
Distrib. Comput. (2001) 14: 83–95

c© Springer-Verlag 2001

Proving convergence of self-stabilizing systems
using first-order rewriting and regular languages

J. Beauquier1, B. Bérard2, L. Fribourg 2, F. Magniette1

1 LRI, CNRS URA 410, Universit´e Paris-Sud 91405 Orsay cedex, France (e-mail:{jb,magniett}@lri.fr)
2 LSV, CNRS UMR 8643, ENS de Cachan, 61 av. du Pr´es. Wilson, 94235 Cachan cedex, France (e-mail:{berard,fribourg}@lsv.ens-cachan.fr)

Received: January 2000 / Accepted: November 2000

Summary. In the framework of self-stabilizing systems, the
convergence proof is generally done by exhibiting a mea-
sure that strictly decreases until a legitimate configuration is
reached. The discovery of such a measure is very specific and
requires a deep understanding of the studied transition sys-
tem. In contrast we propose here a simple method for proving
convergence, which regards self-stabilizing systems as string
rewrite systems, and adapts a procedure initially designed by
Dershowitz for proving termination of string rewrite systems.
In order to make the method terminate more often, we also
propose an adapted procedure that manipulates “schemes”, i.e.
regular sets of words, and incorporates a process of scheme
generalization. The interest of the method is illustrated on sev-
eral nontrivial examples.
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1 Introduction

Introduced by Dijkstra, with three mutual exclusion algo-
rithms on a ring of processes [11], the notion of self-stabiliza-
tion has been largely studied for the last ten years (see [29,31]
for surveys). In this paper, we consider a system which consists
of a ring of machines controlled by a “central demon”. Its con-
figuration is the concatenation of the component local states
and it is characterized by a setS of transitions defined over
configurations. The system isself-stabilizingwith respect to a
subsetL of legitimateconfigurations when, regardless of the
initial configuration and regardless of the transition selected
at each step by the central demon, it is guaranteed to reach a
configuration ofL within a finite number of steps. The setL
is assumed to have aclosureproperty: from a legitimate con-
figuration inL, the system persistently remains inL. It is also
frequent to assume that there isno-deadlock. With these two
hypotheses, it is easy to show that a system is self-stabilizing

This paper is a revised and extended version of a communication
given by the three first authors, at Symp. DISC’99, under the title
“A new rewrite method for proving convergence of self-stabilizing
systems” (LNCS 1693, Springer-Verlag, pp. 240–253).

iff it has theno-cycleproperty: there is no cyclic sequence
of transitions which contains some configurationw �∈ L. This
property is often proved by exhibiting anorm functiondefined
over the set of configurations, whose value strictly decreases
after each transition (or each bounded sequence of transitions)
as long as the configuration is not legitimate [31]. Since such
a measure is usually very specific to the considered system,
finding one is very difficult and requires a deep understanding
of this system (see e.g.[23,14,5]).

We propose here a new approach for proving the absence
of cycle. Configurations are viewed as words of a formal lan-
guage, transitions ofS as rewrite rules, and the no-cycle prop-
erty as a variant of the nontermination property for rewrite
rules. The absence of infinite sequences will be shown by
refining the generation procedure ofreduction chains1, first
proposed by Dershowitz for proving string rewriting termi-
nation [8]. The method proposed here is new in that: 1) it
uses a general technique of string-rewriting to deal with self-
stabilization; 2) it does not consider all the possible rewrite
derivations, but only “representative” ones, using a restricted
first-order rewriting strategy.A generalization strategy, replac-
ing sequences of words with regular languages, is also incor-
porated in the method in order to improve its termination.

Related work on self-stabilization proofs.[11] is without
proof. In [12], a correctness proof is given for the third (3-
state) algorithm of [11], by showing properties of executions
using behavioral reasoning. As already pointed out, almost all
further proof methods (cf. [31]) are based on norm functions
(see an example in [19]) but, as expressed by Gouda in [15]: “It
has been my experience that the ratio of time to design a stabi-
lizing system to the time to verify its stabilization is about one
to ten”. For simplifying proof process, general paradigms have
been proposed: various protocol compositions making proofs
modular [3,16], attractor or staircase methods [15,29], auto-
matic transformations into stabilizing systems [2]. The idea
of representing sets of configurations as regular languages is
used in [18], but, only at a “ground” level (without use of 1st-
order variables). Note that, recently, some works were done
for proving convergence without appealing to a norm func-

1 also calledforward closuresin [9].
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tion: [32] uses techniques borrowed from control theory and
[1] induction techniques over the set of configurations.

Related work on rewrite techniques applied to distributed
systems.Although viewing transitions as rewrite rules is rather
natural, the application of general rewrite techniques for prov-
ing properties of distributed systems has not been explored
to our knowledge, except in [25–27] where graph rewriting
techniques (with priorities) are used to prove the correctness
of various distributed algorithms (election, spanning-tree con-
struction,...). However this work does not address the issue of
self-stabilization.

Plan of the paper.Section 2 explains how self-stabilization
can be viewed as a property of string rewriting systems. In
Sect. 3, we give a basic procedure, inspired from Dershowitz,
that, when it terminates, allows to decide self-stabilization. In
order to make the procedure terminate more often, we incor-
porate a process of generalization into it (Sect. 4). Section 5
shows application of the method on detailed examples and
Sect. 6 concludes with final remarks and perspectives.

2 Self-stabilizing systems as string rewrite systems

We first recall some basic definitions from (string) rewrite
systems [10,6]. The words considered here are generally de-
limited by a leftmost and rightmost special symbol ‘#’. The
symbols appearing between them belong to a finite alphabet
Σ or a setV = {W,X, Y . . . } of variable symbols. Astring
is an element ofΣ∗, with ε for the empty string. Aground
word is an element of#Σ∗# and a(1st-order) wordis an
element of#(Σ ∪ V)∗#. A substitution is a mappingθ from
V to (Σ ∪ V)∗ with θ(W ) = W almost everywhere except
on a finite set of variables denoted byDom(θ). This mapping
extends trivially to words and the resultθ(w) is called anin-
stanceof the wordw. A substitutionθ is represented by a finite
set of pairs of the form{W/θ(W )}W∈Dom(θ). A substitution
θ is groundwhenθ(W ) is inΣ∗, for all W ∈ Dom(θ).

2.1 String rewrite systems

The string rewrite systemsS considered here contain length-
preserving rules, divided into three subsets:top rulesin TopS
are applied to the rightmost part of words;bottom rulesin
BottomS are applied to the leftmost part of words (or simul-
taneously at both ends); the rest of rules inMiddleS are called
middle rules. More precisely, let�, r (resp.�i, ri for i = 1, 2)
be nonempty strings ofΣ∗ of the same length, andX,Y vari-
ables,

MiddleS is made of rules of the form:
#X�Y# → #XrY#

TopS is made of rules of the form:
#X�# → #Xr#

BottomS is made of rules of the form:
#�X# → #rX# or #�1X�2# → #r1Xr2#.

We are going to apply these rules either to ground words or to
1st-order words of the form#uWv# whereu, v are strings
overΣ∗, andW is a variable.

Example.Consider the following rules from Beauquier-
Debas algorithm (see Sect. 5):

B1 : #2X1# → #1X2# is a bottom-rule.
T4 : #X12# → #X21# is a top-rule.
M1 : #X10Y# → #X01Y# and
M4 : #X02Y# → #X20Y# are middle rules.

These rules are used throughout the next sections to illus-
trate the notions which are defined, as well as the method we
propose.

Note that, strictly speaking, rulesM1 andM4 can be ap-
plied only if Y �= ε. For example,M1 should correspond to
3 rules of the form#X10aY# → #X01aY# with a ∈
{0, 1, 2}. For the sake of conciseness, we neglect such a re-
strictive condition of application (except at Sect. 5).

Ground reduction.A ground wordw is reduciblevia a rule
of the form#X�1Y# → #Xr1Y# iff w = #u�1v# for
some stringsu, v ∈ Σ∗. One also says thatw is an instance of
the rule lefthand side via the ground substitution{X/u, Y/v}.
Thereduced formofw isw′ = #ur1v#. Reduction via a rule
of the form#�1X�2# → #r1Xr2# is defined in a similar
way.

A ground wordw reduces tow′ via S, writtenw →S w′
(or sometimes simplyw → w′), if w′ is the reduced form ofw
via some rule ofS. We say thatS is non terminatingiff there
exists an infinite sequence of reductions viaS starting from
some ground wordw. Otherwise,S is said to be terminating.

Example.ConsiderB1 : #2X1# → #1X2#. The ground
wordw = #2011# is an instance of the lefthand side, using
the substitution{X/01}.
Replacement with the righthand side yields the reduced form
w′ = #1012#.

Reduction of a ground wordw using a middle ruleR :
X�Y → XrY merely consists in searching for a substring�
of w, and replacing it withr. Note that reduction can occur
in various places (corresponding to all the possible positions
where� occurs as a substring ofw).

2.2 Self-stabilization

We are now able to give a formal definition of self-stabilization
for a system modeled as a string rewrite systemS. From now
on, configurations are regarded as ground words. WritingLN

for the set of legitimate configurations in a system withN ma-
chines, we define theglobal set of legitimate configurations,
as L =

⋃
N≥2 LN .

Definition 1. A rewrite systemS is self-stabilizingwith re-
spect to setL iff

(0) Each ground word is reducible viaS.
(1) L is closed viaS, i.e: w ∈ L ∧ w →S w′ ⇒ w′ ∈ L,

for all ground wordsw,w′.
(2) There is no ground cyclic derivation of the formw1 →S

· · · →S wn = w1 withw1 �∈ L.
Statement(0) expresses ano-deadlockproperty,(1) aclosure
property forL, and(2) a no-cycleproperty. It easily follows
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from this definition that any “maximal” derivation is infinite
and reaches the setL: this corresponds to aconvergenceprop-
erty (also calledno-livelockproperty in [7]).
Note that assuming(1), an equivalent version for(2) is:

(2′) There is no infinite ground derivation∆ via S,
such that∆ ∩ L = ∅.

3 A first-order characterization of cycles

Assuming now thatS satisfies(0) and(1), we will focus on the
problem of proving theno-cycleproperty, stated under form
(2′). Our method relies on a first-order characterization of cy-
cles: we will show that an infinite ground derivation viaS (as
mentioned in(2′)) is actually an instance of an infinite deriva-
tion at the “first-order” level. In order to state our main result,
we need the notion of reduction chains, which is transposed
from [8] in our particular context.

3.1 Minimal reductions and chains

We now deal with one-variable wordst of the form#uWv#,
with u, v ∈ Σ∗ and W ∈ V. The notion of ground re-
duction defined in Sect. 2.1, extends trivially to such one-
variable words: it suffices to considerW as a new constant
(i.e., to extendΣ with {W}), and reduce the word using a
ruleR : λ → ρ, as in Sect. 2.1. We say in this case that reduc-
tion is done using substitutionσ = id. Given a first-order word
t and a rewrite ruleR, it is also possible to consider nontriv-
ial instantiations ofW (σ �= id), that maket reducible. This
problem is a particular case of the unification problem: finding
common instances oft andλ. The general unification problem
for words is complex, and was solved by Makanin [28]. How-
ever our particular unification problem here is simple, because
t andλ do not share variables, and are “linear” (i.e. contain at
most one occurrence of the same variable). In such a case there
exists acomplete set of minimal unifiersthat is finite: roughly
speaking, it suffices to consider all the manners in whicht and
λ overlap depending on the possible instantiations of their
variables (see, e.g., [21]). Assume given a minimal complete
set of unifiersµ1, ..., µk (tµi = λµi for i = 1, ..., k), each
instancetµi of t reduces to�µi (tµi → �µi). However, we
disregard unifiersµj which instantiatet at a “variable posi-
tion” (replacing variableW of t with a subword of the form
#uW ′v# with u, v �= ε), which will turn out to be unneces-
sary in our context (see remark, Sect. 3.3). Such an operation
of minimal reduction (at nonvariable position) is an adapta-
tion of the operation of “narrowing” [30,13,20] in our context
(one-variable words rather than 1st-order terms).

Example.Consider the rule#X11Y# → #X22Y#. The
word t : #1W1# unifies with lefthand side#X11Y# via
most general unifiers:

µ1 : {W/1W ′} ∪ {X/ε, Y/W ′1},
µ2 : {W/W ′1} ∪ {X/1W ′, Y/ε},
µ3 : {W/ε} ∪ {X/ε, Y/ε} and
µ4 : {W/W111W2} ∪ {X/1W1, Y/W21}.

The last unifierµ4 (with the associated reduction) is discarded
because it corresponds to a unification taking place at a vari-
able position oft. The minimal reductions oft corresponding

to µ1, µ2, µ3 are:

#11W ′1# → #22W ′1#,

#1W ′11# → #1W ′22# and

#11# → #22#.

Let us now define in a formal and constructive manner the
operation of minimal reduction (at nonvariable position). We
distinguish two basic cases, depending on wether the involved
substitution is identity (σ = id) or not. Suppose that we are
given a middle ruleR : #X�Y# → #XrY# where� is of
the forma1 · · · an (with ai ∈ Σ). The substitutionsσ �= id
involved in minimal reductions viaR form the setDR =
AR ∪BR ∪ CR, with:

• AR is the set of substitutionsαi : {W/W ′a1 · · · ai} for
1 ≤ i ≤ n− 1,

• BR is the set of substitutionsβi : {W/ai+1 · · · anW
′} for

1 ≤ i ≤ n− 1,
• CR is the set of (ground) substitutions
γi,j : {W/ai+1 · · · aj} for 1 ≤ i ≤ j ≤ n − 1 (with the
convention thatγi,j is {W/ε} if i = j).

A similar set of substitutionsDR can be defined for a top or
bottom ruleR.

Definition 2. A word t is minimally reducibleto u via rule
R : λ → ρ using substitutionσ ∈ DR ∪ {id} (written:
tσ →R u, or more simplytσ → u) iff:

• σ = id, t is an instance ofλ, andu is the corresponding
instance ofρ.

• For a middle ruleR : #X�Y# → #XrY# with � =
a1 · · · an, and a wordt = #t1Wt2#:
- t2 begins with stringai+1 · · · an (for some1 ≤ i ≤
n− 1), σ = αi, andu is obtained fromt by replacing
Wai+1 · · · an withW ′r.

- t1 ends with stringa1 · · · ai (for some1 ≤ i ≤ n −
1), σ = βi, and u is obtained fromt by replacing
a1 · · · aiW with rW ′.

- t2 begins withaj+1 · · · an and t1 ends witha1 · · · ai

(for some1 ≤ i ≤ j ≤ n − 1), σ = γi,j , and u
is obtained fromt by replacinga1 · · · aiWaj+1 · · · an

with r.
• For a top or bottom ruleR, minimal reduction oft (using
σ �= id), is defined similarly to the case of a middle rule.

Example.For ruleM1 : #X10Y# → #X01Y# and word
t1 = #W02#, there is a single substitutionα1 : {W/W ′1}
that yields a minimal reduction.

This gives#W ′102# → #W ′012#.
For rule R : #X100Y# → #X110Y# and word

t2 = #W003#, there are two possible instantiations
α1 : {W/W ′10} andα2 : {W/W ′1}, which yield respec-
tively the following minimal reductions:#W ′10003# →
#W ′11003# and#W ′1003# → #W ′1103#.

We can now define the notion of “minimal reduction
chains”. They are direct transpositions of definitions or prop-
erties of [8] in our particular context.

Definition 3. Theminimal top reduction chainsof a rewrite
systemS form a set of derivations inductively defined as fol-
lows:
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• Every top rule ofS is a minimal top reduction chain.
• If C : t0 → · · · → tn is a top minimal reduction chain
and R is a rule of S such thattnσ → u via R, then
t0σ → · · · tnσ → u is a top minimal reduction chain,
called asuccessorofC viaR usingσ.

The transitive closure of the successor relation is called “iter-
ated successor”. Henceforth, we will simply say “top chain”
instead of “top minimal reduction chain”.

Example.Consider the ruleT4 : #W12# → #W21#
viewed as a chain. Its successor via

B1 : #2X1# → #1X2# using{W/2W ′} is:

C1 : #2W ′12# → #2W ′21# → #1W ′22#.

Recall that in all rulesλ → ρ of the string rewrite systems
considered here, the substring� of λ is replaced by substring
r of ρ, which has the same length. Therefore, a chaint1 →
t2 → ... → tn . . . is such that either all the wordst1, ..., tn
are ground and of the same length, or eachti is of the form
#uiWvi# where theuis andvis are strings ofΣ∗ of same
length. For the same reason of length preservation, there must
exist 1 ≤ i < j such thatti = tj , within any infinite top
chain (ground or not). This explains the use of the following
definition.

Definition 4. A top chain (resp. ground derivation)

t1 → · · · → · · · → tn

is quasi-cyclicif ti = tn for somei < n, andtp �= tq for all
distinctp, q less thann.

Example.Consider the alphabetΣ = {0, 1} and the follow-
ing systemT :

Bottom C0 : #0X0# → #1X0#
C1 : #1X1# → #0X1#

Top U0 : #X01# → #X00#
U1 : #X10# → #X11#

Middle N0 : #X01Y# → #X00Y# ( with Y �= ε)
N1 : #X10Y# → #X11Y# ( with Y �= ε)

Let L be: #0+1+# ∪ #1+0+# ∪ #11+# ∪ #00+#
and consider the top ruleU0 : #W01# → #W00# viewed
as a chain. Its successor viaN1 using{W/W ′1} is:#W ′101#
→ #W ′100# → #W ′110#. The successor viaN0 us-
ing {W ′/W ′′0} is then:#W ′′0101# → #W ′′0100# →
#W ′′0110# → #W ′′0010#. Now the successor viaB0 us-
ing {W ′′/ε} is: t1 = #0101# → t2 = #0100# → t3 =
#0110# → t4 = #0010# → t5 = #1010#. Note that this
last chain is ground. It is easy to see that it can be prolonged
by the following sequence of reductions:t5 = #1010# →
t6 = #1011# → t7 = #1001# → t8 = #1101# → t9 =
#0101#. A quasi-cyclic chaint1 → · · · → t9 = t1 has thus
been obtained.

3.2 A characterization of self-stabilization

We can now state our main result:

Theorem 5. Let S = MiddleS ∪ TopS ∪ BottomS be a
rewrite system and letL be a set of configurations. If

(0) each ground word is reducible viaS,
(1) L is closed viaS, and
(3) S − TopS is terminating.

ThenS is self-stabilizing w.r.t.L iff there is no quasi-cyclic
top chaint1 → · · · → tn via S, such thatun /∈ L for some
ground instanceun of tn.

Example.Let us illustrate Theorem 5 on the systemT of the
example above. First, it is easy to see thatT andL satisfy
properties(0), (1) and(3). From the existence of quasi-cyclic
top chaint1 → · · · → t9 with t1 = t9 = #0101# �∈ L,
it now follows by Theorem 5 thatT is not self-stabilizing
w.r.t. L.

Theorem 5 is an adaptation of Dershowitz’s theorem ([8],
p. 454) characterizing nonterminating string rewrite systems
as those having at least one cycling chain (or infinitely many
noncycling infinite chains, which cannot happen in our case).

Remark.In Theorem 5, we require the termination property of
S −TopS (condition(3)). This condition is new w.r.t. original
Dershowitz’s framework of [8]. Condition (3) allows us to re-
fine Dershowitz’s method and to focus ontopchains (instead
of chains starting with arbitrary rules), so that the number of
chains generated is further restricted. In practice, condition (3)
is often satisfied when dealing with stabilizing systems hav-
ing infinite executions, that means solving dynamical prob-
lems (like token circulation, networks traversal, resource allo-
cation), because these systems, from their very specification,
have to be fair in the following sense (cf, e.g., [31]): any infi-
nite execution involves any process (and in particular the top
process) an infinite number of times. It is easy to see that a fair
system always satisfies (3). Details about how to mechanically
check(3), are given in [4].

3.3 Proof of Theorem 5

The proof of Theorem 5 relies on properties involving the
notions of “active” or “inactive” steps within infinite ground
derivations, as introduced by Dershowitz [8].

Definition 6. Theactive areaof a groundwordwi in a ground
derivationw1 → w2 → · · · → wn is the part ofwi that has
beencreatedby thenonvariableportionsof the righthandsides
of the rules that have been applied. Only the top letter (i.e., the
rightmost letter) of the initial wordw1 is considered active.

More precisely, suppose that a rule of the form:

#X�1Y# → #Xr1Y#

(resp. #�1X�2# → #r1Xr2#)

is applied to a ground wordw of the form#u1�1u2# (resp.
#�1u1�2#) toobtainagroundwordw′ of the form#u1r1u2#
(resp.#r1u1r2#). Then, inw′, all the letters ofr1 (resp.r1
and r2) are active if at least one letter of�1 (resp.�1 or �2)
was active; besides, all the letters ofu1, u2 that were already
active inw remain active inw′. We say that a ground word is
activeif its top letter is.
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Definition 7. Anactive ground derivationviaS (resp.inactive
ground derivationvia S) is a ground derivationw1 → w2 →
· · · → wn in which rules ofS are applied only in the active
area (resp. inactive area) of words.

We denote by
act−−→ (resp.

inact−−−→) an application of a rule at an
active area (resp. inactive area) of a ground word.

In the derivations, we start with a single active top letter
and the successive reductions will increase the active part in
the words. Active letters will be put in bold.

Example.Starting from the ground word#2012# and ap-
plying successively top ruleT4 : #X12# → #X21# and
bottom ruleB1 : #2X1# → #1X2# at active area, we ob-
tain the following active ground derivation:

∆ : #2012# act−−→ #2021# act−−→ #1022#.

The following property is the counterpart of the relation be-
tween reduction sequences and narrowing sequences in first-
order term theory [20]. The proof is analogous, therefore omit-
ted.

Lemma 8 (lifting lemma). For all active ground derivation
∆ : w1

act−−→ w2
act−−→ · · · act−−→ wn via S, there exists a top

chainC : t1 → t2 → · · · → tn via S which has∆ as an
instance (i.e. such thatw1 = t1θ, w2 = t2θ, ..., wn = tnθ for
some ground substitutionθ).

Remark.The lemma states that any ground derivation is an
instance of some 1st-order top chain. Such a chain is obtained
by using a sequence of minimal instantiations{σ1, · · · , σn},
whereσi is of the form{W/uW ′}, {W/W ′u} or {W/u}.
This 1st-order covering holds in spite of the fact that instanti-
ationsσ of the form{W/uW ′v} with u, v �= ε are discarded
by definition. This justifiesa posterioriour focus on minimal
reductions atnonvariable positions.

Example.The active ground derivation (see above)

∆ : #2012# act−−→T4 #2021# act−−→B1 #1022#

is an instance (via the ground substitution{W ′/0}) of the top
chain

C1 : #2W ′12# → #2W ′21# → #1W ′22#.

Finally we will use the following property (also used by
Dershowitz in a more general context [8]):

Lemma 9 (semi-commutation lemma).Let w1, w2, w3 be

ground words such thatw1
act−−→ w2

inact−−−→ w3. Then there

exists a ground wordw′
2 such thatw1

inact−−−→ w′
2

act−−→ w3.

Example.Starting from the word#1012#, consider the fol-
lowing derivation viaT4 thenM1:

#1012# act−−→T4 #1021# inact−−−→M1 #0121#.

The order of rule application can be permuted to get:

#1012# inact−−−→M1 #0112# act−−→T4 #0121#.

Therefore inactive steps can always be switched with ac-
tive steps, and pushed upwards. It remains to show that the
number of inactive steps in infinite ground derivations is nec-
essarily finite.

Proposition 10. LetS be a rewrite sytem such thatS −TopS
is terminating. Then any infinite ground derivation viaS has
only a finite number of inactive steps.

Proof. Consider an infinite ground derivation∆ : w1 →
· · · → wn → · · · via S. Applying a rule at an active area of a
ground word cannot create any new inactive letters, while ap-
plying a rule at an inactive area only replaces a certain portion
of inactive area by another inactive portion of the same length.
Therefore either(a) all the inactive subareas of∆ disappear
after a finite number of steps, or(b) at least one of them re-
mains, but between two fixed positions. In case(b), there is a
subpart∆′ of∆ of the formwi → · · · → wn → · · · , such that
everywn is of the formxnvnyn, all thexn’s (resp.vn’s,wn’s)
have the same length, and thevn’s always remain inactive.
Since the active application of rules over subparts ofxn or yn

do not involve the inactive portionvn, one can extract from
∆′ an infinite inactive ground derivation∆′′ affecting only
thevn’s. This infinite derivation∆′′ never makes use of a top
rule since the top letter is active. This is in contradiction with
assumption thatS − TopS is terminating. The only possible
case is therefore(a): all the inactive subareas disappear after
a finite number of steps.

Finally, all inactive steps from an infinite ground derivation
can be pushed upwards, thus yielding a purely active suffix,
which is an instance of a top chain. Formally:

Proposition 11. Suppose thatS−TopS is terminating andL
is closed viaS. Then there is an infinite ground derivation via
S containing no word inL if and only if there is a quasi-cyclic
top chain viaS, starting from a wordt such thattθ �∈ L for
some ground substitutionθ.

Proof. The if part is obvious. To prove the only-if part, con-
sider an infinite ground derivation∆ not inL. By property 10
(sinceS − TopS is terminating), this infinite derivation con-
tains only a finite number of inactive steps. Applying itera-
tively the semi-commutation lemma (9), one can push back
these inactive steps to the beginning of the derivation, thus
obtaining a reordered infinite ground derivation∆′. From
some point on, there are only active steps in derivation∆′.
Let ∆′′ : wi → wi+1 → · · · denote this active infinite
ground part of derivation not inL. Since the rules are length-
preserving, there is an initial part of∆′′ of the formwi →
· · · → wj → · · · → wn such thatwj = wn andwp �= wq

for all p < q < n. By the lifting lemma (8), there is a chain
C : ti → · · · → tj → · · · → tn with Cθ = ∆′′, for some
ground substitutionθ. In particulartjθ = wj = wn = tnθ.
But tj andtn are either both ground or of the form#ujWvj#
and#unWvn# with |uj | = |un| and|vj | = |vn|. Sotj = tn
follows from tjθ = tnθ. Besides, for allp < q < n, tp and
tq are distinct since their instanceswp, wq via θ are distinct.
Thereforeti → · · · → tj → · · · → tn is a quasi-cyclic chain,
ending attn with tnθ = wn �∈ L.

Now, Theorem 5 directly results from Proposition 11 and
the definition of self-stabilization.
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3.4 Basic procedure andϕ-refinement

Theorem 5 suggests to prove self-stabilization by the following
basic procedure:

• Generate all top chainst1 → · · · → tn viaS, until tn = ti
for somei < n.

• If the only infinite chains generated are of the formt1 →
· · · → ti → · · · tn = ti with all instances oftn in L, then
S is self-stabilizing. Otherwise,S is not self-stabilizing.

In order to prove self-stabilization, it is then (necessary
and) sufficient to generate only 1st-order sequencest1 →
· · · → ti → · · · tn that extend top rules, instead of blindly
generating all the possible ground derivations, starting from
arbitrary ground words. The generation procedure is restric-
tive because the procedure is first-order and manipulates one-
variable words of the form#uWv#, instead of all the (infi-
nite) sets of their ground instances. It is also restricted by the
fact that sequences always start with the left-hand side of a top
rule.

Theorem 5, and the associated procedure, can be refined
by exploiting a measure, sayϕ, over words, which “never
increases” when applying a rule i.e. such that:w → w′ ⇒
ϕ(w) ≥ ϕ(w′). This is a relaxed assumption, with respect to
norms that, as required in traditional self-stabilization proof
methods, must “always decrease” (i.e., roughly speaking,
normsψ such thatw → w′ ⇒ ψ(w) > ψ(w′)). In addition
with such a non-increasing mesureϕ, we assume given aϕ-
preserving versionS ′ of S, that is a systemS ′ = MiddleS′ ∪
BottomS′ ∪ TopS′ such that:w →S′ w′ iff w →S w′ ∧
ϕ(w) = ϕ(w′). Now in any infinite derivation viaS, all the
rewrite steps, after a finite number of them, are necessarily
ϕ-preserving (because of the non-increasing property), and
may be viewed as rewrite steps viaS ′. In order to prove self-
stabilization ofS, it becomes necessary and sufficient to show
the absence of quasi-cyclic top chains, except those ending
with an instance ofL, viaS ′ (instead ofS) as far asS ′−TopS′

(instead ofS − TopS ) is terminating. More precisely, Theo-
rem 5 becomes:

Theorem 12. Let S = MiddleS ∪ TopS ∪ BottomS be a
rewrite system andL a set of configurations. Letϕ be a non-
increasing mesure andS ′ = MiddleS′ ∪TopS′ ∪BottomS′

aϕ-preserving version ofS. If
(0) each ground word is reducible viaS,
(1) L is closed viaS, and
(3’) S ′ − TopS′ is terminating.

ThenS is self-stabilizing w.r.t.L iff there is no quasi-cyclic
top chaint1 → · · · → tn via S ′, such thatun /∈ L for some
ground instanceun of tn.

Example.Consider the middle rules of Ghosh’s algorithm (see
Sect. 5 for details):

M1: #X(q + 1)qY# → #X(q + 1)(q + 1)Y#
M2: #Xq(q + 1)Y# → #X(q + 1)(q + 1)Y#

whereq ∈ {0, 1, 2, 3} and ‘+’ is addition modulo 4.
The convergence proof uses a norm function(Br,Ds) such
that eitherBr or Ds strictly decreases at each step, but indi-
viduallyBr andDs are only non-increasing functions. While
Ds is a very subtle function,Br is simply the number of

breaks, i.e. the number of neighbouring statesq, q′ of the
string which differ by at least one unit. In contrast, our method
proves the convergence, with the help of measureBr only: we
will focus onBr-preserving infinite derivations, i.e. infinite
derivations which preserve the number of breaks. SinceBr
is non-increasing and bounded, any infinite derivation has an
infiniteBr-preserving suffix, so there is no loss of generality.
To obtain the systemS ′, we modify the rules above intoBr-
preserving rules as follows:

M1: #X(q + 1)qqY# → #X(q + 1)(q + 1)qY#
M2: #Xqq(q + 1)Y# → #Xq(q + 1)(q + 1)Y#

It is easy to show thatS ′ is a Br-preserving version ofS
(w →S′ w′ iff w →S w′ ∧ Br(w) = Br(w′)) and that
S ′ − TopS′ is terminating.

Remark.It is sometimes convenient to use a measureϕ that is
“never decreasing”, instead of never increasing. The enhanced
theorem still holds, because again, in any infinite derivation
via S, all the steps, after a finite number of them, must be
ϕ-preserving (provided thatϕ is bounded upward, e.g., by the
numberN of machines the ring is made of). Such a reasoning is
used by Burns and Pachl (see [7], p. 339), who focus on infinite
derivations preserving the number of “dynamic segments” of
configurations. We also use a non-decreasing mesureϕ in the
example of Sect. 5.3.

Henceforth, when given a measureϕ and an associated
systemS ′, we implicitly focus on the generation of top chains
via S ′ instead ofS. This allows us to restrict even more the
number of generated chains. However, in practice, in spite of
this refinement, the generation procedure does not terminate,
but yields infinitely many chains. To solve this problem, we
introduce in Sect. 4 a notion of chains overregular setsof
words (instead of simply words) combined with a notion of
“generalization”.

4 A sufficient condition for self-stabilization

As mentioned earlier, top chains, when generated in a brute
manner, are frequently in infinite number. However it is of-
ten possible to discover some recurrent forms for wordstn
appearing at the end of chains. Consider again the subset of
rulesS ′ = {T4, B1,M1,M4} from Beauquier-Debas system:

T4 : #X12# → #X21#,

B1 : #2X1# → #1X2#,

M1 : #X01Y# → #X10Y#,

M4 : #X02Y# → #X20Y#.

Starting fromT4, and applying iteratively ruleM4, one gen-
erates chains of the form:

#W12# → #W21#,

#W012# → #W021# → #W201#,

#W0012# → #W0021# → #W0201# → #W2001#,

· · ·
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These chains are in infinite number, but all of them (except
the first one) end with words of the form#W20j1# with
j > 0. It is then convenient to generalize words of the form
#W20j1# by the regular set#W20+1#, and replace first-
order derivations over words by first-order derivations over
regular sets. Such regular sets are called “schemes” in the
following. Derivations over schemes are then defined in such a
manner that they “cover” all the possible top chains over words
(overapproximation). These generalized derivations may be
represented under the compact form of paths along the nodes
of a symbolic graph, each node corresponding to a scheme.
Absence of infinite derivations (i.e., self-stabilization) is then
shown by checking that every path of the graph uses only a
bounded number of top rules. (This exploits the assumption of
termination forS − TopS , see Sect. 4.3.) We claim that such
a process of generalization improves the convergence of the
method of top chain generation.

4.1 Replacing words by schemes

We are now going to define the notion of “schemes”, an ap-
propriate form of regular languages that contain sets of words
considered before. We extend accordingly our notion of re-
duction chains by manipulating schemes instead of words.

Definition 13. A first-order schemeS is a language of the
form #LWM# whereL,M are (nonempty) regular lan-
guages overΣ∗, andW a first-order variable. Aground
schemeS is a language of the form#L#whereL is a regular
language overΣ∗. Aschemeis either a 1st-order or a ground
scheme.

In the following we assume that the set of legitimate configu-
rationsL is expressed as a ground scheme.

Note that any first-order word of the form#uWv# (with
stringsu, v) can be seen as a special first-order scheme with
L = {u} andM = {v}. Likewise any ground word is a
special ground scheme.

4.2 Minimal reductions of schemes and generalization

The notion of minimal reduction over words extends naturally
over schemes. Formally:

Definition 14. LetS be a scheme,R a rule andσ a substitu-
tion ofDR ∪{id}. Thereduced form ofS viaR usingσ is the
schemeS′ defined by:

S′ = {s′ | ∃s ∈ S such thatsσ →R s′}.
This is writtenSσ →R S′.

Example.For rule M4 : #X02Y# → #X20Y#, the
schemeS = #W20+1# minimally reduces viaM4 to S′ =
#W ′200+1# usingσ : {W/W ′0}. The reduction is written
Sσ = #W ′020+1# → #W ′200+1#.

Generalization over 1st-order schemes is an overapprox-
imation of the regular languages surrounding the 1st-order
variable of a scheme. More precisely, a 1st-order schemeT :
#M1WM2# is a generalizationof a 1st-order schemeS :
#L1W

′L2# iff L1 ⊆ M1 andL2 ⊆ M2. Note that the names

of variables appearing inT andS (viz.,W andW ′) do not mat-
ter. Henceforth, without loss of generality, we always rename
first-order variablesW ′,W ′′, · · · appearing in schemes, toW .
In particular a substitution of the form{W/W ′u} is simply
written{W/Wu}. With this convention, a generalizationT of
1st-order schemeS is just a 1st-order scheme that containsS,
i.e., such that:S ⊆ T . Likewise, we say that a ground scheme
T is a generalization of a ground schemeS iff S ⊆ T .

In the following, we interleave the generalization process
with minimal reduction. Given a ruleR, and a substitution
σ ∈ DR ∪ {id}, we say that a schemeT is a generalized
successorof schemeS, and writeSσ ↗R T (or more simply
Sσ ↗ T ), iff Sσ →R S′ andS′ ⊆ T .

Example.For rule M4 : #X20Y# → #X02Y# and
schemesS = #W20+1# andS′ = #W200+1#, we have
Sσ → S′ ⊆ S (with σ : {W/W0}). We can thus write
Sσ ↗ S. So S is its own generalized successor viaM4
usingσ.

We now express formally the correspondence between re-
lation ↗ at the scheme level and→ at the word level. We
have:

Lemma 15. Givena ruleRandasubstitutionσ ∈ DR∪{id},
we have, for any schemeS and any words ∈ S: sσ →R

t impliesSσ ↗R T for some schemeT such thatt ∈ T .

We now give formally the notion of “generalized top
chain”.

Definition 16. Thegeneralized minimal top chainsof a re-
write systemS form a set inductively defined as follows:

• Every top rulet0 → t1 ofS is a generalized chain, written
{t0} ↗ {t1}.

• If G : T0 ↗ · · · ↗ Tn is a generalized minimal top
chain andR is a rule ofS such thatTnσ ↗ Tn+1, then
T0σ ↗ · · · ↗ Tnσ ↗ Tn+1 is a generalized minimal top
chain calledgeneralized successorofG (viaR usingσ).

Lemma 15 generalizes as follows:

Lemma 17. Given a top chain over words,
t0σ1 . . . σn →R1 · · · →Rn−1 tn−1σn →Rn

tn,
via rulesR1, . . . , Rn of S, using substitutionsσ1, . . . , σn,
and a schemeT0 such thatt0 ∈ T0, there is a top chain over
schemes,

T0σ1 . . . σn ↗R1 · · · ↗Rn−1 Tn−1σn ↗Rn Tn,

using the same substitutions, such thatti ∈ Ti for
i = 1, . . . , n.

This lemma states that any top chain at the word level is
“covered” by a corresponding top chain at the scheme level.
Hereafter, we describe a procedure of chain generation at the
scheme level. This procedure has a top rulet0 → t1 as input
andΓ denotes the set of schemes for which the successors
remain to be computed.

Generalized chain generation(t0 → t1)
Initially: Γ = {t1}.
While Γ �= ∅
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do
1.SelectS ∈ Γ .
2.Compute the finite set of generalized successors,
say{Si

new}i, of S
(Sσ ↗R Si

new for some ruleR ∈ S and someσ ∈ DR ∪
{id}).
3.For all i, addSi

new toΓ unlessSi
new ⊆ Sold for someSold

in Γ .
4.Γ := Γ − {S}.
od

Note that testSi
new ⊆ Sold is decidable since it deals

with inclusion of regular languages. An optimization of the
above procedure (that will be implicit henceforth) consists in
computing successors ofS only if S is not a subset ofL.
This is justified, since we are only interested in detecting the
existence of infinite chains that donot intersect withL (cf.
criterion(2′), Sect. 2.2).

Example.As already seen above for Beauquier-Debas sys-
tem, the righthand side#W21# of top ruleT4 minimally
reduces viaM4 to schemeS1 = #W20+1#, which is its
own generalized successor viaM4 using{W/W0}. On the
other hand, schemeS1 = #W20+1# is minimally reducible
viaB1 (using{W/2W}) to

U = #1W20+2#.

SchemeU is itself minimally reducible viaM1 (using
{W/0W}) in an iterative way, which yields

#01W20+2#, #001W20+2#, #0001W20+2#, etc.

SchemeU can be thus generalized as

S2 = #0∗1W20+2#,

which is thus a generalized successor ofS1 via B1 (using
{W/2W}).
The latter scheme is minimally reducible viaM4 (resp.M1),
but this yields only the subset#0+1W200+2# (resp.
#0+01W20+2#) of S2. ThereforeS2 is its own general-
ized successor viaM4 (using{W/W0}) and viaM1 (using
{W/0W}).

4.3 Graph construction

It is convenient to represent a minimal reduction of the form
S1σ1 ↗R1 S2 under the form of an edge, labelled(R1, σ1),
from S1 to S2. Likewise, a chain of the formS1σ1σ2 ↗R1

S2σ2 ↗R2 S3 is represented as an edge (labelled(R1, σ1))
from S1 to S2, followed by an edge (labelled(R2, σ2)) from
S2 to S3 (see the graph on the left in Fig. 1). If additionally,
schemes are represented as labels of nodes and structure shar-
ing is used in order to merge the representation of nodes asso-
ciated with identical schemes, then the generation of scheme
successors corresponds to the construction of a graph, where
paths between nodes represent chains over schemes. For exam-
ple, the graph on the right in Fig. 1 corresponds to the minimal
reductionSσ ↗R S and represents under a compact form an
infinite number of chainsSσ ↗R S, Sσ2 ↗R Sσ ↗R S,
etc.

Fig. 1. Graphs for reductionsS1σ1σ2 ↗R1 S2σ2 ↗R2 S3 and
Sσ ↗R S

The process of graph construction, described below, takes
a top rulet0 → t1 as an input and builds iteratively gen-
eralized successors under the form of growing paths. Each
nodeN of the graph is labelled with a schemeS, and re-
ferred to as pair(N,S). Each generalized top chain using
substitutionsσ1, . . . , σn, of the form (U0 ↗R1) U1 ↗R2

· · · ↗Rn
Un, is represented as a path of the graph of the form

〈(N1, S1), . . . , (Nn, Sn)〉, where (Ri, σi) labels the edge
from Ni to Ni+1 (1 ≤ i ≤ n − 1), such thatSiσi · · ·σn =
Ui (1 ≤ i ≤ n− 1) andSn = Un. Formally, the procedure is
as follows:

Graph construction (t0 → t1)
Initially: Q = {(N1, {t1})}.
WhileQ �= ∅
do
1.Select(N,S) ∈ Q
2.Compute the finite set of successors ofS, say{Si

new}i,
(Sσ ↗R Si

new for some ruleR ∈ S
and someσ ∈ DR ∪ {id}).
3.For all i:
3a. If Si

new ⊆ Sold for some node(Nold, Sold) ∈ Q,
add an edge, labelled with(R, σ),
from (N,S) to (Nold, Sold).
3b. Otherwise, add node(N i

new, S
i
new) toQ,

and edge, labelled(R, σ),
from (N,S) to (N i

new, S
i
new).

4.Q := Q− {(N,S)}.
od

According to the optimization mentioned previously, suc-
cessors ofS, at step 2, are implicitly computed only ifS is
nota subset ofL. Therefore in the graph, no edge exits from
nodes labelled with (subsets of)L. Another obvious optimiza-
tion consists in skipping step3a in case an edge, labelledσ,
already exists from(N,S) to (Nold, Sold).

Example.The graph for generalized chain generation of
Beauquier-Debas systemS ′, with T4 as an input, is depicted
in Fig. 2.

From the construction of the graph, we have:

Proposition 18. Suppose that during the scheme chain gen-
eration, there is a generated chain fromU1 = {t1} toUn via
R1, . . . , Rn−1, usingσ1, . . . , σn−1:

t1σ1 . . . σn−1 ↗R1 · · · ↗Rn−1 Un.

Then, there is a path from(N1, {t1}) to a node of the form
(N,Un) via edges labeled(R1, σ1), . . . , (Rn−1, σn−1).

This gives a sufficient condition for self-stabilization:

Theorem 19. If, for each top rulet0 → t1 ∈ S as an in-
put, there is no path in the associated graph, that usesTopS
infinitely often (apart from paths passing byL), thenS is self-
stabilizing.
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Fig. 2.The graph construction forT4

Proof. Suppose there is no path usingTopS infinitely often
(except paths passing byL). Then, by Proposition 18, there
is no chain over schemes usingTopS infinitely often (except
chains reachingL). Now, by Lemma 17, there is no chain over
words usingTopS infinitely often (except chains reachingL).
Finally, using the fact thatS − TopS terminates, there is no
infinite chain over words (except those reachingL), hence no
quasi-cyclic chaint0 → t1 → · · · → ti → · · · → tn = ti
(except iftn ∈ L). Therefore,S is self-stabilizing.

In contrast with Theorem 5, the condition above is no
longer necessary, and we cannot deducenonself-stabilization
in case an infinite chain is produced. On the other hand, we
claim that the procedure terminates more often than its coun-
terpart over words, thus allowing to prove self-stabilization in
more cases.

5 Examples

In order to illustrate the method of Sect. 4 we explain how
it applies on three examples. (The last two of them can be
skipped by the reader without loss of continuity.)

5.1 Beauquier-Debas algorithm

This system originates from [5], and is an adaptation of Dijk-
stra’s third (3-state) algorithm [11]. In our formalism, it cor-
responds to the following systemS:

Bottom B1 : #2X1# → #1X2#
Top T1 : #X00# → #X21#

T2 : #X10# → #X01#
T3 : #X20# → #X11#
T4 : #X12# → #X21#
T5 : #X22# → #X01#

Middle M1 : #X10Y# → #X01Y# ( with Y �= ε)
M2 : #X11Y# → #X02Y# ( with Y �= ε)
M3 : #X12Y# → #X00Y# ( with Y �= ε)
M4 : #X02Y# → #X20Y# ( with Y �= ε)
M5 : #X22Y# → #X10Y# ( with Y �= ε)

L is defined as:#0∗20∗1# ∪ #0∗10∗2# .
In this example, it is assumed that the sum of the elements

of the initial configuration is null, modulo 3. This property is
preserved when applying the rules ofS. It is easy to check that
any ground word (with a null sum of elements) is reducible
via S, and thatL is closed viaS (see [5]). Therefore,S is
self-stabilizing iff there is no ground cyclic derivation viaS
containing an elementw �∈ L. As remarked in [5], one can
see thatT1, T2, T3 are applied at most once. As a consequence
S is self-stabilizing iff there is no ground cyclic derivation
via S0 ≡ S − {T1, T2, T3} containing an elementw �∈ L.
The measureϕ over a wordt ∈ (Σ ∪ V)∗, is defined as the
number of nonnull elements contained byt. Obviously,ϕ is
non-increasing withS0. Besides, among rules ofS0 only rules
B1,M1,M4, T4 preserve the number of nonnull elements. The
ϕ-refinement of the basic procedure thus consists in generating
top chains viaS ′ ≡ {B1,M1,M4, T4} instead ofS0.

The graph constructed in Fig. 2 gives a complete picture of
the situation illustrated in the previous examples. Since there is
no infinite path usingTop (T4 is used at most once), it follows
that there is no quasi-cyclic top chaint1 → · · · → tn via S ′,
such thatun �∈ L for some ground instanceun of tn. Self-
stabilization is thus proved for Beauquier-Debas’s variant of
Dijkstra’s 3-state algorithm.

5.2 Ghosh’s 4-state algorithm

Self-stabilization of Ghosh’s algorithm [14], a variant of Dijk-
stra’s 4-state algorithm, can be proved formally along the same
lines. The system consists of a parametric numberN of ma-
chines (0, 1, · · · , N − 1), which have four states:{0, 1, 2, 3},
except thetopmachineN−1 (resp.bottommachine0) which
has only two states:{0, 2} (resp.{1, 3}). As explained in
Sect. 2, the configuration of the system is the string of all ma-
chine states, delimited by special end symbols ‘#’. Writing
X,Y for nonempty string variables, the transitions correspond
to the following systemS = Middle ∪ Top ∪ Bottom of
rewrite rules.
Middle

M1 : #X(q + 1)qY# → #X(q + 1)(q + 1)Y#
M2 : #Xq(q + 1)Y# → #X(q + 1)(q + 1)Y#

whereq ∈ {0, 1, 2, 3} and ‘+’ is addition modulo 4.
Top

T1 : #X32# → #X30#
T2 : #X10# → #X12#

Bottom
B1 : #12X# → #32X#
B2 : #30X# → #10X#

L is defined as#{1+, 3+}{0+, 2+}#.

As mentioned in Sect. 3.4, Ghosh proves the convergence by
considering a norm function(Br,Ds) such that eitherBr or
Ds strictly decreases at each step. Recall thatBr andDs are
non-increasing functions:Br is the number ofbreaks, i.e. the
number of neighbouring statesq, q′ of the string which differ
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Fig. 3.First-order generation of chain forT1

by at least one unit andDs measures the sum of distances
between pairs of neighbouring breaks of the string. All the
difficulty of Ghosh’s proof comes from the discovery of such
a measureDs, while our method uses measureBr only and
focus onBr-preserving infinite derivations.

TheBr-preserving versionS ′ of S (cf. Sect. 3.4) is ob-
tained by modifying the middle rules as follows:

M1: #X(q + 1)qqY# → #X(q + 1)(q + 1)qY#
M2: #Xqq(q + 1)Y# → #Xq(q + 1)(q + 1)Y#

The graph construction is illustrated in Fig. 3 in the case of
initial rule T1 : #W32# → #W30#. Similarly, another
representative graph can be obtained, starting from the other
top rule righthand side#W12#. To make the figure more
readable, some details have been omitted:

• substitutionsσ0 and σ′
0 are respectively{W/W0} and

{W/W03},
• the edges labelled byM1 without a substitution correspond

to σ = id,
• most schemes appearing in the figure are closed by (gener-

alized) application of the ruleM1 with σ = id and should
have a loop which is not represented.

A similar graph can be constructed, starting from top chain
T2 instead ofT1. The important point is that, in both graphs,

all the paths make use of the top rule a finite number of times
(at most once). It follows by Theorem 19 that the system is
self-stabilizing.

5.3 Hoepman’s ring orientation algorithm

We finally sketch out how our method adapts to uniform algo-
rithms (algorithms without distinguished top, bottom or mid-
dle rules). We take the self-stabilizing ring orientation algo-
rithm presented by Hoepman in [18], as an example. Our un-
derlying assumptions about the existence of distinguished top
rulesTop and the termination ofS − Top, do not hold any
longer in this context. The reasoning for proving convergence,
is modified by using an assumption of fairness (also used in
[18]) instead:Any infinite sequence of rules modifies infinitely
often the state ofeverymachine of the ring.

Hoepman’s algorithm is based on16 rules applied to words
with the alphabetΣ = {1−, 1+, 0−, 0+} and uses the follow-
ing notations:
L0 = Σ∗ = {0, 1}∗ with 0 = {0+, 0−}, 1 = {1+, 1−},
L1 = (O1 I1)∗ with O1 = 0 ∪ {0+0−0+, 0−0+, 0+0−}
andI1 = 1 ∪ {1+1−1+, 1−1+, 1+1−},
L2 = (O2 I2)∗ with O2 = 0∪{0+0−} andI2 = 1∪{1+1−}.

The corresponding rewriting systemS transforms a sub-
wordpqr in pq′r, whereq′ is given by the following tables:
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rule p q r q’
a 0 0 0 1−
b 0 1 0 1−
c 1 1 1 0−
d 1 0 1 0−

rule p q r q’
e 0+ 0− 1− 1+

e’ 1− 0− 0+ 1+

f 1+ 1− 0− 0+

f’ 0− 1− 1+ 0+

rule p q r q’
g 0− 0− 1 0+

g’ 1 0− 0− 0+

h 0+ 0+ 1 0−
h’ 1 0+ 0+ 0−

rule p q r q’
i 1− 1− 0 1+

i’ 0 1− 1− 1+

j 1+ 1+ 0 1−
j’ 0 1+ 1+ 1−

These rules can be applied at any position of the configu-
ration. (Formally, every transformation ofpqr intopq′r corre-
sponds to 3 rules:#XpqrY# → #Xpq′rY#, #rXpq# →
#rXpq′#, #qrXp# → #q′rXp#.) Hoepman proves that
the system converges onL2 in two steps: first, he exhibits
a measure that strictly decreases, when applied to a ground
configuration ofL0 unless this ground configuration belongs
to subsetL1; second he exhibits another measure that strictly
decreases, when applied to a ground configuration ofL1, un-
less it belongs toL2. (He proves that the system converges
from L2 to a third setL3, but this is beyond the scope of
this presentation.) In contrast, our method gives a direct proof
for the convergence toL2, viewed here as setL of legitimate
configurations, and does not appeal to any strictly decreasing
mesure.

We preliminary transform Hoepman’s system into a sim-
pler set of rules. We first use aϕ-refinement in order to dis-
regard rules (a) and (c). Here measureϕ counts the num-
ber of maximal subsequences of the same value (either 0 or
1), inside a word (assuming the leftmost and rightmost el-
ements to be contiguous). For example, the measureϕ for
#000100W1100# is 4. All the rules preserve this number,
except rules (a) and (c), which strictly increase it by 2. There-
fore, (a) and (c) can only be used a finite number of times
(ϕ is bounded upward withN ), and we can focus on infinite
derivations viaS−{a, c}. The remaining rules are themselves
merged into the simple new systemS ′ = {E,E′, F, F ′} given
by the table below.

rule p q r p’ q’ r’

E 0+ 0− 1 0 1+ 1−
E’ 1 0− 0+ 1− 1+ 0

F 1+ 1− 0 1 0+ 0−
F’ 0 1− 1+ 0− 0+ 1

Note that each transformation is now a shorthand for 4
transformations. For exampleE transforms 0+0−1− or
0+0−1+ into 0−1+1− or 0+1+1−. As before, every trans-
formation ofpqr into p′q′r′ corresponds to 3 rules:

#XpqrY# → #Xp′q′r′Y#,

#rXpq# → #r′Xp′q′#,

and#qrXp# → #q′r′Xp′#,

depending on the position where it is applied.
It is easy to see that every sequence viaS − {a, c} can be
simulated by a sequence viaS ′ = {E,E′, F, F ′}.

In order to prove self-stabilization viaS, it is thus neces-
sary and sufficient to prove that there is no infinite sequence
of derivations viaS ′ (apart from sequences ending atL2). We
thus focus on chains starting from a ruleE (or E′, F , F ′).
Since the system is uniform, we can actually focus on chains
starting with ruleE applied at an arbitrary position, e.g., the
rightmost one. We thus takeE : 0−1W0+ → 1+1−W0 as
a starting rule and we show that there is no infinite derivation
fromE by first-order rewriting viaS ′ (regardless of sequences
going toL2). This is done in two steps: first we build the graph
associated withE, then we explain why there is no infinite path
in this graph (except those going toL2).

This graph can be found in Fig. 4.
Only the edges corresponding to non trivial substitutions

(σ �= id) are represented. All nodes should have in addition a
self-loop labeled byσ = id. For the sake of readability, the
substitutions labeling the edges of the figure are also omitted.
For example, consider the upmost node

(I2O2)∗1+1−W1−1+(O2I2)∗O2,

with its three outgoing edges labeled respectivelyE, E′, F ′:

• The substitution for ruleE is {W/0+0−},
which gives(I2O2)∗1+1−01+1−1+(O2I2)∗O2,
generalized asΣ∗01+1−1+Σ

∗.
• The substitution for ruleE′ is {W/0−0+},

which gives(I2O2)∗1+1−1+01−1+(O2I2)∗O2,
generalized asΣ∗1+1−1+0Σ∗.

• The substitution for ruleF ′ is {W/W0},
which gives(I2O2)∗1+1−W0−0+1(O2I2)∗O2,
generalized as(I2O2)∗1+1−W0−0+(I2O2)∗.

Also note that the two edges leading toL2 (our set of legitimate
configurations) are implicitly labeled by{W/ε}.

Considering this graph, we see that there are three kinds of
nodes. The first one corresponds to a first order schemeLWM ,
the second one to the legitimate schemeL2 and the third one to
ground schemes containing either0+0−0+ or 1+1−1+. This
observation is summarized in Fig. 5.

A simple analysis of this synthetic form, leads us to con-
clude that no infinite path exists in this graph (except those
passing inL2), for the following reasons:

• There is no infinite loop in the nodes which contain patterns
like 0+0−0+ (resp.1+1−1+) because no rule can rewrite
the central letter which is in contradiction with the fairness
assumption.

• There is no infinite loop with a substitutionσ �= idbecause
X represents a finite word and then cannot be instanciated
infinitely often.

• There is no infinite loop with labelσ = id because other-
wise, the string represented byX could never be modified
at its extremities which contradicts fairness.

Similar constructions and explanations hold for rules
E′, F, F ′. This achieves our proof of self-stabilization.

6 Conclusion and perspectives

In contrast with methods relying on the existence of a strictly
decreasing norm function [5,14,19,23], our technique re-
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Fig. 4.First-order graph generation forE

Fig. 5.A reduced form for the graph in Fig. 4

quires only little specific knowledge and proposes a uniform
framework for the full proof of several non trivial examples, as
shown here on Ghosh’s 4-state algorithm [14] and Beauquier-
Debas’s 3-state algorithm [5]. These examples are simple ones,
which allow us to give a clear view of the procedure. Our
procedure is inspired by Dershowitz’s chain generation pro-
cedure [8], and proves convergence of self-stabilizing algo-
rithms much in the same way than Dershowitz proves the ter-
mination of rewrite systems. Following Hoepman [18], we
have enhanced the basic method by incorporating a process
of generalization of words as regular languages, and defining
rewriting over “schemes”. The method is not fully automatic:
we need in particular to infer by hand generic schemes of
configurations from words produced recurrently throughout
derivations.

The main differences with traditional proof methods of
self-stabilization, which use strictly decreasing measures over
ground configurations, come from:

1. focusing on derivations originating fromtop-configura-
tions instead of derivations starting from arbitrary config-
urations.

2. reasoning with1st-order variables, and deriving new con-
figurations through a restricted strategy of reduction (top
chain generation) instead of considering all the possible
ground configurations, and all their possible ground suc-
cessors.

3. reasoning withregular languages(including 1st-order
variables), and integrating a process of generalization.

From a mechanical point of view, the operation of minimal
reduction over schemes can be implemented via the operation
of transducer(see [24]; cf [4]). It is also possible to analyse
further the constructed graph in order to extract a complex-
ity upperbound for the convergence. In [4], further results are
given, concerning a natural counterpart of Herman’s composi-
tionality result in our framework. We believe that our method
adapts easily to the case ofuniform rings, as sketched out in
the case of Hoepman’s ring-orientation protocol. We are cur-
rently investigating an extension of the method to algorithms
running on arbitrary (non-ring) networks, that could use graph
rewriting techniques as proposed in [25–27].
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