4-phenylcyclohexanol (36%). These products were separated by elution chromatography on silica gel. The isomeric 1-methyl-4-phenyl- and 4-methyl-4-phenylcyclohexenes were identified by comparing them with authentic samples using infrared, ultraviolet, and n.m.r. spectra and g.l.c. retention times.¹ For example, **3** has a series of maxima at 242, 247.5, 253, 257.5, 261, and 267.5 m μ with $\epsilon \sim 325$, whereas 4-methyl-4-phenylcyclohexene has a broad maximum at 241 m μ (ϵ 700). There was no indication for the presence of 4-methyl-1-phenylcyclohexene $(\lambda_{\max} 247 \text{ m}\mu (\epsilon 21,000))$, either in the ultraviolet or the n.m.r. spectrum or the g.l.c. analysis of **3**.

A search for merged E2–SNi reactions in other cyclic systems and in open-chain analogs is underway.³

Acknowledgment.—We are grateful to the National Science Foundation for their support of this investigation (NSF-G24095).

(3) Rearrangement products have been observed to be formed under similar conditions from neopentyl *p*-toluenesulfonate (elimination with methyl migration).

DEPARTMENT OF CHEMISTRY	Adbul-Rahman Abdun-Nur
Northwestern University	FREDERICK G. BORDWELL
Evanston, Illinois	

Received October 15, 1964

Synthesis of

1(2,3,6-Trideoxy- β -D-*erythro*-hexopyranosyl)cytosine. The Deoxy Sugar Nucleoside Moiety of Amicetin

Sir:

In this work the deoxy sugar nucleoside derived from amicetin^{1,2} was synthesized starting from a readily available nucleoside of known β -configuration. More importantly, procedures were developed for the conversion of amicetose,² the naturally occurring deoxy sugar which has been synthesized conveniently in this

⁽¹⁾ Microanalyses consistent with the structures assigned were obtained for all new compounds.

⁽²⁾ The cis designation refers to the first group mentioned, i.e., cis CH2 and OTs.

 ⁽a) C. L. Stevens, K. Nagarajan, and T. H. Haskell, J. Org. Chem., 27, 2991 (1962);
C. L. Stevens, P. Blumbergs, and F. A. Daniher, J. Am. Chem. Soc., 85, 1552 (1963).

⁽²⁾ C. L. Stevens, P. Blumbergs, and D. L. Wood, ibid., 86, 3592 (1964).