Bildung siliciumorganischer Verbindungen. 69 [1]

Zur Chemie der 1, 3, 5, 7-Tetrasilaadamantane

Von G. FRITZ und K. KREILEIN

Karlsruhe, Institut für Anorganische Chemie der Universität

Inhaltsübersicht. Es wird über Reaktionen der 1,3,5,7-Tetrasilaadamantane berichtet (Abkürzung: Ad; vorgestellte Gruppen sind Substituenten an Si-Atomen, nachgestellte an den C-Atomen des Gerüstes). Br₄Ad wird durch Bromierung von H₄Ad zugänglich und me₃JAd durch Umsetzung von me₃HAd mit J₂ hergestellt (me = CH₃). Durch Photobromierung von me₄Ad wird me₄AdBr₂ gebildet. Die Umsetzung von me₃JAd mit LiCH₂-Sime₃ in TMEDA/Pentan führt durch Si-Substitution zum me₃(me₃Si-CH₂)Ad (~90%). me₃ClAd bzw. me₃BrAd reagieren unter gleichen Bedingungen bevorzugt unter C-Lithinierung an einer der zum Si-Brückenkopf benachbarten Gerüst-CH₂-Gruppen. Die Umsetzung des Lithinierungsproduktes mit ClSime₃ führt z. B. zum me₃ClAd-(Sime₃) (~80%). Damit wird wahlweise der Aufbau von Si-C-Adamantanen mit Carbosilanketten am Si-Atom, z. B. me₃(me₃Si-CH₂-Sime₂-CH₂)Ad oder am Gerüst-C-Atom, z. B. me₄Ad(Sime₂-CH₂-Sime₃) möglich.

Durch Umsetzung von me₄Ad mit n-buLi (bu = Butyl) entsteht zu ~90% me₄AdLi, das mit ClSime₃ das me₄Ad(Sime₃) bildet. me₄Ad(Sime₃) reagiert mit n-buLi zu me₄Ad(Sime₃)Li, aus dem mit ClSime₃ me₄Ad(Sime₃)₂ (Isomerengemisch) entsteht. me₄Ad(Sime₃)₂ läßt sich weiter lithinieren und bei anschließender Umsetzung mit ClSime₃ bilden sich Gemische des me₄Ad(Sime₃)₃.

Formation of Organosilicon Compounds. 69. The Chemistry of 1,3,5,7-Tetrasilaadamantanes

Abstract. Reactions of the 1,3,5,7-tetrasilaadamantanes are reported (abbreviated: Ad; groups placed before "Ad" are substituents of the Si atoms of the adamantane-skeleton, groups placed behind are substituents of the C atoms). Br_4Ad is obtained by bromation of H_4Ad , and me_3IAd is formed by reaction of me_3HAd with J_2 (me = CH₃). Photobromination of me_4Ad yields me_4AdBr_2 . The reaction of me_3JAd in TMEDA/pentane with LiCH₂-Sime₃ leads to the formation of $me_3(me_3Si-CH_2)Ad$ under substitution of Si (~90%). The same reaction conditions presupposed, me_3CIAd and me_3BrAd , respectively, react under C-lithiation of the CH₂-group adjacent to the SiX-bridge head of the Ad-skeloton. With ClSime₃, the lithiated compounds form $me_3CIAd(Sime_3)$ (~80%) and $me_3BrAd(Sime_3)$, resp. Thus, it is possible by choice to synthesize Si-adamantanes with carbosilane chaines either at the Si atom $[me_3(me_3Si-CH_2-Sime_2)Ad$, e.g.] or at the C atom of the molecular skeleton $[me_4Ad(Sime_2-CH_2-Sime_3), e.g.]$.

me₄Ad reacts with n-buLi to give me₄AdLi in $\sim 90\%$ yield, which forms me₄Ad(Sime₃) with ClSime₃. me₄As(Sime₃) reacts with n-buLi to yield me₄Ad(Sime₃)Li, from which me₄Ad(Sime₃)₂ is obtainable (isomeric mixture). me₄Ad(Sime₃)₂ can be lithiated, too, and forms me₄Ad(Sime₃)₃ (isomeric mixture) by reaction with ClSime₃.

Der metallorganischen Synthese höherer Carbosilane sind trotz des schrittweisen Aufbaues linearer, cyclischer und polycyclischer Vertreter noch deutliche Grenzen gesetzt [2]. So gelang bisher nicht die übersichtliche metallorganische Synthese eines 1,3,5,7-Tetrasilaadamantans. Neben der Abtrennung aus den Pyrolyseprodukten des Tetramethylsilans [3], des $(CH_3)_3SiH$ [4] und der Methylchlorsilane [5] läßt sich das 1,3,5,7-Tetrasilaadamantan aus Reaktionen linearer und cyclischer Si-methylierter Carbosilane mit katalytischen Mengen AlCl₃ bzw. AlBr₃ herstellen [6, 7, 8]. Es ist deshalb naheliegend, von den so zugänglichen 1,3,5,7-Tetrasilaadamantanen ausgehend den metallorganischen Aufbau höherer Carbosilane anzustreben. Dies setzt jedoch eine eingehende Kenntnis der Chemie dieses Grundkörpers voraus. Es werden deshalb jetzt Reaktionen an 1,3,5,7-Tetrasilaadamantanen beschrieben, die eine Einführung von Carbosilanketten als Substituenten am Si- bzw. C-Atom dieses Gerüstes ermöglichen.

Bisher bekannte Umsetzungen des 1,3,5,7-Tetrachloro-1,3,5,7-tetrasilaadamantans und des 1-Chlor(Brom)-3,5,7-Trimethyl-1,3,5,7-tetrasilaadamantans wie Hydrierung, Halogenierung [5], Methylierung, Hydrolyse und Aminolyse [6,9] zeigen eine gewisse Reaktionsfähigkeit der Si – X-Gruppe (Silicium-Brückenkopfatom); die Umsetzungen verlaufen aber unter viel schärferen Bedingungen, als sie für primäre, sekundäre oder andere tertiäre Siliciumhalogen-Verbindungen erforderlich sind [10, 11].

Zur Nomenklatur: "Ad" bezeichnet das Gerüst des 1,3,5,7-Tetrasilaadamantans; vorgestellte Gruppen kennzeichnen Substituenten am Si-Brückenkopfatom, nachgestellte solche an Gerüst-C-Atomen, z.B. Cl_4Ad , me_4AdBr_2 ($me = CH_3$).

I. Darstellung und Isolierung von 1,3,5,7-Tetrasilaadamantanen

Die zur Untersuchung benötigten 1,3,5,7-Tetrasilaadamantane wurden teilweise aus Pyrolyseprodukten isoliert; das me₄Ad 1 aus der Pyrolyse des Si(CH₃)₄ und das Cl₄Ad 2 aus der des me₃SiCl. me₄Ad 1 und me₃BrAd 9 wurden als Gemisch aus der Umsetzung von (me₂Si --CH₂)₃ mit AlBr₃ erhalten [7, 8].

Über die Hydrierung von $\text{Cl}_4\text{Ad}\ 2$ und $\text{me}_3\text{BrAd}\ 9$ mit LiAlH_4 und anschließende Umsetzung mit elementarem Halogen werden die Verbindungen $\text{Br}_4\text{Ad}\ 3$, $\text{me}_3\text{ClAd}\ 8$ und $\text{me}_3\text{JAd}\ 10$ zugänglich.

1. Darstellung und Isolierung von Br₄Ad 3

Die Pyrolyse von me₃SiCl liefert die Verbindungen Cl₄Ad 2 und me₃ClAd 8 im Verhältnis 170:1. Nach Filtrieren und Umkristallisieren wird die reine Verbindung Cl₄Ad 2 abgetrennt [5]. Nach orientierenden Untersuchungen eignet sich 2 nicht für die beabsichtigten Substitutionsreaktionen. Zum Austausch des Chlors gegen Brom wird deshalb Cl₄Ad 2 mit LiAlH₄ in Di-n-butyläther (100 bis 120°C, 10 Std.) umgesetzt. Das gebildete H₄Ad 4 reagiert mit elementarem Brom in CCl₄ bei 20°C quantitativ zu Br₄Ad 3. 3 ist weiß kristallin, sublimiert bei 130°C/ 0,1 Torr; Smp. 346°C und ist unempfindlich gegen Licht und Luft. Das NMR-Spektrum enthält das Signal der Methylengruppe bei $\tau = 8,88$ ppm (gemessen in heißem CCl₄). Werte der massenspektrometrischen Untersuchung Tab. 2.

1, 3, 5, 7-Tetrasilaadamantane

Tabelle 1 ¹H-NMR-Daten

Verbindungen		τ -Werte ^a) ($\pm 0,02$ ppm)						
		CH₂ Gerüst	CH Gerüst	(CH₃)Si Brückenkopf	CH2 Kette	(CH3)2S Kette	i (CH₃)₃S Kette	i (C ₆ H ₅)Si Kette
3	Br ₄ Adb)	8,88	_			-		_
5	$(me_3SiCH_2)_4Adb)$	10,25	-	_	10,17	_	9,98	
10	me ₃ JAd ^b)	9,45 10,15	_	9,84	-			
13	$\mathrm{me}_{\mathfrak{s}}[\mathrm{me}_{\mathfrak{s}}(\mathrm{C}_{\mathfrak{s}}\mathrm{H}_{\mathfrak{s}})\mathrm{SiCH}_{\mathfrak{s}}]\mathrm{Ad}^{\mathbf{b}})$	10,33	-	9,93	g)	9,72	-	2,75
14	$me_3(me_2BrSiCH_2)Ad^k)$	10,14 10,25	-	9,88	9,62	9,47		_
15	$me_3(me_3SiCH_2Sime_2CH_2)Ad^c)$	10,23 10,34		9,77	$10,07 \\ 10,19$	9,81	9,88	_
16	me₃ClAdLi ⁱ) ^k)	$10,25-10,35^{e})^{f})^{h})$	$11,32^{e})$	9,88-10,00h)	_			-
17	me₄ClAd(Sime₃) ^c) ⁱ)	$10,20-10,60^{e})^{f})$ 9,73- 9,88 $^{e})^{f})$		9,88 9,78	-	-	9,73	-
18	$me_{\mathtt{s}}ClAd[Sime_{\mathtt{s}}(C_{\mathtt{6}}H_{\mathtt{s}})]^{e})^{i})$	$9,82 - 9,88^{e})^{f}$ $10,35 - 10,54^{e})^{f}$	g)	9,90 10,09	_	9,42 ⁱ)	-	2,67b)
21	me₄AdBr₂ ^b)	$10,39 - 9,72^{d})^{e})$ $J_{(AB)} = 13,4 \text{ Hz}$ $10,32^{e})$	_	9,90 9,57	-	-		-
24	me ₄ AdLi ^k)	10,28 ^e) ^f) 10,36 ^e)g)	11,87	9,94 9,98	-	-	—	—
25	me₄Ad(Sime₃)⁰)	$10,41-10,16d)^{e}$) J(AB) = 13,6 Hz $10,37^{e}$)	10,85 ^e)	9,74 9,79	_	-	9,87	
26	$\mathrm{me}_{4}\mathrm{Ad}[\mathrm{Sime}_{2}(\mathrm{C}_{6}\mathrm{H}_{5})]^{\complement})$	10,44-10,17d)e) J(AB) = 13,3 Hz 10,38e)	10,48 ^e)	9,79 9,93	_	9,61		2,67b)
28	me₄Ad(Sime₂CH₂Sime₃)¢)	$10,37-10,09d)^{e}$) J(AB) = 13,1 Hz 10,35 ^e)	10,69 ^e)	9,7 8	10,12	9,68	9,89	-
29	$\mathrm{me}_{4}\mathrm{Ad}(\mathrm{Sime}_{\mathfrak{d}})_{\mathfrak{s}}^{c})^{i})$	10,07-10,51 ^e) ^f) ^h)	10,82 ^e) 10,84 ^e)	9,63 9,71 9,78	-		9,84	→
	$me_4Ad(Sime_3)_2^c)^i)$	10,15-10,37e)f)h)	10,82 ^e)	9,72	_	_	9,84	-
30	me₄Ad(Sime₃)₃¢)i)	10,12-10,53 ^e) ^f) ^h)	10,83e)	9,63–9,78h)	-		9,84	_

a) Gemessen mit Sime₁ als innerem Standard, $\tau = 10,00$; b) Gemessen in CCl₄; c) Gemessen in C₆H₆; d) AB-Spektren aufgelöst; τ -Werte des A- und des B-Teils und die Kopplungskonstante werden angegeben; e) Durch W-Kopplungen verbreiterte Signale; f) AB-Spektren nicht aufgelöst, erkennbare Bereiche werden angegeben; g) Signal wird von Bandengruppen überlagert und kann nicht exakt zugeordnet werden; h) Einzelne Signale können nicht exakt zugeordnet werden; Bereiche werden angegeben; i) Enantiomerengemische; k) Aufnahme der Reaktionslösung.

2. Darstellung und Isolierung von me₄Ad 1 und me₃BrAd 9

Verbindung 1 läßt sich auf Grund ihres günstigen Kristallisationsvermögens leicht aus den Pyrolyseprodukten des me₄Si isolieren.

Eine weitere Möglichkeit zur Darstellung von 1 bietet die Umsetzung von $(me_2Si - CH_2)_3$ mit AlBr₃. Je nach Reaktionsführung entstehen Gemische wechselnder Zusammensetzung aus 1 und 9. Höherbromierte Si-C-Adamantane werden nur in geringen Mengen gebildet. Da die Abtrennung von $me_3XAd(X = Cl, H)$

Ver- bin- dung	exakte Masse	gemessen	Differenz zur be- rechneten in ppm	Ver- bin- dung	exakte Masse	gemessen	Differenz zur be- rechneten in ppm
3	²⁸ Si ₄ C ₆ H ₁₂ ⁷⁹ Br ₂ ⁸¹ Br ₂	515,66990	1,9	19	M-CH ₃		
	²⁸ Si ₄ C ₆ H ₁₂ ⁷⁹ Br ₃ ⁸¹ Br	513,66946	6,7		²⁸ Si ₅ C ₁₁ H ₂₅ ⁷⁹ Br	377,00698	1,5
	$^{28}\mathrm{Si}_4\mathrm{C}_6\mathrm{H}_{12}{}^{79}\mathrm{Br}_4$	511,67494	1,7		²⁸ Si ₅ C ₁₁ H ₂₆ ⁸¹ Br M-2 CH ₃	379,00377	1,6
5	²⁸ Si ₈ C ₂₂ H ₅₆ M-SiC.H.,	544,24616	2,0		$^{28}\mathrm{Si}_{5}\mathrm{C}_{10}\mathrm{H}_{23}{}^{81}\mathrm{Br}/2$	181,99069	1,3
	289; C H	457 19158	9.1	18	M-CH.		
	5170181145	401,10100	2,1	10	28Si.C. H. 31Cl	395.07240	0.5
0	M CH Sime C H				29Si-C. H37Cl	397 06848	2.9
0	$M = OH_2 O H E_2 O_6 H_6$	649 09914	0.0			001,00010	_,•
	$^{10}\mathrm{Sl}_7\mathrm{U}_{33}\mathrm{H}_{51}$	045,25614	0,9		2891 (2) 11	975 19876	19
	$M = 2 CH_2 Sime_2 C_6 H_5$	500 18000	0.0			515,12010	1,2
	² °S1 ₈ U ₂₅ H ₄₁	509,17820	8,0			100 00488	0.5
_					SI5015H25 001/2	190,02400	0,0
7	$M - CH_2Sime_2CH_2Sime_3$	450 00004	1.77	34	M CH		
	²⁸ S1 ₁₀ C ₂₇ H ₆₉	673,30804	1,7	20		995 15050	15
	28Si, 29SiC27H 69	674,30692	2,7		⁵⁰ Sl ₆ O ₁₅ H ₃₇	365,15050	1,5
	$M = 2 CH_2 Sime_3 CH_2 Sime_3$				100 CI II 10 D	411 01500	1.9
	²⁸ Si ₈ C ₂₁ H ₅₃	529,23136	2,3	21	$^{10}Sl_4U_{10}H_{22}$ $^{10}Br_2$	411,91590	1,0
					²⁰ S1 ₄ C ₁₀ H ₂₂ , Br ⁰ .Br	413,91409	1,9
10	$^{28}\mathrm{Si}_{4}\mathrm{C}_{9}\mathrm{H}_{21}\mathrm{J}$	367,97584	1,8		M-CH ₈	000 00000	1 5
	M-CH ₃				²⁸ Si ₄ C ₉ H ₁₉ ⁷⁹ Br ₂	396,89239	1,7
	²⁸ Si ₄ C ₈ H ₁₈ J	352,95234	2,0		²⁸ Si ₄ C ₉ H ₁₉ ⁷⁸ Br ⁸¹ Br	398,89111	0,2
	M-CH ₃ -J						
	$^{28}{ m Si_4C_8H_{18}/2}$	113,02413	1,3	25	M-CH ₈		
					²⁸ S1 ₅ C ₁₂ H ₂₉	313,11192	1,1
13	²⁸ Si ₅ C ₁₈ H ₃₄	390,15253	4,7		$M - 2 CH_3$		
	M-CH ₃				$^{28}\mathrm{Si}_{5}\mathrm{C}_{11}\mathrm{H}_{26}/2$	149,04434	2,0
	²⁸ Si ₅ C ₁₇ H ₃₁	375, 12871	4,0				
	$M - CH_2Sime_2C_6H_6$			26	M-CH ₃		
	²⁸ Si ₄ C ₉ H ₂₁	241,07180	1,0		^{2*} Si ₅ C ₁₇ H ₃₁	375,12842	3,2
15	28SieC1eHen	400,17386	1,8	28	²⁸ Si ₆ C ₁₆ H ₄₀	400,17531	1,9
	M-CH ₈				M-CH ₃		
	28 Si & C15 H37	385,15286	4,6		²⁸ Si ₆ C ₁₅ H ₃₇	385,15039	1,8
	M-CH_Sime				M-CH ₂ Sime ₃		
	²⁸ Si ₅ C ₁₂ H ₂₉	313,11090	2,1		²⁸ Si ₅ C ₁₂ H ₂₉	313,11118	1,2
17	M-CH ₃			29	M-CH ₃		
	²⁸ Si ₅ C ₁₁ H ₂₆ ³⁵ Cl	333,05698	0,1		²⁸ Si ₆ C ₁₅ H ₃₇	385,15046	1,6
	²⁸ Si ₅ C ₁₁ H ₂₈ ³⁷ Cl	335,05487	2,6				
	M-2CH ₃			30	M-CH ₃		
	${}^{28}\mathrm{Si_5C_{10}H_{23}^{35}Cl/2}$	159,01673	0,02		²⁸ Si ₇ C ₁₈ H ₄₅	457,18992	1,4

Tabelle 2 Exakte Massenbestimmung

aus den Pyrolyseprodukten sehr aufwendig ist, wurde die Umlagerungsreaktion mit $AlBr_3$ so ausgearbeitet, daß je nach Reaktionsbedingungen entweder me_4Ad 1 oder me_3BrAd 9 als Hauptprodukt erhalten wird.

Dazu setzt man jeweils 10 g (me₂Si-CH₂)₃ mit 4 g AlBr₃ (gelb-braun, ungereinigt) bei verschiedenen Reaktionszeiten und Temperaturen (Tab. 3) um. Das zu 30-40% entstehende me₄Si wird aus dem Reaktionsgemisch abkondensiert, das verbleibende Produktgemisch (viskos bis fest) mit Pentan extrahiert, die Pentanphase hydrolysiert und das Lösungsmittel abgezogen. Aus dem Rückstand erhält man durch Sublimation bei 60°C/0,01 Torr die gebildeten 1,3,5,7-Tetrasilaadamantane. Aus Gewicht und Integration der PMR-Spektren ergeben sich die Prozentanteile der einzelnen Verbindungen. Aus den Produktgemischen der Reaktionen I und III werden durch Sublimation und Umkristallisieren die reinen Verbindungen me $_4$ Ad 1 (30°C/0,1 Torr) oder me $_3$ BrAd 9 (50°C/0,1 Torr) erhalten.

Reaktion	Zeit	Temperatur	Reaktions-	Reaktions	produkte (%)	
Nr.	(Std.)	(°C)	mischung	TMS	me₄Ad	me₃BrAd
I	24	80	viskos	30	18,5	1,5
11	48	80	Kristallbrei	33	8	7
111	48	100	glasartig	37	1	12
IV	72	100	glasartig	40	0,5	9

Tabelle 3 Ergebnis der Umsetzung von 10 g (me₂Si-CH₂)₃ mit 4 g AlBr₃

3. Darstellung und Isolierung von me₃ClAd 8

Nach Hydrierung des me₃BrAd 9 mit LiAlH₄ in Diäthyläther läßt sich aus me₃HAd 11 mit Chlor in guten Ausbeuten me₃ClAd 8 erhalten [5]. Eine weitere Möglichkeit bietet eine Reaktion im Gaschromatographen. Bei der Trennung eines Gemisches aus me₄Ad 1 und me₃BrAd 9 (gelöst in CCl₄, Trennung bei 220 °C Säulentemperatur) wird neben me₄Ad 1 reines me₃ClAd 8 erhalten (70%, bezogen auf eingesetztes me₃BrAd 9). Es ist anzunehmen, daß die Reaktion über einen Radikalmechanismus verläuft. Diese Methode eignet sich besonders zur Abtrennung von me₄Ad 1 aus Gemischen, die 1 und me₃BrAd 9 in ungefähr gleichen Mengen enthalten. Wird bei der gaschromatographischen Trennung Pentan als Lösungsmittel verwendet, so bildet sich anstelle von 8 das (me₂Si-CH₂)₄ in geringen Ausbeuten.

4. Darstellung von me₃JAd 10

Versetzt man eine Lösung von me₃HAd 11 in CCl_4 bei 20°C mit elementarem Jod, so tritt innerhalb einiger Stunden eine Entfärbung der CCl_4 -Phase ein, und es bildet sich quantitativ me₃JAd 10 nach Gl. (1)

$$me_3HAd + J_2 \rightarrow me_3JAd + HJ.$$
 (1)

Das gebildete HJ-Gas wird während der Reaktion aus der Lösung kondensiert. Nach Abziehen des Lösungsmittels und Sublimation $(60 \,^{\circ}C/0.1 \,^{\circ}Torr)$ wird die weiße kristalline Verbindung 10 erhalten; Smp. 133 $^{\circ}C$. 10 zersetzt sich nur sehr langsam an der Luft und färbt sich am Tageslicht erst nach Wochen leicht gelb. NMR-Daten und massenspektrometrische Werte Tab. 1 u. 2.

II. Zur Halogenierung des me₄Ad 1; Bildung von me₄AdBr₂ 21

Für die angestrebten Ziele werden auch Si-Adamantane benötigt, die am Gerüstkohlenstoff halogeniert sind. Die perhalogenierten Verbindungen Cl_4AdCl_{12} und F_4AdCl_{12} wurden bereits früher beschrieben [12]. Es waren noch keine Simethylierten C-halogenierten Derivate bekannt.

Die Untersuchung ergab, daß auch bei Änderung der Konzentrationsverhältnisse ($CCl_4:me_4Ad:$ Cl_2), der Bestrahlungsdauer und der Bestrahlungsintensität (100 W, 200 W, Hg-Hochdrucklampe, Quarzreaktionsgefäße; NMR-spektroskopische Verfolgung des Reaktionsablaufes) schon zu Beginn der Reaktion neben der Chlorierung der Methylengruppe auch eine Chlorierung der Methylgruppe einsetzt. Günstigere Verhältnisse ergeben sich bei der Photobromierung. Um die Möglichkeit der Bildung teilbromierter Si-Adamantane abzuschätzen, wurden 0,25 molare Lösungen von me₄Ad 1 in CCl₄ mit wechselnden Mengen Brom versetzt (im molaren Verhältnis me₄Ad:Br₂ = 1:1, 1:2, 1:4 und 1:8); die Mischungen mit einer Hg-Hochdrucklampe bestrahlt und nach Zeitabständen NMRspektroskopisch untersucht. Das entstehende HBr-Gas wurde durch Aufrechthalten eines geringen Unterdruckes teilweise aus der Lösung entfernt.

Tabelle 4 Photobromierung des $me_4Ad 1$ in CCl₄ bei unterschiedlichem Verhältnis $me_4Ad : Br_2$ [Verhältnis bei Reaktion I (1:1), II (1:2), III (1:4), IV (1:8)]. Es werden die gebildeten Verbindungen und ihr prozentualer Anteil am Reaktionsprodukt angegeben (ermittelt aus den NMR-Spektren der Reaktionsgemische). $me_4Ad 1$, $me_4AdBr_2 21$, $me_8BrAd 9$

Reaktionszeit	Verbindungen im	% Anteil de	% Anteil der Verbindungen am Reaktionsgemisch			
	Reaktionsgemisch	I	II	III	IV	
12 h	1	95	90		78	
	21	5	10	7	6	
	9		-	5	16	
36 h	1	93	87	82	66	
	21	7	13	10	7	
	9		-	8	27	
60 h	1	85a)	70a)	72	_b)	
	21	15	30	15	10	
	9	_	_	13	50	
84 h	1	83	66	69	b)	
	21	17	34	17		
	9	_	_	14		

a) erneute Br₂-Zugabe; b) Bildung weiterer höherbromierter Verbindungen.

Die Ergebnisse sind in Tab. 4 zusammengestellt. Aus dem PMR-Spektrum der Umsetzungsprodukte der Reaktionen I–IV (aufgenommen nach 12, 36, 60, 84 Std.) lassen sich die prozentualen Anteile der hauptsächlich gebildeten Verbindungen angeben. Bei den Umsetzungen I und II entsteht im wesentlichen me₄AdBr₂ 21. Mit der Erhöhung der Bromkonzentration bei II verdoppelt sich in etwa die Bildung von 21. Die Bestrahlungsdauer hat einen geringen Einfluß auf die Ausbeute, da erst nach erneuter Bromzugabe (36 Std.) die Anteile von 21 wieder steigen. Unter den Bedingungen der Reaktion III entstehen zu vergleichbaren Anteilen die Verbindungen me₄AdBr 21 und me₃BrAd 9. Da keine weitere Bromzugabe erfolgte, nehmen die Ausbeuten gleichmäßig, aber im Vergleich zu II langsam zu. Im Anfangsstadium der Umsetzung IV bildet sich 9 als Hauptprodukt, bevor eine Vielzahl weiterer höherbromierter Verbindungen das Reaktionsgeschehen unübersichtlich werden läßt.

Die Bildung von 9 erfolgt über eine Si-C-Spaltung. Die Intensität des Signals des entstehenden CH₃Br bei 155 Hz nimmt mit der Konzentration des me₃BrAd 9 zu. Arbeitet man in 0,5 bis 1 molaren Lösungen (me₄Ad/CCl₄), so läßt sich die Si-C-Spaltung noch selektiver gestalten.

Diese Umsetzungen z.B. Reaktion II lassen sich gut auf Grund der charakteristischen Farbe kleiner Bromkonzentrationen kontrollieren. Wenn das eingesetzte me₄Ad 1 zu etwa 50% umgesetzt ist, wird die Bestrahlung abgebrochen, da sonst anschließend höherbromierte Produkte entstehen, Nach Abziehen des Lösungsmittels erhält man durch Sublimation bei 30°C/0,1 Torr das nichtungesetzte me₄Ad 1 zurück, und bei 60°C/0,1 Torr scheidet sich bei der weiteren Sublimation das me₄AdBr₂ 21 als weiße kristalline Verbindung ab; Smp. 114°C.

Abb. 1 Das 1, 3, 5, 7-Tetramethyl-2-dibrom-1, 3, 5, 7-tetrasilaadamantan me₄AdBr 21

Abb. 2 ¹H-NMR-Spektrum des me₄AdBr₂ 21

Im Si-CH₃-Bereich des ¹H-NMR-Spektrums von 21 sind bei $\tau = 9.9$ ppm und $\tau = 9.57$ ppm zwei Singuletts (1:1) zu erkennen, wobei das Signal bei tieferem Feld den zur CBr₂-Gruppe benachbarten Methylprotonen 1 und 3, das bei höherem Feld den in Stellungen 5 und 7 zugeordnet werden muß (Abb. 1 und 2). Die Methylenprotonen 4, 8, 9, 10 ergeben ein AB-Spektrum, bedingt durch ihre entweder axiale oder äquatoriale Lage zur CBr₂-Gruppe ($\tau_{\rm A} = 10.39$ ppm, $\tau_{\rm B} =$ 9,72 ppm, $J_{\rm AB} = 13.4$ Hz). Die Resonanz der Methylenprotonen 6 überlagert das Signal bei $\tau = 10.32$ ppm, was der Integration entnommen werden kann. Mögliche Fernkopplungen zwischen Protonen unterschiedlicher chemischer Umgebung über vier Bindungen in einer Ebene (W- oder M-Anordnung) erklären die Verbreiterung der Signale des Methylengruppenbereiches [13].

$$\mathbf{H}_{6\mathrm{I}} - \mathbf{H}_{8\mathrm{a}}, \ \mathbf{H}_{6\mathrm{I}} - \mathbf{H}_{9\mathrm{a}}, \ \mathbf{H}_{6\mathrm{II}} - \mathbf{H}_{4\mathrm{a}}, \ \mathbf{H}_{6\mathrm{II}} - \mathbf{H}_{10\mathrm{a}}$$
(Abb. 1)

Mit Hilfe der hochauflösenden Massenspektrometrie lassen sich die Molekülmassen der häufigsten Bruchstückionen von 21 exakt vermessen (Tab. 2). Die intensivste Abbaumasse ist M^+ -CH₃ zuzuordnen.

III. Umsetzung von Br₄Ad 3 mit LiCH₂-Sime₃

Umsetzungen von Cl₄Ad 2 mit LiR führen auf Grund der zu geringen Reaktionsfähigkeit des ClSi-Brückenkopfes nicht zu R₄Ad. Es war zu erwarten, daß sich die SiBr-Gruppe besser substituieren läßt. Deshalb wurde die Umsetzung von Br₄Ad **3** mit verschiedenen C-lithinierten Carbosilanen unter unterschiedlichen Bedingungen durchgeführt.

Zur Darstellung von (me₃Si-CH₂)₄Ad 5

Reaktive Carbanionen werden durch Zugabe von TMEDA zu Li-organischen Verbindungen erhalten und es wurde bereits die erhöhte Reaktionsfähigkeit des me₃BrAd 9 bei der Umsetzung mit Lime/TMEDA beobachtet [11]. Eine Steigerung des Carbanioncharakters hat aber gleichzeitig eine Zunahme der Nebenreaktionen durch Ätherspaltung zur Folge. In Tab. 5 sind die Versuchsergebnisse

Nr.	Ausgangsverbindungen		Reaktions	bedingungen	
	Br ₄ Ad:LiCH ₂ Sime ₃ (Mol) (Mol)	Lösungsmittelgemisch TMEDA:Et2O:Pentan (Mol):(1):(1)	Temp. °C	Reaktions- zeit in Tagen	Ausbeute an (me ₃ SiCH ₂) ₄ Ad 5 %
I	1:6	5:10:-	25	4	6
п	1:6	5:-:10	25	6	17
ш	1:6	-:-:10	Rückfluß	8	

Tabelle 5 Umsetzung von Br₄As 3 mit LiCH₂-Sime₃

wiedergegeben. Der Ablauf der Umsetzung wurde NMR-spektroskopisch bis zum Verschwinden der LiCH₂-Signale verfolgt. Nach der hydrolytischen Aufarbeitung hatte sich ein hochviskoser rotbrauner Rückstand gebildet, der bei Unterdruck bei langsamer Temperaturerhöhung kondensiert. Dabei bildeten sich ölige Tropfen am Kühlfinger, die jeweils spektroskopisch untersucht wurden. Da die NMR-Spektren auf Grund ihres Linienreichtums zu unübersichtlich waren, stützte sich die Zuordnung zunächst auf die massenspektrometrische Untersuchung. Bis 80°C/0,1 Torr sublimieren Verbindungsgemische mit drei bis vier Si-Atomen. Zwischen 80 und 100°C/0,1 Torr treten Verbindungen im erwarteten Massenbereich auf. Diese können mit Hilfe der präparativen Dünnschichtehromatographie weiter aufgetrennt werden und aus ihnen läßt sich (me₃SiCH₂)₄Ad 5 isolieren. Ab 100°C/ 0,1 Torr erscheinen teilsubstituierte Produkte und bei 130°C/0,1 Torr findet man Spuren des Br4Ad 3. Angaben über die prozentuale Verteilung lassen sich nur von der isolierten Verbindung (me₃Si-CH₂)₄Ad 5 machen. Bei Reaktion I (Tab. 5) können 6%, bei II 17% von Verbindung 5 isoliert werden und bei III sind nur noch Spuren massenspektrometrisch nachzuweisen. Das NMR-Spektrum von 5 (Tab. 1) zeigt drei Signale im Verhältnis 36:8:12 im erwarteten Bereich; Daten der massenspektrometrischen Untersuchung Tab. 2. Aus den Ergebnissen geht hervor, daß in polaren protischen Lösungsmitteln und TMEDA die Umsetzung nur zu geringen Anteilen (\sim 7%) in der gewünschten Richtung läuft. Ätherspaltung und Ummetallierungsreaktionen (dazu Abs. IV) machen das Reaktionsgeschehen unübersichtlich. Unter unpolaren aprotischen Bedingungen und TMEDA erreicht man eine Steigerung der Ausbeute von Verbindung 5 auf 17%. In reinen unpolaren aprotischen Lösungsmitteln ist die Polarisierung der LiC-Bindung zu gering, um die nucleophile Substitutionsreaktion am Si-Brückenkopfatom zu erreichen. Entsprechend wurden durch Umsetzung von Br₄Ad 3 mit LiCH₂-Sime₂C₆H₅ bzw. LiCH₂-Sime₂-CH₂-Sime₃ die Verbindungen [(C₆H₅)me₂Si-CH₂)]₁Ad 6 und (me₃Si-CH₂-Sime₂-CH₂)₄Ad 7 erhalten.

IV. Umsetzung von me₃ClAd 8, me₃BrAd 9 und me₃JAd 10 mit LiCH₂—Sime₂R ($R = CH_3$, C₆H₅, CH₂Sime₃)

Zur Aufklärung der Si-Substitution und der erwarteten Ummetallierungsreaktion am Gerüst-C-Atom wurden zunächst die Umsetzungen der Verbindungen 8, 9, 10 mit LiCH₂ Sime₃ untersucht.

1. Umsetzung von me₃XAd 8, 9, 10 mit LiCH₂-Sime₃

Alle Umsetzungen (Tab. 6) wurden unter gleichen Bedingungen in unpolaren Lösungsmitteln durchgeführt und dabei folgende Verhältnisse gewählt:

${ m me}_{3}{ m XAd}$	${ m LiCH_2-Sime_3}$	TMEDA	\mathbf{Pentan}
1 Mol	1,5 Mol	1,2 Mol	3,51

 $(X \Rightarrow Cl, Br, J)$

Der Reaktionsablauf wurde jeweils NMR-spektroskopisch bis zum Verschwinden der Signale der Ausgangsverbindungen 8, 9, 10 verfolgt.

Tabelle 6 Ergebnis der Umsetzung der Verbindungen me₃XAd 8, 9, 10 mit LiCH₂-Sime₃ und anschließender Reaktion mit CISime₃

Ausgangsverbindung	Reaktionsprodukte me₃(me₃Si—CH₂)Ad 12	me ₃ XAd(Sime ₃)	me _{\$} (me _{\$} Si-CH _{\$})Ad(Sime _{\$}) 20
I: me _s ClAd 8	6%a) (12)b)	90% (82)	4% (6)
II: me _s BrAd 9	30%	60%	10%
III: me _s JAd 10	90% (94)	-	10% (6)

a) % Angaben geschätzt aus der massenspektrometrischen Untersuchung der Gemische.

b) () nach der gaschromatographischen Auftrennung ermittelte %Anteile.

Die Spektren der Umsetzungsprodukte von me₃ClAd 8 und me₃BrAd 9 (Reaktionen I und II, Tab. 6) zeigen im Bereich der Gerüst-Methylengruppen breite Banden und bei $\tau = 11,3$ ppm und $\tau = 11,1$ ppm jeweils ein weiteres Signal. Signale solcher Breite und ähnlicher chemischer Verschiebung sind bei der Reaktion von me₃JAd 10 (Reaktion III, Tab. 6) nicht zu beobachten. Die Signaländerungen bei Reaktion I und II sind durch eine Umlithinierung an den Methylengruppen zu erklären, wodurch ihre paarweise Äquivalenz aufgehoben und ihre Resonanzen aufgespalten werden (W-Kopplungen) [13]. Die CHLi-Protonen sind den Signalen bei Hochfeld ($\tau = 11, 1-11, 3$ ppm) zuzuordnen.

Abb. 3 Das 1-Halogen-2-lithium-3, 5, 7-trimethyl-1, 3, 5, 7-tetrasilaadamantan me₃XAdLi 16

Eine Ummetallierung ist bei den Verbindungen 8 und 9 an verschiedenen Positionen denkbar: in Nachbarschaft zur Si-X-Gruppe (2, 8, 9) oder soweit wie möglich von dieser entfernt (4, 6, 10) Abb. 3. Vergleicht man in den nicht lithinierten Verbindungen den Einfluß von Chlor und Brom auf die chemische Verschiebung der CH_2 -Protonen in nächster oder übernächster Stellung mit den Werten der Verbindungen me₄Ad 1 und me₄AdLi 24 (Abschn. VI, 1), so können

Verbindung	$\rm XSi-CH_2-Sime_3$	$Si-CH_3$	$\rm meSi-CH_2-Sime$	CHLi
me ₃ ClAd 8	9,75	9,84	10,22	
me ₃ BrAd 9	9,62	9,84	10,19	_
me JAd 10	9,45	9,84	10,15	
me.Ad 1		9,91	10,28	
me.AdLi 24	_	9,94	10,28	11,87
		9,98	10,36	

Tabelle 7 Vergleich der r-Werte der Protonen in den Verbindungen 8, 9, 10, 1, 24

die Signale bei $\tau = 11,3$ ppm und $\tau = 11,1$ ppm nur den CHLi-Wasserstoffatomen in Nachbarschaft zur Si-X-Gruppe zugeschrieben werden (Tab. 7). Die Halogenatome begünstigen also die Umlithinierung in den Positionen 2, 8 oder 9. Ummetallierungsprozesse an CH₂-Gruppen werden begünstigt, wenn die C-H-Bindung stärker polarisiert wird. Mit fallender Stärke der Si-X-Bindung und abnehmender Elektronegativität der Halogene beim Übergang vom Chlor zum Jod wird die Substitutionsreaktion am Si-Brückenkopfatom bevorzugt. Um die lithinierten 1, 3, 5, 7-Tetrasilaadamantane abzufangen, erfolgte die Umsetzung mit ClSime₃. Nach Abziehen des Lösungsmittels wurde das Gemisch der durch Sublimation (Unterdruck) abgetrennten Verbindungen massenspektrometrisch untersucht und die prozentuale Zusammensetzung ermittelt (Tab. 6). Bei der gaschromatographischen Trennung (220 °C) zersetzen sich die brom- und jodhaltigen Derivate, so daß ihr Anteil auf diesem Wege nicht zu ermitteln ist. Die Reaktionsprodukte der Umsetzungen I und III (Tab. 6) können gaschromatographisch aufgetrennt und die Verbindungen 12 u. 17 jeweils rein isoliert werden.

Die Bildung der Verbindungen 12, 17, 19 und 20 kennzeichnet die ablaufenden Reaktionen (Gl. 2). Verbindung $me_3(me_3Si - CH_2)Ad$ 12 wird durch Substitution am \equiv Si-Brückenkopf gebildet. Die Verbindungen $me_3XAd(Sime_3)$ 17 und 19 (X \equiv Cl, Br) entstehen durch Lithinierung der CH₂-Gruppe des Gerüstes (Nachbarstellung zur SiX-Gruppe) und anschließende Silylierung. All diese Reaktionen müssen ablaufen, um zur Verbindung $me_3(me_3Si - CH_2)Ad(Sime_3)$ 20 zu kommen.

$$2 \operatorname{me}_{3} XAd + 2 \operatorname{LiCH}_{2} - \operatorname{Sime}_{3} \xrightarrow{\qquad} \operatorname{me}_{3} (\operatorname{me}_{3} Si - CH_{2})Ad + \operatorname{LiX}$$

$$12$$

$$12$$

$$\rightarrow \operatorname{me}_{3} XAdLi + \operatorname{Sime}_{4}$$

$$\downarrow + \operatorname{ClSime}_{8}$$

$$\operatorname{me}_{3} XAd(\operatorname{Sime}_{3}) + \operatorname{-LiCl}.$$

$$17, 19$$

$$(2)$$

Verbindung 12 ist aus der Pyrolyse des Si(CH₃)₄ bereits bekannt [3]. Verbindung me₃ClAd(Sime₃) 17 erhält man durch Sublimation und Kristallisation aus den Produkten der Umsetzung I, Tab. 6. 17 ist weiß kristallin, Smp. 75 °C; NMR- und massenspektrometrische Untersuchung (Tab. 1 u. 2). In Verbindung 17 ist das C-Atom 2 im Gerüst asymmetrisch. Da die Ummetallierungsreaktion nicht stereospezifisch verläuft, muß nach der Umsetzung mit ClSime₃ ein Enantiomerengemisch vorliegen. Durch das Asymetriezentrum kann die magnetische Äquivalenz benachbarter Protonen oder Protonengruppen aufgehoben werden. Zusätzliche AB-Aufspaltung und W-Kopplungen [13] machen daher den Methylengruppenbereich des NMR-Spektrums unüberschaubar, so daß für die chemische Verschiebung dieser H-Atome nur größere Bereiche angegeben werden können. Das me₃BrAd(Sime₃) 19 und das Isomerengemisch der zweifach silylierten Derivate werden massenspektrometrisch nachgewiesen (Tab. 2). NMR-spektroskopisch rein sind diese Verbindungen bisher nicht zu erhalten.

Durch die Umsetzung von me₃ClAd 8 und me₃BrAd 9 mit LiCH₂—Sime₃ und anschließende Reaktion mit ClSime₃ werden also Gerüst-C-silylierte Derivate mit Ausbeuten zwischen 50 und 80% zugänglich. Dagegen ermöglicht die Umsetzung von me₃JAd mit Li-Organylen die Synthese brückenkopf-substituierter Derivate.

Die Ergebnisse machen auch verständlich, warum die Umsetzung von Cl_4Ad 2 bzw. Br₄Ad 3 (Abschn. III) nicht oder nur in einem geringen Umfang zu Sisubstituierten 1,3,5,7-Tetrasilaadamantanen führt. Die Reaktion wird durch die C-Metallierung und die sich daraus ergebenden Folgereaktionen bestimmt.

2. Umsetzung von me₃JAd 10 mit LiCH₂-Sime₂(C₆H₅)

Nach Tab. 6 ist am me₃JAd 10 eine selektive Substitution am Si-Brückenkopfatom durchführbar. Die Umsetzung von 10 mit $\text{LiCH}_2-\text{Sime}_2(\text{C}_6\text{H}_5)$ führt nach Gl. (3) zu Verbindung 13 (Ausbeute 93%).

$$me_{3}JAd + LiCH_{2} - Sime_{2}(C_{6}H_{5}) \xrightarrow{TMEDA} me_{3}[(C_{6}H_{5})me_{2}Si - CH_{2}]Ad + LiJ.$$
(3)
13

13 läßt sich gaschromatographisch abtrennen (viskose Flüssigkeit). Die NMR-Daten von 13 sind in Tab. 1 zusammengestellt; die der massenspektrometrischen Untersuchung in Tab. 2.

Die Phenylgruppe in 13 ermöglicht einen weiteren Aufbau an dem Si-Atom der Kette. Durch Spaltung mit HBr nach Gl. (4) entsteht Verbindung 14

$$me_{3}[(C_{6}H_{5})me_{2}Si-CH_{2}]Ad + HBr \rightarrow me_{3}(Brme_{2}Si-CH_{2})Ad + C_{6}H_{6}.$$
(4)
14

Die Umsetzung wird in Cyclohexan bei -78 °C durchgeführt und ist NMRspektroskopisch kontrollierbar; ¹H-NMR-Spektrum von 14 Tab. 1. Verbindung 14 läßt sich mit LiCH₂-Sime₃ unter Verlängerung der Seitenkette nach Gl. (5) weiter umsetzen.

$$me_{3}(Brme_{2}Si-CH_{2})Ad + LiCH_{2}-Sime_{3} \xrightarrow{Pentan} me_{3}(me_{3}Si-CH_{2}-Sime_{2}-CH_{2})Ad$$

$$15 + LiBr$$

$$(5)$$

Nach hydrolytischer Aufarbeitung ist 15 gaschromatographisch in einer Ausbeute >90% abzutrennen. (NMR-Daten von 15 in Tab. 1, massenspektrometrische Daten in Tab. 2).

Verbindung 15 läßt sich auch direkt durch Umsetzung von me₃JAd 10 mit $\text{LiCH}_2 - \text{Sime}_2 - \text{CH}_2 - \text{Sime}_3$ nach Gl. (6) darstellen.

$$me_{3}JAd + LiCH_{2} - Sime_{2} - CH_{2} - Sime_{3} \xrightarrow{TMEDA}{Pentan} \rightarrow me_{3}(me_{3}Si - CH_{2} - Sime_{2} - CH_{2})Ad + LiJ.$$
(6)
15

Auch auf diesem Wege wird 15 in Ausbeuten >90% zugänglich.

V. C-Lithinierung des me₃ClAd 8 durch Umsetzung mit n-buLi (bu = Butyl)

Die Umsetzung von me₃ClAd 8 mit n-buLi gibt weitere Informationen über Ummetallierungsprozesse und ihre Selektivität bei den chlorierten Si-Adamantanen. Die Umsetzung verläuft nach Gl. (7)

$$me_{3}ClAd + n-buLi \xrightarrow{Pentan/TMEDA} \rightarrow me_{3}ClAdLi + n-buLi$$

$$16 \downarrow +ClSim_{3} \qquad (7)$$

$$me_{3}ClAd(Sime_{3}) + LiCl$$

$$17$$

Die Metallierung erfolgt ausschließlich an der zur \equiv SiCl-Gruppe benachbarten CH2-Gruppe des Gerüstes. Die NMR-Spektren der Reaktionsmischungen geben zu erkennen, daß n-buLi nicht im Überschuß zugesetzt werden darf, da sonst höherlithinierte Derivate gebildet werden. Bei äquimolarem Verhältnis von me_a ClAd 8:n-buLi:TMEDA ist das fast reine me₃ClAdLi 16 NMR-spektroskopisch nachzuweisen (Tab. 1). Auch dieses Molekül hat ein Asymmetriezentrum. Es ist deshalb sinnvoll, nur Bandengruppen (keine Einzelsignale) zuzuordnen, da nicht aufgelöste AB-Aufspaltungen und W-Kopplungen auftreten. Der Reaktionsverlauf ist NMR-spektroskopisch bis zum Verschwinden der Signale des me_aClAd 8 zu verfolgen. Bei längerer Reaktionszeit nehmen die charakteristischen CHLi-Resonanzen in ihrer Intensität wieder ab und weitere Banden im CH_2Li -Bereich treten auf. Nach der Umsetzung von me₃ClAdLi 16 mit ClSime₃ oder ClSime₂(C_6H_5) und dem hydrolytischen Aufarbeiten werden die Verbindungen me₃ClAd(Sime₃) 17 bzw. me₃ClAd[Sime₂(C₆H₅)] 18 durch Sublimation und Kristallisation in Ausbeuten um 80% isoliert. Die NMR- und massenspektrometrischen Untersuchungen (Tab. 1, 2) bestätigen 17 und 18. In Verbindung 18 ist die Aufhebung der Äquivalenz bestimmter Protonengruppen bei Anwesenheit eines Asymetriezentrums gut zu beobachten. Sowohl die Methylgruppen an den beiden vom Substitutionszentrum entfernten Si-Atomen des Adamantangerüstes als auch die des (CH_a)₂SiC₆H₅-Restes zeigen in CCl₄ jeweils zwei Signale. In benzolischer Lösung ist dieses Phänomen nur noch in geringem Maße bei den Methylgruppen des Silylrestes zu beobachten. Ähnliche Aufspaltungen sind bei dem analogen brückenkopf-substituierten Derivat nicht zu sehen.

Über Umlithinierungsreaktionen zwischen me₃ClAd 8 und n-buLi werden 1, 3, 5, 7-Tetrasilaadamantane mit der Seitenkette am Gerüst-C-Atom in Nachbarschaft zur SiCl-Gruppe zugänglich. Die SiCl-Gruppe beeinflußt die Substitution und an ihr sind z.B. über die Hydrierung weitere Reaktionen möglich.

VI. Bildung C-lithinierter Derivate des me₄Ad 1 und ihre Umsetzung mit Halogensilanen 1. Umsetzung von me₄Ad 1 mit LiCH₂—Sime₃ und ClSime₃

Bei der Umsetzung von me₃ClAd 8 mit LiCH₂-Sime₃ hat sich gezeigt, daß am Gerüst-C-Atom in Nachbarstellung zum SiCl-Brückenkopfatom eine Lithinierung einsetzt, aufgrund der sich bei der anschließenden Reaktion mit ClSime₃ das me₃ClAdSime₃ 17 (\sim 80%) bildet. Die Übertragung dieser Reaktionen auf das me₄Ad zeigt Gl. (8).

$$me_{4}Ad + LiCH_{2} - Sime_{3} \xrightarrow{TMEDA}_{Pentan} \xrightarrow{\rightarrow} me_{4}AdLi + me_{4}Si \qquad (8)$$

$$\downarrow +2 ClSime_{3}$$

$$me_{4}Ad(Sime_{3}) + me_{3}(me_{3}Si - CH_{2})Ad$$

$$2 \qquad 12$$

Das Reaktionsgemisch enthält Verbindung 25 (58%), Verbindung 12 (10%) und die nicht umgesetzte Ausgangsverbindung me₄Ad 1 (32%). Verbindung 25 ist weiß kristallin, Smp. 31°C. Danach ist die Lithinierung der Gerüst-C-Atome eindeutig gegenüber der von \equiv SiCH₃-Gruppen begünstigt. Da der elektronegative Substituent am Si-Brückenkopfatom fehlt, verläuft die Umsetzung langsamer und weniger selektiv als am me₃ClAd 8. Die Daten der NMR- und massenspektrometrischen Untersuchung von 25 sind in Tab. 1 u. 2 angegeben.

2. Umsetzung von me₄Ad 1 mit n- bzw. t-buLi und ClSime₃

Die Umsetzung von 1 mit stärkeren Lithinierungsmitteln (n- und t-buLi) begünstigt die C-Lithinierung von 1. Die günstigsten Ergebnisse werden erzielt, wenn folgende Verhältnisse eingehalten werden: $me_4Ad(Mol):buLi$ (Mol): TMEDA (Mol):Hexan(1) = 1:1,5:1,2:3,5; Reaktionstemperatur 40°C, Reaktionszeit 4 Std. Die Umsetzung läßt sich NMR-spektroskopisch verfolgen. Nach Reaktion der Lithinierungsprodukte mit ClSime₃ und der gaschromatographischen Auftrennung ergeben sich die in Tab. 8 zusammengestellten Ergebnisse. Die Lithinierung des Gerüst-C-Atoms erfolgt mit n-buLi zu 94%. Die Dilithinierung, die an den Verbindungen $me_4Ad(Sime_3)_2$ (Gemische) sichtbar wird, hat eine sehr untergeordnete Bedeutung.

 $Tabelle 8 \quad Zusammensetzung \ der \ Reaktionsprodukte \ aus \ der \ Umsetzung \ von \ me_4 Ad \ l \ mit \ n-bzw. \ t-buLi \ und \ anschließender \ Reaktion \ mit \ ClSime_8 \ nach \ der \ gaschromatographischen \ Auftrennung \ (bu = Butyl)$

	me₄Ad	me ₃ (me ₃ SiCH ₂)Ad	me₄Ad(Sime₃)	me4Ad(Sime3)2
I. t-buLi	1%	28%	58%	13%
II. n-buLi	3%	2%	94%	1%

Diese bevorzugte C-Lithinierung läßt sich zum Aufbau von Si-C-Adamantanen mit Gruppen am Gerüst-C-Atom ausnutzen. Ein Beispiel zeigt Gl. (9)

$$me_{4}AdLi + ClSime_{2}(C_{6}H_{5}) \rightarrow mc_{4}Ad[Sime_{2}(C_{6}H_{5})] + LiCl$$
(9)

26

nach dem 26 zu 95% gebildet wird und $me_3[me_2(C_6H_5)SiCH_2]Ad$ 13 nur zu 3% entsteht. 26 ist weiß kristallin, Smp. 82°C. NMR-Daten und massenspektrometrische Daten Tab. 1 u. 2.

Von Verbindung 26 aus ist nach Abspaltung der Si-Phenylgruppe nach Gl. (10) und anschließende Umsetzung mit $\text{LiCH}_2-\text{Sime}_3$ Gl. (11) eine Verlängerung der Kette möglich.

$$me_{4}Ad[Sime_{2}(C_{6}H_{5})] + HBr \rightarrow me_{4}Ad(Sime_{2}Br) + C_{6}H_{6}$$
(10)
27

 $m_{4}Ad(Sime_{2}Br) + LiCH_{2} - Sime_{3} \rightarrow me_{4}Ad(Sime_{2} - CH_{2} - Sime_{3}).$ (11) 28

Die Umsetzung nach Gl. (11) bei -30 °C in Pentan liefert Verbindung 28 mit einer Ausbeute von 90%. 28 ist weiß kristallin, Smp. 41°C. Analytische Daten Tab. 1 u. 2. Verbindung 28 wird auch bei Umsetzung von me₄AdLi mit ClSime₂ – CH₂ – Sime₃ mit einer Ausbeute von 93% gebildet.

VII. Die Bildung höhersilylierter Derivate des me₄Ad 1

1. Umsetzung von me₄Ad(Sime₃) 25 mit n-buLi und ClSime₃

Durch Umsetzung von $me_4Ad(Sime_3)$ 25 mit n-buLi und me_3SiCl werden zweifach silylierte Derivate nach Gl. (12) zugänglich.

$$me_4Ad(Sime_3) + n-buLi \rightarrow me_4Ad(Sime_3)Li + n-buH$$
 (12)

 \downarrow +ClSime₃ me₄Ad(Sime₃)₂ + LiCl. 29

Abb. 4 Bezeichnung der möglichen Positionen zweier Sime₃-Gruppen an den Gerüst-C-Atomen des 1, 3, 5, 7-Tetrasilaadamantans

Abb. 5 Beispiel eines 1,3,5,7-Tetrasilaadamantans mit zwei Sime₃-Gruppen an den Gerüst-C-Atomen 2a-4b. Weitere Möglichkeiten: 2a-4a; 2a-9a; 2a-9b

Eine Modellbetrachtung (Abb. 4) zeigt, daß zwei Substituenten am Gerüst des 1,3,5,7-Tetrasilaadamantans acht Stellungen zueinander einnehmen können, wobei u.a. Enantiomerenpaare entstehen. Diese werden durch Substitution entweder oberhalb oder unterhalb der Spiegelebene gebildet, die durch die Atome 2, 5, 7 aufgespannt ist: (2a, 4a-2a, 9a), (2a, 10a-2a, 8a), (2a, 6a-2a, 6b). Die Umsetzung wurde NMR-spektroskopisch verfolgt. Man erkennt die charakteristische Verschiebung aller Protonensignale zu Hochfeld, die bei der Einführung eines Li-Atoms erwartet wird. Der Bereich der CHLi-Resonanzen ist stark verbreitert, was die Bildung eines Gemisches von lithinierten Isomeren anzeigt. Nach der anschließenden Reaktion mit ClSime₃ erhält man bei der gaschromatographischen Auftrennung im Molgewichtsbereich um 400 [me4Ad(Sime3)2 29] zwei sich teilweise überdeckende Fraktionen von 50 bzw. 33% des Reaktionsgemisches. Dieses enthält noch 17% der Ausgangsverbindung me₄Ad(Sime₃) 25, Verbindungen, die aus einer zweifachen Lithinierung des me₄Ad(Sime₃) 25 stammen, werden nicht beobachtet. Am Modell (Abb. 5) ist der starke sterische Einfluß der Sime₃-Gruppe auf die Methylenprotonen 8 und 10 zu erkennen. Schließt man eine Reaktion an diesen Positionen aus, so ist eine Substitution an den Atomen 6, 4 oder 9 zu erwarten. Bei dem Isomerenpaar (2a, 6a-2a, 6b) sind die Silylreste soweit wie möglich voneinander entfernt (6-Bindungen), wodurch das Molekül eine längliche Form erhält. Bei einer Substitution an den Atomen 4 oder 9 liegen dagegen zwischen den Resten nur vier Bindungen. Diese vier Isomeren haben eine kugelförmige Gestalt, was sich auf die physikalischen Eigenschaften auswirken wird. Berücksichtigt man das statistische Verhältnis von 4:2, sollte die Fraktion von 50% den Verbindungen (2a, 4a-2a, 4b), (2a, 9a-2a, 9b) und die von 33% den Substanzen (2a, 6a-2a, 6b) entsprechen. Die Massenspektren beider Fraktionen sind gleich. Eine Zuordnung ist anhand der NMR-Spektren möglich. Dazu eignen sich die Signale der Methylprotonen an den Brückenkopfatomen. Wie schon beim me₄Ad(Sime₃) 25 festgestellt wurde, wird durch den sterischen Einfluß der $-Si(CH_3)_3$ Gruppe das Signal der benachbarten $\equiv Si-CH_3$ Gruppe um $\Delta \tau =$ 0,05 ppm zu Tieffeld verschoben. Durch die Einführung einer zweiten me₃Si-Gruppe sollte man je nach Lage der Substituenten unterschiedliche Verschiebungen der Methylprotonen 1, 3, 5, 7 erwarten, je nachdem, ob sie dem sterischen Einfluß einer oder zweier -Sime_s-Gruppen unterliegen. Das NMR-Spektrum der Fraktion 50% zeigt in diesem Bereich drei Signale mit einem Verhältnis von 1:2:1, wobei das mittlere Dublettcharakter erkennen läßt. Das Signal bei $\tau =$ 9,63 ppm entspricht einer zweifach abgeschirmten Methylgruppe (3) (Abb. 5), das schwach aufgespaltete bei $\tau = 9.71$ ppm zwei einfach abgeschirmten Gruppen (1 u. 5), während das bei $\tau = 9,78$ ppm (7) keinen Einfluß einer Sime₃-Gruppe zeigt. Es erscheint daher in ähnlicher Lage wie das Signal der Methylgruppen im me₄Ad 1. Diese Aufspaltung der Brückenkopfmethylprotonen ist nur bei den Isomeren (2, 4-2, 9) möglich.

Im Bereich der Methylenprotonen zwischen $\tau = 10,07$ ppm bis $\tau = 10,51$ ppm erkennt man die erwartete unsymmetrische Verteilung sich überlagernder AB-

Spektren und Einzelbanden verschiedener Intensitäten. Die Breite der Signale verdeutlicht die im Gerüst möglichen W-Kopplungen. Daß es sich bei dieser Fraktion um ein Gemisch handelt, erkennt man am Aussehen der Banden der tertiären Wasserstoffatome. Diese stehen entweder axial-axial oder axial-äquatorial zu einem Sechsring des Adamantangerüstes; bei $\tau = 10,82$ ppm und $\tau = 10,84$ ppm sieht man deshalb zwei Banden unterschiedlicher Intensität. Das Signal bei $\tau = 9,84$ ppm entspricht in seiner chemischen Verschiebung und seiner Intensität den beiden Sime₃-Gruppen.

Die Fraktion von 33% läßt sich selbst nach mehrmaliger gaschromatographischer Trennung nicht völlig rein erhalten. Aus Änderungen der NMR-Spektren verschiedener Teilfraktionen sind die erwarteten Produkte zu erkennen. Im Bereich der Methylprotonen erscheinen zwei Signale mit einem relativen Intensitätsverhältnis 2:3. Die Signale bei $\tau = 9,72$ ppm entsprechen den Methylprotonen 1, 3, 5, 7, die bei einer Substitution an den C-Atomen 2 und 6 gleiche chemische Umgebung erhalten, wobei jede einzelne dem Einfluß nur einer me₃Si-Gruppe unterliegt (Abb. 6). Die Sime₃-Substituen-

Abb. 6 Beispiel eines 1,3,5,7-Tetrasilaadamantans mit zwei Sime₃-Gruppen an den Gerüst-C-Atomen 2a-6a. Weitere Möglichkeit: 2a-6b

ten ergeben das Signal bei $\tau = 9,84$ ppm. Der Methylengruppenbereich wird durch vier breite Banden charakterisiert (10,15 ppm, 10,23 ppm, 10,29 ppm, 10,37 ppm), die nicht zugeordnet werden können (AB-Aufspaltung, W-Kopplungen). Die tertiären Protonen sind chemisch äquivalent und ergeben ein breites Signal (W-Kopplungen) bei $\tau = 10,82$ ppm.

2. Umsetzung von me₄Ad(Sime₃)₂ 29 mit n-buLi und ClSime₃

Da ein Isomerengemisch des $me_4Ad(Sime_3)_2 29$ für die Reaktion zur Verfügung stand, konnte lediglich untersucht werden, ob eine weitere Lithinierung bzw. Silvlierung möglich ist. Diese erfolgt nach Gl. (13) u. (14)

$$me_4Ad(Sime_3)_2 + n-buLi \rightarrow me_4Ad(Sime_3)_2Li + n-buH$$
 (13)

$$me_4Ad(Sime_3)_2Li + ClSime_3 \rightarrow me_4Ad(Sime_3)_3 + LiCl.$$
 (14)

-30

Gaschromatographisch ließ sich das nicht umgesetzte me₄Ad(Sime₃)₂ 29 abtrennen (35%). Nach der massenspektrometrischen Untersuchung der Reaktionsprodukte wurde me₄Ad(Sime₃)₃ 30 gebildet. Im NMR-Spektrum des Gemisches sind zwischen $\tau = 9,63$ und $\tau = 9,65$ ppm die Signale von \equiv Si-CH₃ Protonen sichtbar, die durch zwei -Sime₃-Gruppen beeinflußt werden, zwischen $\tau =$ 9,72 und $\tau = 9,73$ ppm solche, die nur dem Einfluß eines Sime₃-Substituenten unterliegen. Bei $\tau = 9,78$ ppm erscheinen die Signale von \equiv Si-me Protonen, die denen im me₄Ad 1 entsprechen. Am Modell lassen sich alle diese Möglichkeiten der Abschirmung der Brückenkopfmethylgruppen beim Einführen von drei -Sime₃-Gruppen an C-Atomen des Gerüstes veranschaulichen. Die Sime₃-Protonen ergeben das Signal bei $\tau = 9,84$ ppm. Die CH₂-Protonen am Gerüst erkennt man an der Breite und Vielzahl der Banden unterschiedlicher Intensität zwischen $\tau = 10,12$ ppm und $\tau = 10,53$ ppm; die tertiären Protonen an ihrer charakteristischen chemischen Verschiebung zu Hochfeld bei $\tau = 10,83$ ppm.

Setzt man das Gemisch von $me_4Ad(Sime_3)_3$ 30 weiter mit n-buLi und ClSime₃ um, so entstehen zu 40% Verbindungen mit Molgewichten um 544 $(Si_8C_{22}H_{56})$. Einzelsubstanzen konnten nicht isoliert werden. Da die drei Silylreste den Zugang zu den Gerüst-Methylen-Protonen weitgehend unterbinden, dürfte das Produktgemisch hauptsächlich seitenkettensubstituierte Derivate enthalten.

VIII. Experimentelle Einzelheiten

Alle Reaktionen wurden unter Schutzgas (N_2) in ausgeheizten Glasapparaturen durchgeführt, die über einen Rückflußkühler und eine Kühlfalle mit einer Vakuumapparatur verbunden waren. Alle Lösungsmittel wurden mit LiAlH₄ oder P_2O_5 getrocknet und unter N_2 -Atmosphäre aufbewahrt.

1. Bromierung des H₄Ad 4 zu Br₄Ad 3. 4 g H₄Ad 4 (0,02 Mol) werden in 40 ml CCl₄ gelöst (100 ml Zweihalskolben, Rückflußkühler, Tropftrichter, Magnetrührer) und bei 20 °C innerhalb einer Stunde 14 g Br₂ (0,09 Mol) (gelöst in 20 ml CCl₄) zugetropft, wobei das entstehende HBr-Gas in einer Kühlfalle ausgefroren wird (fl. N₂). Anschließend wird noch 8 h gerührt und dann das überschüssige Brom mit dem Lösungsmittel abkondensiert. Der verbleibende Rückstand wird bei 130 °C/0,1 Torr sublimiert. Man erhält 9,8 g Br₄Ad 3, Ausbeute: 95%.

Verbindung		Schmelzpunkt (°C)		
3	Br ₄ Ad	$346 (\pm 1,5)$		
10	meaJAd	$133 \ (\pm 1,0)^{a}$		
17	me ₃ ClAd(Sime ₃)	$75 \ (\pm 1,5)^{\rm b})$		
18	$me_3ClAd[Sime_2(C_6H_5)]$	$103 (\pm 0.5^{b})$		
21	me_4AdBr_2	$114 (\pm 0.5)$		
25	$me_4Ad(Sime_3)$	31 (± 0.5)		
26	$me_4Ad[Sime_2(C_6H_5)]$	82 $(\pm 0,5)$		
28	$me_4Ad(Sime_2-CH_2-Sime_3)$	41 (±0,5)		

Tabelle 9 Schmelzpunkte

^a) Gelbfärbung und teilweise Zersetzung der Schmelze an der Luft;

^b) Enanziomerengemisch

Alle dargestellten brückenkopf-substituierten 1, 3, 5, 7-Tetrasilaadamantane mit Carbosilanseitenketten sind ölige Flüssigkeiten.

Die Schmelzpunkte wurden mit dem "Mikroskop Thermopan" (Kofler Mikroheiztisch) der Firma C. Reichert, Wien, bestimmt.

2. Jodierung des me₃HAd 11 zu me₃JAd 10. In einem 50 ml Zweihalskolben mit Rückflußkühler, Schüttbirne (für J₂) und Magnetrührer werden 2,42 g me₃HAd 11 (0,01 Mol) in 20 ml CCl₄ gelöst und bei 20 °C innerhalb von 8 h portionsweise 2,6 g Jod zugegeben. Das entstehende HJ-Gas kondensiert man in eine mit flüssigem N₂ gekühlte Falle, in die nach beendeter Reaktion alle in Ölpumpenvakuum flüchtigen Bestandteile destilliert werden. Der verbleibende Rückstand wird bei 60 °C/0,1 Torr sublimiert. Ausbeute 3,5 g me₃JAd 10 (96%). 3. Photobromierung des me₄Ad 1 zu me₄AdBr₂ 21. 2,56 g me₄Ad 1 (0,01 Mol) werden in 40 ml CCl₄ gelöst (100 ml Zweihalskolben mit Rückflußkühler, Tropftrichter und Magnetrührer), mit 3 g Brom versetzt und mit einer Hg-Hochdrucklampe (Original Hanau TQ 700) von außen bestrahlt. Das entstehende HBr-Gas wird in einer Kühlfalle mit flüssigem N₂ ausgefroren. Die Reaktionslösung wird in Abständen von 24 h ¹H-NMR-spektroskopisch untersucht. Dabei wird jeweils eine geringe Menge Br₂ (0,5 g) neu zugesetzt. Nach 14 Tagen wurde die Reaktion unterbrochen (etwa 50-60% Umsatz nach NMR-Spektren), alle flüchtigen Bestandteile in die Kühlfalle kondensiert und bei 30 °C/0,1 Torr me₄Ad 1 aus dem verbleibenden Rückstand absublimiert. Bei der weiteren Sublimation erhält man neben einer Zwischenfraktion bei 60°C/0,1 Torr 1,6 g me₄AdBr₂ 21 (39%).

4. Reaktionen zwischen $Br_4Ad 3$ und $LiCH_2$ —Sime₂R (R = CH₃, C_6H_5 , CH₂Sime₃). In einem 50 ml Zweihalskolben mit Rückflußkühler, Magnetrührer und "Quickfit" mit Silicongummimembran werden 0,516 g (1 mMol) $Br_4Ad 3$ vorgelegt. Zur genauen Dosierung werden alle flüssigen Reagenzien mit Spritzen nach Durchstechen des Silicongummiverschlusses zugetropft. Außerdem wird so das Einschleppen von Schliffett in die Reaktionslösungen vermieden. Die vorgelegte Ausgangsverbindung schlemmt man in 4 ml Lösungsmittel (Tab. 5) auf — nur teilweise löslich in Äther oder Pentan — versetzt mit 6 ml 1 m LiCH₂—Sime₂R-Lösung und gibt 0,6 ml TMEDA zu. Die Mischug wird 10 min gerührt, dann entnimmt man eine NMR-Probe und schmilzt das Röhrchen ab. Die Reaktionen können so spektroskopisch verfolgt werden. Es ist wichtig, vor jeder Messung alle festen Bestandteile in den Kopf des ¹H-NMR-Röhrchens zu zentrifugieren, den man zu diesem Zweck aus dickwandigem Glas anfertigen läßt.

Bei den Reaktionen I und II (Tab. 5) werden nach 5-7 Tagen nur noch Spuren der Lithiumverbindungen (CH₂Li-Resonanz) beobachtet, bei III nach 8 Tagen. Die Reaktionsmischungen werden dann jeweils unter N₂-Atmosphäre filtriert, die Rückstände mit Pentan oder Äther ausgewaschen und bei 130°C/0,1 Torr sublimiert, um unumgesetztes Br₄Ad **3** zu bestimmen. Bei I und II wird keine Ausgangssubstanz zurückgewonnen, bei III ungefähr 50%.

Die flüssigen Phasen hydrolysiert man mit verdünnter H_2SO_4 , trocknet mit geglühtem Na_2SO_4 und zicht alle flüchtigen Bestandteile im Ölpumpenvakuum ab. Das Abkondensieren erfolgt bereits in einer Sublimationsapparatur, in der man anschließend durch langsame Temperaturerhöhung die Rückstände kondensiert oder sublimiert. Dabei scheiden sich viskose Flüssigkeiten am Kühlfinger ab, welche jeweils abgenommen und spektroskopisch vermessen werden. Zur Reinigung der Fraktionen um $80 \,^{\circ}C/0.1$ Torr bringt man ungefähr 20 mg Substanz (gelöst in Pentan) auf eine mit einer 1 mm Schicht Kieselgel G nach Stahl (Merck 7731) belegten $20 \cdot 20$ cm Glasplatte auf. Als Laufmittel benutzt man ein Äther-Pentan-Gemisch (1:5). Zur Markierung bringt man eine analoge $5 \cdot 20$ cm Platte nach erfolgter Wanderung des Lösungsmittels in eine J_2 -Atmosphäre, wodurch verschiedene Zonen sichtbar werden. Die vergleichbaren Bereiche der großen Platte kratzt man ab, extrahiert mit CCl_4 und zieht das Lösungsmittel ab.

5. Reaktionen zwischen me_3XAd , $LiCH_2-Sime_3$ und $ClSime_3$ (X = Cl, Br, J). In einem länglichen, schlenkgefäßartigen 30 ml Zweihalsreaktionsgefäß mit Rückflußkühler, "Quickfit" mit Silicongummimembran und Magnetrührer versetzt man 1 mMol me_3XAd mit 2 ml Pentan. Dazu tropft man bei 20°C aus einer Spritze nach Durchstechen des Gummiverschlusses 1,5 ml einer 1 m Lösung von $LiCH_2-Sime_3$ in Pentan und aus einer weiteren Spritze 0,14 ml TMEDA. Nach dem Durchmischen entnimmt man mit einer Spritze eine NMR-Probe, welche abgeschmolzen wird. Die Reaktionen werden ¹H-NMR-spektroskopisch bis zum Verschwinden der 1,3,5,7-Tetrasilaadamantanresonanzen verfolgt. Dabei ist zu berücksichtigen, daß die Proben kurzzeitig einer erhöhten Temperatur bei den Messungen ausgesetzt sind (Varian 60 MHz-Gerät, Probenkopf 36°C), während die Reaktionslösungen bei 20°C gehalten werden. Nach 4-6 h gibt man bei 0°C tropfenweise 0,2 ml ClSime₃ zu und rührt unter langsamen Schmelzen des Eisbades über Nacht.

Die Reaktionslösungen können mit verdünnter H_2SO_4 hydrolytisch aufgearbeitet und danach kondensiert oder gaschromatographisch getrennt werden. Um eine Siloxanbildung zu vermeiden, zieht man besser im Ölpumpenvakuum alle bis 30 °C flüchtigen Substanzen in eine mit flüssigem N_2 gekühlte Falle, nimmt in Pentan auf und filtriert ausfallende Lithiumhalogenide ab. Nach Abziehen des Lösungsmittels kondensiert oder sublimiert man bei 100 °C/0,1 Torr die Produkte aus dem verbleibenden Rückstand. Massenspektren ergeben einen Überblick über die Verteilung der gebildeten Verbindungen (Tab. 6). Die Substanzgemische können gaschromatographisch weiter aufgetrennt werden: Temperatur: 220 °C; Trägergas: Helium; Säulenabmessung: Länge 6 m, Querschnitt 1 cm; Füllmaterial: Silicongummi SE 52, 5% auf Kieselgur (Perkin Elmer). Bei präparativen Trennungen in diesem Temperaturbereich ist mit Substanzverlusten zwischen 20 und 40% zu rechnen, wie aus Vergleichsmessungen mit me₄As 1 ermittelt wurde. Diese Werte sind in Tab. 6 berücksichtigt.

6. Reaktionen zwischen me₃ClAd 8, n-buLi und ClSime₂R (R = CH₃, C₆H₅). In einem 30 ml Reaktionsgefäß löst man 0,277 g (1 mMol) me₃ClAd 8 in 2 ml Hexan und tropft bei 20°C 0,75 ml einer 1,5 m n-buLi/Hexan-Lösung und 0,12 ml TMEDA zu. Das ¹H-NMR-Spektrum einer abgefüllten Probe zeigt nach 20-30 min das me₃ClAdLi. Die Reaktionslösung wird bei 0°C mit 1,5 mMol ClSime₃ oder 1,5 mMol ClSime₂(C₆H₅) versetzt und unter langsamen Auftauen des Eisbades 10 h gerührt. Anschließend kondensiert man alle bis 30°C im Ölpumpenvakuum flüchtigen Bestandteile in eine Kühlfalle, nimmt in Pentan auf und filtriert vom ausfallenden Lithiumhalogenid ab. Die Pentanphase wird eingeengt. Bei -78°C fallen die Verbindungen 17 und 18 aus (weiß und kristallin). Ausbeute: me₃ClAd(Sime₃)17 264 mg = 76%; me₃ClAd[Sime₂(C₆H₅)] 18 320 mg = 78%.

7. Reaktionen zwischen me₃JAd 10 und LiCH₂-Sime₂R (R = C₆H₅, CH₃Sime₃). In einem 30 ml Reaktionsgefäß löst man 0,368 g (1 mMol) me₃JAd 10 in 2 ml Pentan und tropft bei 20°C 1,2 ml 1 m LiCH₂-Sime₂R/Pentan-Lösung und 0,12 ml TMEDA zu. Nach 8 h hydrolysiert man bei 0°C mit verdünnter H₂SO₄, trocknet die Pentanphase mit geglühtem Na₂SO₄ und trennt am Gaschromatograph. Ausbeute: 90% (Verluste am Gaschromatograph berücksichtigt).

8. 'Reaktionen von 13 und 26 mit HBr und anschließende Umsetzung mit LiCH₂--Sime₃. 1 mMol von 13 bzw. 26 werden in 2 ml Pentan gelöst, die Reaktionsmischung mit flüssigem Stickstoff eingefroren und anschließend 1,5 mMol HBr aufkondensiert. Dann wechselt man das N₂-Kühlbad gegen ein Methanol-Trockeneis-Bad aus, rührt eine Stunde, erwärmt auf 20 °C und zieht alle im Ölpumpenvakuum flüchtigen Bestandteile in eine Kühlfalle ab und löst den Rückstand in Pentan. Das bromierte Produkt ist ¹H-NMR-spektroskopisch rein. Nun tropft man bei -30 °C 1,2 ml 1 m LiCH₂-Sime₃/Pentan-Lösung zu und rührt über Nacht unter langsamen Auftauen des Kühlbades. Die Reaktionsmischung wird mit verdünnter H₂SO₄ hydrolysiert, die organische Phase mit geglühtem Na₂SO₄ getrocknet und gaschromatographisch getrennt. Ausbeuten: ~90% (Verluste am Gaschromatograph berücksichtigt).

9. Reaktionen zwischen $m_4Ad 1$, $LiCH_2$ -Sime₃ und $ClSime_3$. Man löst 0,256 g (1 mMol) $me_4Ad 1$ in 2 ml Pentan und tropft bei 20°C 1,5 ml 1 m $LiCH_2$ -Sime₃/Pentan-Lösung und 0,13 ml TMEDA zu. Bei 20°C ist nach 3 Tagen ¹H-NMR-spektroskopisch die Bildung eines ummetallierten Produkts (CHLi-Resonanz) zu beobachten. Bei 0°C werden 0,2 ml ClSime₃ zugesetzt und 10 h gerührt. Nach dem Abkondensieren aller flüchtigen Bestandteile (20°C/0,1 Torr) löst man in Pentan, filtriert und trennt am Gaschromatographen.

10. Metallierung von 1 bzw. 25 oder 29 mit n-buLi und Umsetzungen mit ClSime₂R (R = CH₃, C₆H₅, CH₂Sime₃). In einem 30 ml Reaktionsgefäß löst man 1 mMol der zu lithinierenden Substanz in 2 ml Hexan. Dazu tropft man bei 25 °C 1,5 mMol n-buLi/Hexanlösung und 0,12 ml TMEDA. Anschließend rührt man 3-4 h bei 45 °C, wobei sich die Lösung gelborange färbt. Dilithinierte Zwischenprodukte können ¹H-NMR-spektroskopisch beobachtet werden (Tab. 1). Danach versetzt man bei 0 °C mit ClSime₃ (oder einer anderen Cl—Si-Komponente) und rührt über Nacht unter langsamen Auftauen des Eisbades. Man zieht alle bis 20 °C in Ölpumpenvakuum flüchtigen Bestandteile in eine Kühlfalle, löst in Pentan und filtriert. Die Pentanphase wird gaschromatographisch getrennt.

Dem Fonds der Chemie und der Deutschen Forschungsgemeinschaft danken wir für die Förderung. Die Bayer AG, Leverkusen und die Hans-Heinrich-Hütte, Langelsheim (Harz) unterstützten uns mit Chemikalien. Herrn DOMNICK danken wir für die NMR-Aufnahmen, Herrn Dr. SCHEER für die massenspektrometrische Untersuchung.

Literatur

- [1] 68. Mitt. G. FRITZ U. U. FINKE, Z. anorg. allg. Chem. 430, 137 (1977).
- [2] G. FRITZ, Top. Current Chemistry 50, 43 (1974).
- [3] G. FRITZ, Fortschr. Chem. Forsch. 4, 459 (1963); G. FRITZ u. G. MARQUARDT, Z. anorg. allg. Chem. 404, 1 (1974).
- [4] G. FRITZ u. J. MAAS, unveröffentlicht. Diss. J. MAAS, Karlsruhe 1972.
- [5] G. FRITZ, J. GROBE U. D. KUMMER, Adv. Inorg. Chem. Radiochem. 7, 349 (1965); G. FRITZ,
 W. KÖNIG U. H. SCHEER, Z. anorg. allg. Chem. 377, 240 (1970).
- [6] A. L. SMITH U. H. A. CLARK, J. Amer. Chem. Soc. 83, 3345 (1961).
- [7] L. C. FRYE, J. M. KLOSOWSKI U. D. R. WEYENBERG, J. Amer. Chem. Soc. 92, 6379 (1970);
 U. S. Patent 3, 631, 195 (1971).
- [8] G. FRITZ U. J. NEUTZNER, unveröffentlicht.
- [9] L. C. FRYE U. J. M. KLOSOWSKI, J. Amer. Chem. Soc. 94, 7186 (1972).
- [10] L. H. SOMMER, Stereochemistry, Mechanism, and Silicon, Mac Grow-Hill, New York 1965.
- [11] G. D. HOMER u. L. H. SOMMER, J. Amer. Chem. Soc. 95, 7700 (1973); J. Organomet. Chem. 49, C 13 (1973).
- [12] G. FRITZ, M. BERNDT U. R. HUBER, Z. anorg. allg. Chem. 391, 219 (1972).
- [13] G. FRITZ, H. KÖHLER U. D. KUMMER, Z. anorg. allg. Chem. 374, 54 (1970).

Bei der Redaktion eingegangen am 23. August 1976.

Anschr. d. Verf.: Prof. Dr. G. FRITZ und Dr. K. KREILEIN, Inst. f. Anorg. Chemie d. Univ., D-7500 Karlsruhe, Englerstr. 11