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Summary. In the framework of self-stabilizing systems, the iff it has the no-cycleproperty: there is no cyclic sequence
convergence proof is generally done by exhibiting a mea-of transitions which contains some configuratiorg L. This

sure that strictly decreases until a legitimate configuration igproperty is often proved by exhibitingrm functiordefined
reached. The discovery of such a measure is very specific anaver the set of configurations, whose value strictly decreases
requires a deep understanding of the studied transition sysfter each transition (or each bounded sequence of transitions)
tem. In contrast we propose here a simple method for provin@s long as the configuration is not legitimate [31]. Since such
convergence, which regards self-stabilizing systems as string measure is usually very specific to the considered system,
rewrite systems, and adapts a procedure initially designed bfinding one is very difficult and requires a deep understanding
Dershowitz for proving termination of string rewrite systems. of this system (see e.g.[23,14,5]).

In order to make the method terminate more often, we also We propose here a hew approach for proving the absence
propose an adapted procedure that manipulates “schemes”, i.@f cycle. Configurations are viewed as words of a formal lan-
regular sets of words, and incorporates a process of schengiage, transitions & as rewrite rules, and the no-cycle prop-
generalization. The interest of the method is illustrated on severty as a variant of the nontermination property for rewrite

eral nontrivial examples. rules. The absence of infinite sequences will be shown by
refining the generation procedure reduction chain} first
Key words: Self-stabilization — Rewriting systems proposed by Dershowitz for proving string rewriting termi-

nation [8]. The method proposed here is new in that: 1) it
uses a general technique of string-rewriting to deal with self-
stabilization; 2) it does not consider all the possible rewrite
derivations, but only “representative” ones, using a restricted
1 Introduction first-order rewriting strategy. A generalization strategy, replac-
ing sequences of words with regular languages, is also incor-

Introduced by Dijkstra, with three mutual exclusion algo- porated in the method in order to improve its termination.
rithms on a ring of processes [11], the notion of self-stabiliza- o o

tion has been largely studied for the last ten years (see [29, 31€lated work on self-stabilization prooffl1] is without

for surveys). In this paper, we consider a system which consistBr00f. In [12], a correctness proof is given for the third (3-
of aring of machines controlled by a “central demon’. Its con- State) algorithm of [11], by showing properties of executions
figuration is the concatenation of the component local state§/Sing behavioral reasoning. As already pointed out, almost all
and it is characterized by a sétof transitions defined over further proof methods (cf. [31]) are based on norm functions
configurations. The systemsslf-stabilizingwith respecttoa  (S€e anexample in [19]) but, as expressed by Gouda in [15]: “It
subsetL of legitimateconfigurations when, regardless of the has been my experience that the ratio of time to design a stabi-
initial configuration and regardless of the transition selectedizing System to the time to verify its stabilization is about one
at each step by the central demon, it is guaranteed to reacht@ ten”. For simplifying proof process, general paradigms have
configuration ofL within a finite number of steps. The set ~ been proposed: various protocol compositions making proofs
is assumed to havedosureproperty: from a legitimate con- modular [3,16], attractor or staircase methods [15,29], auto-
figuration inL, the system persistently remainginitis also ~ Matic transformations into stabilizing systems [2]. The idea
frequent to assume that therenis-deadlockWith these two ~ Of representing sets of configurations as regular languages is

hypotheses, it is easy to show that a system is self-stabilizingSed in [18], but, only at a “ground” level (without use of 1st-
order variables). Note that, recently, some works were done

This paper is a revised and extended version of a communicatiofior proving convergence without appealing to a norm func-
given by the three first authors, at Symp. DISC’99, under the title
“A new rewrite method for proving convergence of self-stabilizing
systems” (LNCS 1693, Springer-Verlag, pp. 240-253). ! also calledorward closuresn [9].
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tion: [32] uses techniques borrowed from control theory andExample.Consider the following rules from Beauquier-
[1] induction techniques over the set of configurations. Debas algorithm (see Sect.5):

Related work on rewrite techniques applied to distributed By : #2X1# — #1X2# is a bottom-rule.
systemsAlthough viewing transitions as rewrite rulesis rather Ty :  #X12# — # X214 is atop-rule.
natural, the application of general rewrite techniques for prov-M; : #X10Y# — #X01Y# and

ing properties of distributed systems has not been explored/, : #X02Y# — #X20Y # are middle rules.
to our knowledge, except in [25-27] where graph rewriting
techniques (with priorities) are used to prove the correctnesa at
of various distributed algorithms (election, spanning-tree con-
struction,...). However this work does not address the issue dJi"°
self-stabilization.

These rules are used throughout the next sections to illus-
e the notions which are defined, as well as the method we
pose.

Note that, strictly speaking, rules/; and M, can be ap-
plied only if Y # . For example; should correspond to
Plan of the paper.Section 2 explains how self-stabilization 3 rules of the form#X10aY # — #X01aY# with a €

can be viewed as a property of string rewriting systems. In{0, 1, 2}. For the sake of conciseness, we neglect such a re-
Sect. 3, we give a basic procedure, inspired from Dershowitzstrictive condition of application (except at Sect.5).

that, when it terminates, allows to decide self-stabilization. In

order to make the procedure terminate more often, we incorground reductionA ground wordw is reduciblevia a rule

porate a process of generalization into it (_Sect. 4). Section %f the form LXOYH — #XY# iff w = Fulyvit for
shows application qf th_e method on detailed exa_lmples andgme strings, v € X*. One also says that is an instance of
Sect. 6 concludes with final remarks and perspectives. the rule lefthand side via the ground substitufof/u, Y/v}.

Thereduced fornof wisw’ = #ur,v#. Reduction via arule

of the form#¢, X lo# — #r1 Xro# is defined in a similar
2 Self-stabilizing systems as string rewrite systems way.

A ground wordw reduces tay’ via S, writtenw —g w’

We first recall some basic definitions from (string) rewrite (or sometimes simply — w’), if w’ is the reduced form af
systems [10,6]. The words considered here are generally deda some rule ofS. We say thatS is non terminatingff there
limited by a leftmost and rightmost special symb##'! The exists an infinite sequence of reductions $iatarting from
symbols appearing between them belong to a finite alphabetome ground word. Otherwise S is said to be terminating.
Yorasety = {IW,X,Y ...} of variable symbols. Atring .
is an element of>*, with ¢ for the empty string. Aground ~ Example.ConsiderB, : #2X 1 — #1X24. The ground
word is an element of£X*# and a(1st-order) wordis an word w = #2011# is an instance of the lefthand side, using
element of# (X U V)*#. A substitution is a mappingfrom  the substitutiof X/01}. o
Vto (X U V)* with (W) = W almost everywhere except Replacement with the righthand side yields the reduced form
on a finite set of variables denoted Bym (6). This mapping @' = #1012
extends trivially to words and the resdltw) is called ann- . . .
stanceof the wordw. A substitutiory is represented by a finite Reduction of a ground word using a middie rule?

; (- X0/Y — XrY merely consists in searching for a substring
set of pairs of the for|W /6 (W . A substitution AR :
gis grgundwhenH(Wr?is i/n (E* )Eovfgﬁ)‘ﬁ}(g Dom(0) of w, and replacing it with-. Note that reduction can occur
' ' in various places (corresponding to all the possible positions

wherel occurs as a substring af).
2.1 String rewrite systems
) ) ) , 2.2 Self-stabilization
The string rewrite systems considered here contain length-
preserving rules, divided into three subsetg:rulesin T'ops

are applied to the rightmost part of wordsgttom rulesin
Bottomg are applied to the leftmost part of words (or simul-

taneously at both ends); the rest of ruleddiiddles are called for the set of legitimate configurations in a system witma-

middle rules More precisely, let, r (resp.f;, r; fori = 1,2) chines, we define thglobal set of legitimate configurations
be nonempty strings of* of the same length, and, Y vari- as [ _ U Ly G g g 4
— Un>2 :

ables,

We are now able to give a formal definition of self-stabilization
for a system modeled as a string rewrite systerfrom now
on, configurations are regarded as ground words. WritiRg

Definition 1. A rewrite systen® is self-stabilizingwith re-

Middles is made of rules of the form: spect to se iff

XY # — #XrY 4

Tops is made of rules of the form: (0) Each ground word is reducible vi§.

HX0H — #Xr# (1) LisclosedviaS,ie: we LAw —sw = w €L,
Bottomg is made of rules of the form: for all ground wordsw, w'.

HIXH — #rX# or #0 Xo# — #r1 Xro. (2) There is no ground cyclic derivation of the form —s

. . cos s wy, = wp Withwy & L.
We are going to apply these rules either to ground words or to s on ! 1 ¢

1st-order words of the formuWv# whereu, v are strings ~ Statement0) expresses ao-deadloclproperty,(1) aclosure
over X*, andW is a variable. property forZ, and(2) ano-cycleproperty. It easily follows
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from this definition that any “maximal” derivation is infinite to 1, uo, us are:
and reaches the sét this corresponds to@nvergencerop-

erty (also calledho-livelockproperty in [7]). HLUIW' 14 — ##22W' 14,
Note that assumingl), an equivalent version fqR) is: #IW'114# — #1W'224 and
(2') There is no infinite ground derivation via S, #LLH# — #2249

suchthatA n £ = §. Let us now define in a formal and constructive manner the

operation of minimal reduction (at nonvariable position). We
3 A first-order characterization of cycles distinguish two basic cases, depending on wether the involved
substitution is identity4 = id) or not. Suppose that we are
Assuming now thas satisfieg0) and(1), we will focusonthe  given a middle ruleR : #X(Y# — #XrY # wherel is of
problem of proving theno-cycleproperty, stated under form the forma; - - - a, (with a; € X). The substitutions # id
(2'). Our method relies on a first-order characterization of cy-involved in minimal reductions vidt form the setDp =
cles: we will show that an infinite ground derivation Agas ~ Ar U Br U Cr, with:
mentioned in(2")) is actually an instance of an infinite deriva- 4 4, is the set of substitutions; : {W/W’a; - --a;} for
tion at the “first-order” level. In order to state our mainresult, 1 <; <, —1,
we need the notion of reduction chains, which is transposede B, is the set of substitutions; : {W/a;,1 - - - a, W’} for
from [8] in our particular context. 1<i<n-—1,

e (' isthe set of (ground) substitutions
Yig : {W/ai+1-~-aj} forl1 <i< 1<n—-1 (Wlth the

3.1 Minimal reductions and chains convention thaty; ; is {W/z} if i = 7).

We now deal with one-variable wordsof the form#uW v+, A similar set of substitution® can be defined for a top or
with w,v € X* andW € V. The notion of ground re- bottom ruleR.

duction defined in Sect.2.1, extends trivially to such one-
variable words: it suffices to consid&F as a new constant : L ; L
(i.e., to extendX with {I¥}), and reduce the word using a f 'ﬁ/\ %Ofr;JEngSile]JkJIStltuiort;ifE Dr U {id} (written:
rule R : A — p, asin Sect. 2.1. We say in this case that reduc- gTrR plyo = u) It
tion is done using substitutian= id. Given afirst-orderword ~ ® o = id, t is an instance oA, andu is the corresponding
t and a rewrite ruleR, it is also possible to consider nontriv- instance op.

ial instantiations of¥ (¢ # id), that make’ reducible. This e For a middle ruleR : #X(Y# — #XrY# with { =
problem is a particular case of the unification problem: finding @1+ -a,, and awordt = #t; Wia#:

Definition 2. A word¢ is minimally reducibleto « via rule

common instances efand\. The general unification problem - t2 begins with stringu; 41 - - - a,, (for somel < i <
for words is complex, and was solved by Makanin [28]. How- n — 1), 0 = «;, andu is obtained front by replacing
ever our particular unification problem here is simple, because Waiqy---a, with W'r.

t and\ do not share variables, and are “linear” (i.e. contain at - t; ends with stringz; - - - a; (for somel < i < n —
most one occurrence of the same variable). Insuchacasethere 1), 0 = 3;, andu is obtained fromt by replacing
exists acomplete set of minimal unifietisat is finite: roughly ar -+~ a;W withrW”’.

speaking, it suffices to consider all the manners in whiahd - 12 begins witha; - - - a, andt; ends witha, - - - a;
X overlap depending on the possible instantiations of their (for somel < i < j < n—1),0 = v, andu
variables (see, e.g., [21]). Assume given a minimal complete is obtained front by replacinga; - - - a;Wa;ji1 -+ - an
set of unifiersuy, ..., ux, (tus = A for i = 1,..., k), each with r.

instancety; of ¢t reduces to/y; (tu; — Cu;). However, we e For atop or bottom ruleR, minimal reduction ot (using
disregard unifierg,; which instantiate at a “variable posi- o # id), is defined similarly to the case of a middle rule.

tion” (replacing variabléV of ¢ with a subword of the form Example.For rule M, : #X10Y # — #X01Y# and word

#HuW'v# with u, v # ), which will turn out to be unneces- = . . T p
sary in our context (see remark, Sect. 3.3). Such an Operatioﬁa?yﬁggz#n’qimerﬁl 'rsegus(':ggf substitutian : {IW/W'1}

of minimal reduction (at nonvariable position) is an adapta-
tion of the operation of “narrowing” [30,13,20] in our context This gives#W'102# — #W'0124#.
(one-variable words rather than 1st-order terms). For rule R : #X100Y# — #X110Y# and word

Example. Consider the rule X 11V # — #£X22Y #. The to = #W,OOB#, there. are t\N/O poss_lble Iinstantiations
wordt : #1W14 unifies with lefthand sidgtX 11V # via @1 {W/wW’10} and a : {W/W’1}, which yield respec-

) T tively the following minimal reductions#W’10003# —
most general unifiers:

#W/110034 and#£ W' 10034 — W' 11034
pn AW/IW' U {X /e, Y/W'1},

po  {W/W'1F U {X/1IW', Y e}, We can now define the notion of “minimal reduction
ps : {W/e} U{X/e,Y/e} and chains”. They are direct transpositions of definitions or prop-
pig : AW/ WA 1IWL} U {X/1Wy, Y/ Wal}, erties of [8] in our particular context.

The last unifiep, (with the associated reduction) is discarded Definition 3. Theminimal top reduction chainsf a rewrite
because it corresponds to a unification taking place at a varisystemS form a set of derivations inductively defined as fol-
able position ot. The minimal reductions afcorresponding  lows:
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e Every top rule ofS is a minimal top reduction chain.

o IfC: ty — .-+ — t, is a top minimal reduction chain
and R is a rule of S such thatt,,c — u via R, then
toc — ---t,o — w is a top minimal reduction chain,
called asuccessoof C' via R usingo.

J. Beauquier et al.

Theorem 5. Let S = Middles U Tops U Bottoms be a
rewrite system and lef be a set of configurations. If

(0) each ground word is reducible vig,
(1) Lis closed viaS, and
(3) § — Tops is terminating.

The transitive closure of the successor relation is called “iter-ThenS is self-stabilizing w.r.tL iff there is no quasi-cyclic
ated successor”. Henceforth, we will simply say “top chain” top chaint; — --- — ¢, via S, such thatu,, ¢ £ for some

instead of “top minimal reduction chain”.

Example.Consider the rulély : #WI12# — #W214#
viewed as a chain. Its successor via

By #2X1# — #1X24 using{W/2W'} is:
Oy #2W/ 124 — #2W' 214 — #1W' 224

Recall thatin all rules\ — p of the string rewrite systems
considered here, the substrifgf ) is replaced by substring
r of p, which has the same length. Therefore, a chiain>
to — ... — t, ... is such that either all the words, ..., t,,
are ground and of the same length, or eggcis of the form
#u;Wo;# where theu;s andv;s are strings of* of same

ground instance.,, oft,,.

Example.Let us illustrate Theorem 5 on the systgnof the
example above. First, it is easy to see tfiaand £ satisfy
propertieg0), (1) and(3). From the existence of quasi-cyclic
top chaint; — --- — tg with t; = t9 = #0101# & L,

it now follows by Theorem 5 thaf is not self-stabilizing
w.r.t. L.

Theorem 5 is an adaptation of Dershowitz’s theorem ([8],
p. 454) characterizing nonterminating string rewrite systems
as those having at least one cycling chain (or infinitely many
noncycling infinite chains, which cannot happen in our case).

Remark.In Theorem 5, we require the termination property of

length. For the same reason of length preservation, there mugt_ 7, ; (condition(3)). This condition is new w.r.t. original

existl < ¢ < j such thatt; = ¢;, within any infinite top

Dershowitz's framework of [8]. Condition (3) allows us to re-

chain (ground or not). This explains the use of the following fine Dershowitz's method and to focus top chains (instead

definition.
Definition 4. A top chain (resp. ground derivation)
tl %.‘.H.‘.*)t"

is quasi-cyclicif ¢; = ¢,, for somei < n, andt, # ¢, for all
distinctp, g less tham.

Example.Consider the alphabel = {0, 1} and the follow-
ing systeny:

Bottom Cy:  #0X0# — #1X0#
Cr:  #HIX1# - #0X1#
Top Up: #XO01# — #X00#
Uy . #X10# — #X11#
Middle Np: #XO01Y# — #X00Y# (withY #¢)
Ny #X10Y# — #X11Y# (withY #¢€)

Let £ be: #0T1F4# U #170T# U #1174 U #00T#
and consider the top rulg, : #WO01# — #W00+# viewed
asachain. ItssuccessorWa using{ W /W'1} is: #W'101#
— #W'100# — #W'110#. The successor vidV, us-
ing {W'/W"0} is then: #W"0101# — #W"0100# —
#W"01104# — #W"00104#. Now the successor ViBj us-
ing {W"/e}is: t; = #0101# — to = #0100# — t3 =
#0110# — t4 = #00104# — t5 = #10104. Note that this

of chains starting with arbitrary rules), so that the number of
chains generated is further restricted. In practice, condition (3)
is often satisfied when dealing with stabilizing systems hav-
ing infinite executions, that means solving dynamical prob-
lems (like token circulation, networks traversal, resource allo-
cation), because these systems, from their very specification,
have to be fair in the following sense (cf, e.g., [31]): any infi-
nite execution involves any process (and in particular the top
process) an infinite number of times. Itis easy to see that a fair
system always satisfies (3). Details about how to mechanically
check(3), are given in [4].

3.3 Proof of Theorem 5

The proof of Theorem 5 relies on properties involving the
notions of “active” or “inactive” steps within infinite ground
derivations, as introduced by Dershowitz [8].

Definition 6. Theactive are@f a ground wordy; in a ground

derivationw; — wy — --- — w, is the part ofw; that has

been created by the nonvariable portions of the righthand sides

of the rules that have been applied. Only the top letter (i.e., the

rightmost letter) of the initial wordv, is considered active.
More precisely, suppose that a rule of the form:

#X€1Y# — #X?"1Y#

last chain is ground. It is easy to see that it can be prolonged

by the following sequence of reductiortg: = #1010# —
te = #1011# — t7 = #1001# — tg = #1101# — tg =
#0101+4#. A quasi-cyclic chaint; — --- — tg = t; has thus
been obtained.

3.2 A characterization of self-stabilization

We can now state our main result:

(resp. #0 X bo# — #r1 Xro#)

is applied to a ground wordv of the form#tu, 1 us# (resp.
#/1uq>#) to obtain aground word)’ of the formtu, rius #
(resp.#riuire#). Then, inw’, all the letters ofr; (resp.r;
andr;) are active if at least one letter @f (resp./, or ¢5)
was active; besides, all the letterswf, us that were already
active inw remain active inw’. We say that a ground word is
activeif its top letter is.
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Definition 7. Anactive ground derivatioviaS (resp.inactive
ground derivatiorvia S) is a ground derivationv; — wq —
-+ — w, in which rules ofS are applied only in the active
area (resp. inactive area) of words.

We denote by (resp.-2%%) an application of a rule at an

active area (resp. inactive area) of a ground word.

In the derivations, we start with a single active top letter
and the successive reductions will increase the active part i
the words. Active letters will be put in bold.

Example.Starting from the ground worgt2012# and ap-
plying successively top rul@&, : #X12# — #X21# and
bottom ruleB; : #2X1# — #1X2# at active area, we ob-
tain the following active ground derivation:

A #20124 2% #20214 2% £10224

The following property is the counterpart of the relation be-

tween reduction sequences and narrowing sequences in firsﬁ
order term theory [20]. The proof is analogous, therefore omit-

ted.

Lemma 8 (lifting lemma). For all active ground derivation

A wg ad, wWa ad, Lo wy, Via S, there exists a top
chainC : t; — to — .-+ — t, via .S which hasA as an
instance (i.e. such that; = ¢10, wy = t20, ..., w, = t,0 for
some ground substitutiaf).

Remark.The lemma states that any ground derivation is an
instance of some 1st-order top chain. Such a chain is obtained

by using a sequence of minimal instantiatides, - - - , 0, },
whereo; is of the form{W/uW'}, {W/W'u} or {W/u}.

This 1st-order covering holds in spite of the fact that instanti-

ationso of the form{W/uW'v} with u,v # ¢ are discarded
by definition. This justifies posterioriour focus on minimal
reductions ahonvariable positions

Example.The active ground derivation (see above)

act act

A 420124 2y #2021# 2% 5 #10224

is an instance (via the ground substitutidi™ /0}) of the top
chain

Oy #2W' 124 — H2W'214 — #1224

Finally we will use the following property (also used by
Dershowitz in a more general context [8]):

Lemma 9 (semi-commutation lemma)Let wy, ws, wz be

act inact

ground words such that; — wy —— ws. Then there

inact act

exists a ground wordy, such thatw; —— wh —> ws.

Example. Starting from the wor@#1012+, consider the fol-
lowing derivation vialy thenM;:

act inact

#1012# 2Sop, #1021# 25 #01214
The order of rule application can be permuted to get:

inact act

#10124 29 1 #01124 2Ly 401214
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Therefore inactive steps can always be switched with ac-
tive steps, and pushed upwards. It remains to show that the
number of inactive steps in infinite ground derivations is nec-
essarily finite.

Proposition 10. LetS be a rewrite sytem such th&t—Tops
is terminating. Then any infinite ground derivation \Aehas
only a finite number of inactive steps.

Proof. Consider an infinite ground derivatiod : w; —

-~ — wy, — --- viaS. Applying a rule at an active area of a
ground word cannot create any new inactive letters, while ap-
plying a rule at an inactive area only replaces a certain portion
of inactive area by another inactive portion of the same length.
Therefore eithefa) all the inactive subareas af disappear
after a finite number of steps, ¢b) at least one of them re-
mains, but between two fixed positions. In cékg there is a
subpartd’ of A of the formw; — - -+ — w,, — - -, such that
veryw,, is of the formz,, v, y,,, all thez,,’s (resp.v,,’s, w,,'s)

ave the same length, and thg's always remain inactive.
Since the active application of rules over subparts,pbr 1.,

do not involve the inactive portion,,, one can extract from
A’ an infinite inactive ground derivatiodd” affecting only
thew,,’s. This infinite derivationA” never makes use of a top
rule since the top letter is active. This is in contradiction with
assumption thaf — Tops is terminating. The only possible
case is thereforé&): all the inactive subareas disappear after
a finite number of steps.

Finally, allinactive steps from an infinite ground derivation
can be pushed upwards, thus yielding a purely active suffix,
which is an instance of a top chain. Formally:

Proposition 11. Suppose thaf —T'ops is terminating and”

is closed viaS. Then there is an infinite ground derivation via
S containing no word irC if and only if there is a quasi-cyclic
top chain viaS, starting from a word: such thatt¢ ¢ L for
some ground substitutioh

Proof. The if part is obvious. To prove the only-if part, con-
sider an infinite ground derivatiat not in £. By property 10
(sinceS — Tops is terminating), this infinite derivation con-
tains only a finite number of inactive steps. Applying itera-
tively the semi-commutation lemma (9), one can push back
these inactive steps to the beginning of the derivation, thus
obtaining a reordered infinite ground derivatiatf. From
some point on, there are only active steps in derivatidn
Let A : w; — w;x1 — --- denote this active infinite
ground part of derivation not id. Since the rules are length-
preserving, there is an initial part af” of the formw; —

- = w; = -+ = wy, such thatw; = w, andw, # wq
for all p < ¢ < n. By the lifting lemma (8), there is a chain
C:ti— - —=t; > - = t, with C = A”, for some
ground substitutio. In particulart;0 = w; = w, = t,0.
Butt; andt,, are either both ground or of the forfu ;W v, #
and#u, Wu,# with |u;| = |u,| and|v;| = |v,|. Sot; = t,
follows from¢;6 = t,,6. Besides, for alp < ¢ < n, t, and
t, are distinct since their instances,, w, via ¢ are distinct.
Thereforet; — --- — t; — --- — t,, is a quasi-cyclic chain,
ending att,, with ¢,,0 = w,, & L.

Now, Theorem 5 directly results from Proposition 11 and
the definition of self-stabilization.
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3.4 Basic procedure ang-refinement breaks i.e. the number of neighbouring statesq’ of the
string which differ by at least one unit. In contrast, our method
Theorem 5 suggests to prove self-stabilization by the followingproves the convergence, with the help of meagirenly: we
basic procedure: will focus on Br-preserving infinite derivations, i.e. infinite
derivations which preserve the number of breaks. Siice
is non-increasing and bounded, any infinite derivation has an
infinite Br-preserving suffix, so there is no loss of generality.
To obtain the systenr§’, we modify the rules above intBr-
preserving rules as follows:

e Generate alltop chaing — --- — t,, viaS, untilt,, = ¢;
for somei < n.

e If the only infinite chains generated are of the form—
e — t; — - t, = t; with all instances of,, in £, then
S is self-stabilizing. Otherwises is not self-stabilizing.

In order to prove self-stabilization, it is then (necessaryM1: #X(q +1)gaY# — #X(q¢+1)(q +1)qV#
and) sufficient to generate only 1st-order sequengess  M2: #Xqq(q+ )Y # — #Xq(g+1)(q + 1)Y#

- = t; = ---1, that extend top rules, instead of blindly |t js easy to show tha$’ is a Br-preserving version of
generating all the possible ground derivations, starting fromy,, o, "o iff w —s w' A Br(w) = Br(w')) and that
arbitrary ground words. The generation procedure is restrics’ _ 7¢p, is terminating.
tive because the procedure is first-order and manipulates one-
variable words of the forrgtulVv#, instead of all the (infi-  Remark. Itis sometimes convenient to use a measuitieat is
nite) sets of their ground instances. It is also restricted by thénever decreasing”, instead of never increasing. The enhanced
fact that sequences always start with the left-hand side of a totheorem still holds, because again, in any infinite derivation
rule. via S, all the steps, after a finite number of them, must be

Theorem 5, and the associated procedure, can be refinggtpreserving (provided that is bounded upward, e.g., by the
by exploiting a measure, say, over words, which “never numberV of machines the ring is made of). Such areasoningis
increases” when applying a rule i.e. such that— v’ = used by Burns and Pachl (see [7], p. 339), who focus on infinite
o(w) > p(w'). This is a relaxed assumption, with respect to derivations preserving the number of “dynamic segments” of
norms that, as required in traditional self-stabilization proofconfigurations. We also use a non-decreasing mesinghe
methods, must “always decrease” (i.e., roughly speakingexample of Sect.5.3.
normsy) such thatw — w’ = ¥(w) > ¥ (w')). In addition
with such a non-increasing mesupewe assume given @- Henceforth, when given a measupeand an associated
preserving versios’ of S, thatis a syster§8’ = Middles: U systemS’, we implicitly focus on the generation of top chains
Bottoms' U Tops such thatw —g w' iff w —g w' A via &’ instead ofS. This allows us to restrict even more the
o(w) = ¢(w'). Now in any infinite derivation via, all the ~ number of generated chains. However, in practice, in spite of
rewrite steps, after a finite number of them, are necessarilyhis refinement, the generation procedure does not terminate,
p-preserving (because of the non-increasing property), an#ut yields infinitely many chains. To solve this problem, we
may be viewed as rewrite steps W4 In order to prove self- introduce in Sect.4 a notion of chains owegular setsof
stabilization ofS, it becomes necessary and sufficient to showwords (instead of simply words) combined with a notion of
the absence of quasi-cyclic top chains, except those endinggeneralization”.
with aninstance of, viaS’ (instead ofS) as far asS’ — T'ops/

(instead ofS — T'ops) is terminating. More precisely, Theo-
rem 5 becomes: 4 A sufficient condition for self-stabilization

Theorem 12. Let S = Middles U Tops U Bottomg be a
rewrite system and a set of configurations. Let be a non-
increasing mesure anf’ = Middles: UTops: U Bottomgs:
a p-preserving version of. If

As mentioned earlier, top chains, when generated in a brute
manner, are frequently in infinite number. However it is of-
ten possible to discover some recurrent forms for wagds
appearing at the end of chains. Consider again the subset of
(0) each ground word is reducible vi, rulesS’ = {T4, By, M1, M,} from Beauquier-Debas system:
(1) Lisclosed viaS, and

(3) 8§’ — Tops: is terminating.

. I . . . . Ty: #X12# — #X21#,
ThenS is self-stabilizing w.r.t.L iff there is no quasi-cyclic B . 49x1 1X2
top chaint; — --- — ¢, viaS’, such that,, ¢ £ for some 1 #2X1H# = #1X 24,
ground instancey,, oft,,. My : #X01Y# — #X10Y #,

Example.Consider the middle rules of Ghosh’s algorithm (seeM4 P X0 H = FX2YH.

Sect. 5 for details): Starting fromTy, and applying iteratively rulé/,, one gen-
Mi: #X(q+1)qY# — #X(¢+1)(g+ 1)Y# erates chains of the form:

My: #Xq(g+1)Y# = #X(q+1)(g+ 1)Y#

whereq € {0, 1,2,3} and ‘+’is addition modulo 4. HW124 — #W 214,

The convergence proof uses a norm functi@h, Ds) such
that eitherBr or Ds strictly decreases at each step, but indi- #WO127 — W03 — 3£ W2017,
vidually Br andDs are only non-increasing functions. While ~ #W 00127 — #W0021# — W 0201# — #£W 20014,

Ds is a very subtle functionBr is simply the number of
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These chains are in infinite number, but all of them (exceptof variables appearing ifiandS (viz., W andW’) do not mat-
the first one) end with words of the forsg# W 20714 with ter. Henceforth, without loss of generality, we always rename
j > 0. It is then convenient to generalize words of the form first-order variabledV’, W - .. appearing in schemes, .
#W207 14 by the regular sezW20+1#, and replace first- In particular a substitution of the forfi¥//W'u} is simply
order derivations over words by first-order derivations overwritten{WW/Wu}. With this convention, a generalizati@hof
regular sets. Such regular sets are called “schemes” in thist-order schem§ is just a 1st-order scheme that contashs
following. Derivations over schemes are then defined in such &e., such thatS C T'. Likewise, we say that a ground scheme
manner that they “cover” all the possible top chains over wordsT" is a generalization of a ground scheséf S C 7.
(overapproximation). These generalized derivations may be In the following, we interleave the generalization process
represented under the compact form of paths along the nodesith minimal reduction. Given a rul&, and a substitution

of a symbolic graph, each node corresponding to a scheme: € Dgr U {id}, we say that a schenig is a generalized
Absence of infinite derivations (i.e., self-stabilization) is then successoof schemeS, and writeSo "r T (or more simply
shown by checking that every path of the graph uses only &c ' T), iff So - S’ andS’ C T.

bounded number of top rules. (This exploits the assumption of
termination forS — Tops, see Sect. 4.3.) We claim that such Example.For rule M, : #X20Y# — #X02Y# and

o hemesS = #W20T 14 and.S’ = #W200" 14, we have
a process of generalization improves the convergence of th C ) ; .
method of top chain generation. o — S C S (with o : {WW/W0}). We can thus write

Soc /5. S0S is its own generalized successor \id
usingo.

4.1 Replacing words by schemes We now express formally the correspondence between re-

: ' . ; ., lation  at the scheme level ane at the word level. We
We are now going to define the notion of “schemes”, an apt,4e

propriate form of regular languages that contain sets of words '
considered before. We extend accordingly our notion of rel.emma 15. Given aruleR and a substitutior € DpU{id},
duction chains by manipulating schemes instead of words. we have, for any schemg and any words € S: so —pg

o . . t implies T for some scheme such that € T'.
Definition 13. A first-order schemé is a language of the pliesSo “r <

form #LW M+# where L, M are (honempty) regular lan- We now give formally the notion of “generalized top
guages overr*, and W a first-order variable. Aground  chain”.

schemes is a language of the fors# L# whereL is a regular

language ove.*. Aschemes either a 1st-order or aground Definition 16. The generalized minimal top chairaf a re-

scheme. write systen® form a set inductively defined as follows:
In the following we assume that the set of legitimate configu- ® Everytoprulel, — ¢, of Sis a generalized chain, written
rations. is expressed as a ground scheme. {to} /{ta}-

Note that any first-order word of the forghuW v# (with o IfG: Tp 7 --- 7 T, is a generalized minimal top
stringsu, v) can be seen as a special first-order scheme with ~ chain andR is a rule ofS such thatl’,o * Ty,41, then
L = {u} and M = {v}. Likewise any ground word is a Too /- /' Tho /* Tyyy is ageneralized minimal top
special ground scheme. chain calledgeneralized successofG (via R usingo).

Lemma 15 generalizes as follows:

4.2 Minimal reductions of schemes and generalization Lemma 17. Given a top chain over words,

too1...0n Ry """ T?Rp_1 tn_10n R, tn,
via rules Ry, ... , R, of S, using substitutions, ... , oy,
and a schem@j such thatty € Ty, there is a top chain over
Definition 14. Let S be a schemeR a rule ando a substitu-  schemes,
tion of D U {id}. Thereduced form of5 via R usingo is the
schemes’ defined by: Too1r...0n /'Ry "/ Ru_y Tn—10n /R, Tn,

The notion of minimal reduction over words extends naturally
over schemes. Formally:

S" = {s' | 3s € S such thatsc —p s'}. using the same substitutions, such that € 7; for
1=1,...,n.
This is writtenSo —r S’.
This lemma states that any top chain at the word level is
Example.For rule M, : #X02Y# — #X20Y#, the  “covered” by a corresponding top chain at the scheme level.

schemeS = #2017 minimally reduces via//s to S’ = Hereafter, we describe a procedure of chain generation at the
#W'200" 14 usingo : {W/W'0}. The reduction is written  scheme level. This procedure has a top tyles ¢; as input
So = #W'020"1# — #W'2007 1. andI" denotes the set of schemes for which the successors

Generalization over 1st-order schemes is an overapprox-emain to be computed.
imation of the regular languages surrounding the 1st-orde
variable of a scheme. More precisely, a 1st-order scHEme
# MW Ms# is ageneralizationof a 1st-order schem§ :
#IL,W'Lo#iff L C My andL, C M,. Note that the names

Generalized chain generation(ty — t1)
Initially: I" = {¢1}.
While I" # )
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do

1.SelectS € I'.

2. Compute the finite set of generalized successors,
Say{Siz,ew}Z:' of §

(So /g S}, for some ruleR € S and somer € Dp U

{id}).

3.Foralli, addS?,,, to I" unlessS:,,, C Seq for someS,,
inrI.

4. :=T —{S}.

od

J. Beauquier et al.

R, o
Fig. 1. Graphs for reduction$ic102 g, S202 g, S3 and
So /'r S

The process of graph construction, described below, takes
a top rulet, — t¢; as an input and builds iteratively gen-
eralized successors under the form of growing paths. Each

_Note that testS;.,, C Soua is decidable since it deals pode v of the graph is labelled with a schense and re-
with inclusion of regular languages. An optimization of the tgrred to as pai(V, S). Each generalized top chain using

above procedure (that will be implicit henceforth) consists i”substitutionsm
)

computing successors of only if S is not a subset ofC.

. ,0n, Of the form(Uy r,) U1 R,
-+ /g, U,, isrepresented as a path of the graph of the form

This is justified, since we are only interested in detecting the«N1 S1), ..., (Ny,S,)), where (R;,0;) labels the edge

existence of infinite chains that dmt intersect with (cf.
criterion(2'), Sect.2.2).

from N; to N;y1 (1 <@ < n —1), such thatS;o; - -0, =
U; (1 <i<n-1)andS, = U,. Formally, the procedure is

Example.As already seen above for Beauquier-Debas sys@s follows:

tem, the righthand sidé:WW21# of top rule T, minimally
reduces viaM, to schemeS; = #W?20T 14, which is its
own generalized successor id, using{W/W0}. On the
other hand, schem® = #W 20" 14 is minimally reducible
via By (using{W/2W}) to

U = #1W207 24

SchemeU is itself minimally reducible viaM; (using
{W/0W}) in an iterative way, which yields

#01W 20724, #001W 20124, #0001 20724, etc.
SchemédJ can be thus generalized as
Sy = #0*1W 20724,

which is thus a generalized successorSgfvia B; (using
{W/2W}).

The latter scheme is minimally reducible \vid, (resp.M;),

but this yields only the subsef0t1W200T2# (resp.
#0T01W20%24#) of S,. ThereforeSs is its own general-
ized successor viaf, (using{W/W0}) and viaM; (using
{W/0W}).

4.3 Graph construction

It is convenient to represent a minimal reduction of the form

S1o1 R, S2 under the form of an edge, labellé®;, 01),
from S; to S,. Likewise, a chain of the forn$,o102 g,
Saooy R, Ss is represented as an edge (labeliéd], o1))
from S; to S5, followed by an edge (labelled?,, o2)) from

S, to S3 (see the graph on the left in Fig. 1). If additionally,
schemes are represented as labels of nodes and structure shar-

Graph construction (to — t1)

Initially: @ = {(N1,{t1})}

While@ # 0

do

1.Select(N, S) € Q

2. Compute the finite set of successorsSokay{S: ., }:,

(So /'r Si., forsomeruleR € S

and somer € Dr U {id}).

3.For alli:
3a lf S, C Soq for some nodéN,4, Soia) € Q,

add an edge, labelled wittR, o),

from (N, S) to (Nolda Sold)-

3b. Otherwise, add nodeV:..,, S¢..,) 10 Q,

and edge, labelle@R, o),

from (N, S) to (N: .., S ew)-

4.Q:=0Q - {(st)}
od

According to the optimization mentioned previously, suc-
cessors of5, at step 2, are implicitly computed only  is
nota subset ofC. Therefore in the graph, no edge exits from
nodes labelled with (subsets @) Another obvious optimiza-
tion consists in skipping steju in case an edge, labelled
already exists frondV, S) to (Noia, Sotd)-

Example.The graph for generalized chain generation of
Beauquier-Debas systeft, with T; as an input, is depicted
in Fig. 2.

From the construction of the graph, we have:

Proposition 18. Suppose that during the scheme chain gen-
eration, there is a generated chain frdh = {¢,} to U,, via
Ry,... ,R,_1,USINQ0Y, ... ,00_1:

th’l..-O’n_l /‘Rl ”’/‘Rn71 Un

ing is used in order to merge the representation of nodes asshen, there is a path frorVy, {t,}) to a node of the form
ciated with identical schemes, then the generation of schemen, /,,) via edges labeleR;, 01), ... , (Rn_1,0n_1).

successors corresponds to the construction of a graph, where
paths between nodes represent chains over schemes. For exam-

This gives a sufficient condition for self-stabilization:

ple, the graph on the right in Fig. 1 corresponds to the minimalTheorem 19. If, for each top rulet, — ¢; € S as an in-
reductionSo " S and represents under a compact form anput, there is no path in the associated graph, that uSegs

infinite number of chainsSo " S, So? g So /g S,
etc.

infinitely often (apart from paths passing BY, thens is self-
stabilizing.
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wiz Middle My : #X10Y# — #X01Y# (withY #¢)
My : #X11Y# — #X02Y# (withY # ¢)

o My : #X12Y# — #X00Y# (withY #¢)
My : #X02Y# — #X20Y# (withY #¢)

My : #X22Y# — #X10Y# (withY #¢)

L is defined as:#0*20*1# U #0*10%24 .

In this example, it is assumed that the sum of the elements
of the initial configuration is null, modulo 3. This property is
preserved when applying the rules$fit is easy to check that
any ground word (with a null sum of elements) is reducible
via §, and thatl is closed viaS (see [5]). ThereforesS is
self-stabilizing iff there is no ground cyclic derivation \#a
containing an element ¢ L. As remarked in [5], one can
seethafl’, Ty, T5 are applied at most once. As a consequence
S is self-stabilizing iff there is no ground cyclic derivation
via Sy = § — {T1,T»,T3} containing an element ¢ L.

The measure over a wordt € (X' U V)*, is defined as the
number of nonnull elements contained fyObviously,y is
non-increasing witks,. Besides, among rules 6§, only rules

By, My, My, T, preserve the number of nonnull elements. The
p-refinement of the basic procedure thus consists in generating
top chains viaS’ = { By, My, M4, T,} instead ofSy.

The graph constructed in Fig. 2 gives a complete picture of
the situation illustrated in the previous examples. Since thereis
no infinite path usingop (T} is used at most once), it follows
that there is no quasi-cyclic top chain— --- — ¢, via§’,
such thatu,, ¢ L for some ground instance, of ¢,,. Self-
stabilization is thus proved for Beauquier-Debas’s variant of
Dijkstra’s 3-state algorithm.

By {W/2W})

M, {W/wo}

M, {W/Wo}

By {W/<}

M, {W/OW} M,y {W/WO}

B, {W/2w}

0*1W20t2

My {W/ow} M, {W/W0}

Fig. 2. The graph construction faF,

Proof. Suppose there is no path usifigps infinitely often
(except paths passing §). Then, by Proposition 18, there
is no chain over schemes usifigps infinitely often (except
chains reaching). Now, by Lemma 17, there is no chain over
words usindl ops infinitely often (except chains reachiny.
Finally, using the fact thaf — T'ops terminates, there is no 5.2 Ghosh'’s 4-state algorithm
infinite chain over words (except those reachitjghence no
quasi-cyclic chaintg — t; — - = t; — - = t, = t;
(except ift,, € L£). ThereforeS is self-stabilizing.

Self-stabilization of Ghosh’s algorithm [14], a variant of Dijk-
stra’s 4-state algorithm, can be proved formally along the same
) N ) lines. The system consists of a parametric nunibesf ma-

In contrast with Theorem 5, the condition above is nochines (,1,--- , N — 1), which have four stateg0, 1, 2, 3},
longer necessary, and we cannot dechumeself-stabilization  except theopmachineN — 1 (resp bottommachined) which
in case an infinite chain is produced. On the other hand, wéas only two states{0,2} (resp.{1,3}). As explained in
claim that the procedure terminates more often than its counsect. 2, the configuration of the system is the string of all ma-
terpart over words, thus allowing to prove self-stabilization in chine states, delimited by special end symbgts Writing
more cases. X, Y for nonempty string variables, the transitions correspond
to the following systenS = Middle U Top U Bottom of

rewrite rules.
5 Examples Middle

i i My: #X(q+1)gY# — #X(g+1)(g+ 1)Y#
In order to illustrate the method of Sect.4 we explain how 1
it applies on three examples. (The last two of them can be My: #Xq(g+DY# = #X(¢+1)(g+1)Y#

skipped by the reader without loss of continuity.) whereq € {0,1,2,3} and ‘+'is addition modulo 4.

Top
5.1 Beauquier-Debas algorithm 71’;1 ;: i}(ﬂ%ﬁ:i}((lgzoi
This system originates from [5], and is an adaptation of Dijk- BOttomB  H12XH — AN 4
stra’s third (3-state) algorithm [11]. In our formalism, it cor- B; f H30XH — #10X #

responds to the following syste
L is defined ag#{1",3T}{0+, 27 } #.
Bottom By : #2X14# — #1X2#

Top Ty : #X00# — #X21# As mentioned in Sect. 3.4, Ghosh proves the convergence by
Ty #X10# — #X01# considering a norm functiofBr, Ds) such that eitheBr or
Ts: #X20# — #X11# Ds strictly decreases at each step. Recall thaiandDs are
Ty: #X124# — #X214 non-increasing functiond3r is the number obreaks i.e. the
Ts: #X22H# — #X01# number of neighbouring statesq’ of the string which differ



92 J. Beauquier et al.

w32

By {W/e}

B, {W/3}

33t2t1tot30t

o AW/ W1}
or o1 : {W/W10}

wi1tot+3ot

oy {W/W2}
or o3 : {W/W21}

322%1tot30* M,

B, {W/1} M,

[ 11tot(3t2t1tot)*t 30t ]

w

[ 100% (3*2*1t0*)* 30t ] M,

o3 : {W/W3}
or o3 : {W/W32}

[ Ww3(3*2t1tot)*30* }

By {W/3} M, o0 or o}
3(3t2t1tot)*30*
M [Woo+(3+2+1+0+)+30+ ]
[ 322t 1tot (32t 1t ot )30t ] My oy or o} My a5 or o3
\[ Wiitot(3t2+1tot)t30* ]
B; {W/1} M, o3 or o4

[ Wwazt1tot(3tetitot)*t3ot ] . . . .
Fig. 3. First-order generation of chain fah

by at least one unit andds measures the sum of distances all the paths make use of the top rule a finite number of times
between pairs of neighbouring breaks of the string. All the(at most once). It follows by Theorem 19 that the system is
difficulty of Ghosh'’s proof comes from the discovery of such self-stabilizing.

a measurds, while our method uses measuse only and
focus onBr-preserving infinite derivations.

The Br-preserving versio’ of S (cf. Sect.3.4) is ob- -3 Hoepman's ring orientation algorithm

tained by modifying the middle rules as follows: We finally sketch out how our method adapts to uniform algo-
My: #X(q+1)qqY# — #X(q+ 1)(q + 1)qY # rithms (algorithms without distinguished top, bottom or mid-
Myt #Xqqlqg+ 1D)Y# — #Xq(g+ 1) (g + 1)Y# dle rules). We take the self-stabilizing ring orientation algo-

rithm presented by Hoepman in [18], as an example. Our un-
The graph construction is illustrated in Fig.3 in the case ofderlying assumptions about the existence of distinguished top
initial rule 77 = #W32# — #W30#. Similarly, another  rulesTop and the termination of — T'op, do not hold any
representative graph can be obtained, starting from the oth@bnger in this context. The reasoning for proving convergence,
top rule righthand sidg£IW12#. To make the figure more s modified by using an assumption of fairness (also used in
readable, some details have been omitted: [18]) instead: Any infinite sequence of rules modifies infinitely
often the state oéverymachine of the ring.

substitutionso, and o, are respectivel and ) X .
y 0 70 P AW/ W o} Hoepman'’s algorithmis based déirules applied to words

{(W/ W03}, _ or
« the edges labelled by, without a substitution correspond With the Z.ilph‘?beﬂ ={1-,14,0_,04} and uses the follow-
too = id, ing notations:

%0 =X*={0,1}*with0={04,0_}, 1 ={14,1_},

1= (Ol .[1)* with 01 =0U {0+070+, 0704” 0+07}

andl; =1U {11 1,,1 1,,1,1_},

Lg = (02 12)* with 02 = OU{O+O_}andIQ = 1U{1+1_}
A similar graph can be constructed, starting fromtop chain  The corresponding rewriting systeftransforms a sub-

T, instead off;. The important point is that, in both graphs, word pgr in pg’'r, whereq’ is given by the following tables:

e most schemes appearing in the figure are closed by (gene
alized) application of the rul&/; with o = id and should
have a loop which is not represented.
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ruelp q r |q ruelp g r |q
a |0 0 0 |1- e |04 O- 1_|14
b |0 1 0 |1- e |1_- 0- 04|14
c |1 1 1]o- f 1y 1 0-|04
d [1 0 1 ]0o- f |0_ 1_ 1|04

ruelp g r |q

rulelp g r |q

g |0_ 0_ 1 |04 i |1_ 1_ 0 |1t
g |1 o_ o_|oy ¥ |0 1_ 1_|14
h |0y 00 1 |0- | |14 1, 0 |1_
h |1 0y 04]0- j |0 14 14|1-

These rules can be applied at any position of the configu-

ration. (Formally, every transformation pfr into pq'r corre-
sponds to 3rulest X pgrY # — #Xpq'rY #, #r X pg# —
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In order to prove self-stabilization vi§, it is thus neces-
sary and sufficient to prove that there is no infinite sequence
of derivations viaS’ (apart from sequences ending/af). We
thus focus on chains starting from a ruie(or E’, F, F”).
Since the system is uniform, we can actually focus on chains
starting with ruleF applied at an arbitrary position, e.g., the
rightmost one. We thus také : 0_1W0, — 1,1_WO0 as
a starting rule and we show that there is no infinite derivation
from E by first-order rewriting vias’ (regardless of sequences
goingtoL,). This is done in two steps: first we build the graph
associated witlly, then we explain why there is no infinite path
in this graph (except those going ia).

This graph can be found in Fig. 4.

Only the edges corresponding to non trivial substitutions
(o # id) are represented. All nodes should have in addition a
self-loop labeled by = id. For the sake of readability, the

#1Xpq'#, #qrXp# — ##¢'r Xp7.) Hoepman proves that g pstitutions labeling the edges of the figure are also omitted.

the system converges aiy, in two steps: first, he exhibits

For example, consider the upmost node

a measure that strictly decreases, when applied to a ground
configuration ofL, unless this ground configuration belongs
to subsetl; second he exhibits another measure that strictly
decreases, when applied to a ground configuratiaiy ofin-
less it belongs td.,. (He proves that the system converges
from L, to a third setLs, but this is beyond the scope of
this presentation.) In contrast, our method gives a direct proof
for the convergence tb,, viewed here as sét of legitimate
configurations, and does not appeal to any strictly decreasing
mesure.

We preliminary transform Hoepman’s system into a sim-
pler set of rules. We first usew@refinement in order to dis-
regard rules (a) and (c). Here measyreounts the num-
ber of maximal subsequences of the same value (either O or

(I,02)*1,1_W1_14(0515)*Os,

with its three outgoing edges labeled respectivié)\r’, F":

The substitution for rulé? is {WW/0,.0_},
which gives(IQOg)*1+1,01+1,1+(02I2)*02,
generalized a&*01,1_1, 3",

The substitution for rulé’ is {W/0_0, },
which gives(1202)*141_-1,01_1,(0215)*O2,
generalized ag™*1,1_1,0X".

The substitution for rulg”’ is {W/W0},

which gives(1202)*111_W0_0,1(0213)*O2,
generalized a6l>,02)*1,1_WO0_04(1202)*.

1), inside a word (assuming the leftmost and rightmost el-o|so note that the two edges leadingte(our set of legitimate

ements to be contiguous). For example, the meagufer
#000100W 1100+ is 4. All the rules preserve this number,

configurations) are implicitly labeled byV/<}.

Considering this graph, we see that there are three kinds of

except rules (a) and (c), which strictly increase it by 2. Theremodes. The first one corresponds to afirst order schdiiiaz,
fore, (a) and (c) can only be used a finite number of timesthe second one to the legitimate schea@nd the third one to

(¢ is bounded upward wittV), and we can focus on infinite  ground schemes containing eitiiaro_0, or1,1_1,. This
derivations viaS — {a, c}. The remaining rules are themselves gpservation is summarized in Fig. 5.

merged into the simple new syste&th= {E, E’, F, F'} given
by the table below.

A simple analysis of this synthetic form, leads us to con-
clude that no infinite path exists in this graph (except those

passing inL-), for the following reasons:

rule‘p qg r |p qgr .
E [0, 0_ 1 |0 1, 1_
E'" |1 0- 04|1- 1+ O
F |1, 1_ 0 |1 o0y O
F |0 1_ 1.]/0_ 04 1 .

Note that each transformation is now a shorthand for 4
transformations. For exampl& transforms0,0_1_ or d
0+0_14 into0_141_ or04141_. As before, every trans-
formation ofpgr into p’q’r’ corresponds to 3 rules:

#XparY # — #Xp'q'r'Y#,
#rXpg# — #r' Xp'q' #,
and#qrXp# — #¢'r' Xp'#,

Thereis noinfinite loop inthe nodes which contain patterns
like 040_04 (resp.141_1.) because no rule can rewrite
the central letter which is in contradiction with the fairness
assumption.

There is noinfinite loop with a substitutien# id because

X represents a finite word and then cannot be instanciated
infinitely often.

There is no infinite loop with labet = id because other-
wise, the string represented Bycould never be modified

at its extremities which contradicts fairness.

Similar constructions and explanations hold for rules

E', F, F'. This achieves our proof of self-stabilization.

6 Conclusion and perspectives

depending on the position where it is applied.
It is easy to see that every sequence Sia {a,c} can be
simulated by a sequence \88 = {E, E’, F, F'}.

In contrast with methods relying on the existence of a strictly
decreasing norm function [5,14,19,23], our technique re-
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[ ([202)‘1+1_VV1_1+(0212)*09 ]

E*1+1_I+OE*

0_1Wo,
[ (1202)*"141_W0_04(1202)" ]
E I3 F
—
[ (1,02)* 14 1_WO(L,0)* ] [ (1,03)" 14 1-W1(021,)* 05 ]

TU0141-1,2°
£*10,0_04 £*

F'

[(021,)*04,0_W0_0, (1,0;)* 1

2*040_0,15*

Il F’ E’

[ (02 12)*040_W1_14 (02 12)* O, ] ) ) .
Fig. 4. First-order graph generation fér

o#ud g=id 1. focusing on derivations originating frotop-configura-
tions instead of derivations starting from arbitrary config-
LWM urations.
2. reasoning withst-order variablesand deriving new con-
figurations through a restricted strategy of reduction (top
- - . - chain generation) instead of considering all the possible
[ L I [ =7040-0, % J [ -1 ] ground configurations, and all their possible ground suc-

U U Ccessors.
3. reasoning withregular languages(including 1st-order
Fig. 5.A reduced form for the graph in Fig. 4 variables), and integrating a process of generalization.

From a mechanical point of view, the operation of minimal
reduction over schemes can be implemented via the operation
of transducer(see [24]; cf [4]). It is also possible to analyse

quires only little specific knowledge and proposes a uniformfurther the constructed graph in order to extract a complex-
framework for the full proof of several non trivial examples, as ity upperbound for the convergence. In [4], further results are
shown here on Ghosh’s 4-state algorithm [14] and Beauquiergiven, concerning a natural counterpart of Herman’s composi-
Debas’s 3-state algorithm [5]. These examples are simple onegipnality result in our framework. We believe that our method
which allow us to give a clear view of the procedure. Our adapts easily to the case afiform rings as sketched out in
procedure is inspired by Dershowitz’s chain generation prothe case of Hoepman'’s ring-orientation protocol. We are cur-
cedure [8], and proves convergence of self-stabilizing algorently investigating an extension of the method to algorithms
rithms much in the same way than Dershowitz proves the terrunning on arbitrary (non-ring) networks, that could use graph
mination of rewrite systems. Following Hoepman [18], we rewriting techniques as proposed in [25-27].
have enhanced the basic method by incorporating a process
of generalization of words as regular languages, and definin
rewriting over “schemes”. The method is not fully automatic:
we need in particular to infer by hand generic schemes o
configurations from words produced recurrently throughout
derivations. References
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