Potential Barrier to Botation about C-C and C-N Bonds

- (8) T. Glonek and J. R. Van Wazer, J. Magn. Reson., 13, 390 (1974).
- (9) T. Glonek, J. R. Van Wazer, M. Mudgett, and T. C. Myers, *Inorg. Chem.*, **11**, 567 (1972). (10) J. R. Van Wazer and T. Glonek in "Analytical Chemistry of Phosphorus Compounds", M. Halmann, Ed., Wiley, New York, N.Y., 1972, p 176
- also p 167 (11) G. M. Kosolapoff, "Organophosphorus Compounds", Wiley, New York, N.Y., 1950, Chapter 9, pp 220-277.
- (12) T. Glonek, R. A. Kleps, E. J. Griffith, and T. C. Myers, Phosphorus, 5, 157, 165 (1975).
- (13) A. Szent-Gyorgi, "Bioenergetics", Academic Press, New York, N.Y., 1957. (14) G. T. Rossettl and K. E. Van Holde, Biochem. Biophys. Res. Commun.,
- **26,** 717 (1967). (15) W. E. Morgan, T. Glonek, and J. R. Van Wazer, *Inorg. Chem.*, **13,** 1382
- (1974).

Stereodynamics of Acyclic Alcohols, Ethers, and N.N-Dimethylurethanes. Potential Barriers to Rotation about Carbon–Carbon and Carbon–Nitrogen Bonds

Steven Hoogasian,¹ C. Hackett Bushweller,*² Warren G. Anderson, and George Kingsley

Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609 (Received November 14, 1975) Publication costs assisted by the National Science Foundation

Examination of the ¹H DNMR spectra of a series of acyclic alcohols and methyl ethers showed changes consistent with slowing rotation about carbon-carbon single bonds and allowed an assessment of the relative hindering potential to tert-butyl rotation of hydroxyl, methoxyl, and various alkyl groups. Both hindered tert-butyl and N,N-dimethyl rotation were observed in an acyclic N,N-dimethylurethane and N,Ndimethylthiourethane.

Although the potential barrier to threefold rotation in ethane (2.9 kcal/mol) is well established experimentally,³ a quantitative theoretical assessment of various energy components contributing to the barrier is elusive.⁴ It is apparent that van der Waals repulsions can account for only a fraction of the barrier height in ethane and an orbital-control mechanism has been proposed to account for the hindering potential.⁵ In more complicated systems,⁶ van der Waals repulsions become more important and in many instances, the barriers to rotation about carbon-carbon single bonds are large enough to be accessible to measurement by the dynamic nuclear magnetic resonance (DNMR)⁷ technique.

Although a large number of polyhalogenated ethanes and butanes have been examined by the DNMR method,⁶ there has been little effort to assess the effect of hydroxyl or alkoxyl on the barrier to carbon-carbon single bond rotation.⁸ This report concerns the DNMR measurement of the rate of tert-butyl rotation in a series of selectively deuterated acyclic alcohols, methyl ethers, and urethanes. The tert-butyl rotor was selected in order to provide a symmetrical threefold potential surface for rotation and eliminate the need to determine more than one potential barrier for a given compound. The tert-butyl group has also been useful in establishing stereodynamical trends in trialkylamines,⁹ trialkylphosphines,¹⁰ and trialkylphosphine complexes.^{11,12}

Results

For the purpose of DNMR spectral simplification, a number of specifically deuteriated alcohols (1-5) and methyl ethers (6-9) were prepared by standard methods (see Experimental Section).

$$\begin{array}{c} CH_{4} \ R \\ | \\ H_{3}C - C - C - OR'' \\ | \\ CH_{3} \ R' \\ D \\ CH_{3} \ R' \\ D \\ CH_{3} \ R' \\ D \\ CH_{2} \ CH_{2}CD_{3}; \ R'' = D \\ CH_{3} \ R'' = CH_{3} \\ R = CD_{3}; \ R' = CH_{2}CD_{3}; \ R'' = CH_{3} \\ R = R' = CD_{3}; \ R'' = CH_{3} \\ R = R' = CH_{2}CD_{3}; \ R'' = CH_{3} \\ R = R' = CH_{2}CD_{3}; \ R'' = CH_{3} \\ R = R' = CH_{3}; \ R'' = CH_{3} \\ R = R' = CH_{3}; \ R'' = C(O)N(CH_{3})_{2} \\ 11 \ R = R' = CH_{3}; \ R'' = C(S)N(CH_{3})_{2} \end{array}$$

Examination of the ¹H DNMR spectrum of 5 (4% v/v in CH₂CHCl) at -37.0 °C (Figure 1) revealed a singlet resonance for the *tert*-butyl protons (δ 1.045) consistent with rapid tert-butyl rotation on the DNMR time scale. At temperatures below -37.0 °C, the tert-butyl resonance broadens and is separated at -111.9 °C (Figure 1) into three singlet resonances at δ 0.980 (3 H), 1.046 (3 H), and 1.129 (3 H) consistent with slow tert-butyl rotation on the DNMR time scale and the symmetry experienced by a static tertbutyl (eq 1). Total DNMR line shape analyses at various

The Journal of Physical Chemistry, Vol. 80, No. 6, 1976

Figure 1. Experimental ¹H DNMR spectra (60 MHz) of the *tert*-butyl group of **5** (4% v/v in CH₂CHCl) and theoretical spectra calculated as a function of the rate of *tert*-butyl rotation (k = first-order rate constant for conversion of *one tert*-butyl rotamer to *one* other rotamer).

temperatures (Figure 1) using a substantially modified local version of computer program DNMR3¹³ gave the rate of *tert*-butyl rotation at various temperatures. The activation parameters derived from a weighted least-squares fit of an Eyring plot and slow exchange *tert*-butyl chemical shifts are compiled in Table I.

Changes in the ¹H DNMR spectrum of 1 were observed at slightly lower temperatures than for 5 with the slow exchange spectrum of 1 at -124 °C (Figure 2) consistent with the symmetry of 1 and slow *tert*-butyl rotation. Analogous changes in the ¹H DNMR spectra were observed for 2 and 4. Alcohol 3 did not show a separation of the ¹H *tert*-butyl resonance in both CH₂CHCl or CBrF₃ to about -150 °C due most likely to a small or zero chemical shift difference between the stereochemically nonequivalent methyls of the *tert*-butyl group. Pertinent data are compiled in Table I. Also compiled in Table I are activation parameters for *tert*butyl rotation in 5 in a variety of solvent systems.

Examination of the ¹H DNMR spectra of the methyl ethers 7 (Figure 3; 5% v/v in CH₂CHCl) and 9 (Figure 4; 5%

The Journal of Physical Chemistry, Vol. 80, No. 6, 1976

8.73 ± 0.10	8.93 ± 0.10	9.77 ± 0.10	9.95 ± 0.10	$\begin{array}{c} \textbf{9.34 \pm 0.40} \\ \textbf{8.49 \pm 0.10} \\ \textbf{7.93 \pm 0.10} \\ \textbf{9.43 \pm 0.10} \end{array}$	9.38 ± 0.10
8.91 ± 0.10	9.58 ± 0.10	9.99 ± 0.10	9.57 ± 0.10		9.80 ± 0.10
-1.4 ± 2.7	0.8 ± 2.6	-1.3 ± 1.2	0.6 ± 3.9	$\begin{array}{c} 0.0 \pm 2.8 \\ 0.2 \pm 1.3 \\ 0.8 \pm 3.4 \end{array}$	-0.8 ± 2.0
-1.4 ± 3.4	1.5 ± 4.7	-0.6 ± 2.1	-0.1 ± 2.3		-2.1 ± 2.2
8.5 ± 0.4 8.7 ± 0.6	9.1 ± 0.4 9.8 ± 0.8	9.6 ± 0.2 9.9 ± 0.4	10.1 ± 0.7 9.6 ± 0.4	8.5 ± 0.4 8.0 ± 0.2 9.6 ± 0.6	9.2 ± 0.4 9.4 ± 0.4

 ΔS_{\pm}^{\pm} , gibbs

ΔH ‡, kcal/mol	8.5 ± 0.4 8.7 ± 0.6	9.1 ± 0.4	9.8 ± 0.8 9.6 ± 0.2	9.9 ± 0.4	10.1 ± 0.7	9.6 ± 0.4	8.5 ± 0.4	8.0 ± 0.2 9.6 ± 0.6	9.2 ± 0.4
H chemical shifts, ppm from TMS	0.873 (3 H); 0.969 (6 H) 0.843 (3 H); 0.940 (3 H); 0.087 /3 H)	No split 0.961 (6 H); 1.045 (3 H)	0.980 (3 H); 1.046 (3 H); 1.129 (3 H) 0.955 (3 H); 1.043 (3 H);	1.120 (3 H) 0.946 (3 H); 1.036 (3 H);	1.109 (3 H) 0.968 (3 H); 1.054 (3 H); 1.120 (3 H)	0.946 (3 H); 1.021 (3 H); 1.112 (3 H)	0.859 (3 H); 0.889 (6 H) 0.821 (3 H); 0.922 (6 H)	0.884 (3 H); 0.976 (6 H) 0.913 (3 H); 0.983 (3 H); 1.080 (3 H)	0.863 (3 H); 0.992 (6 H)
Solvent (v/v% of alcohol or derivative)	CH ₂ CHCI (4%) CH ₂ CHCI (4%)	$CH_2CHCI (4\%)$ $CH_2CHCI (4\%)$ $CH_2CHCI (4\%)$	00:10 CH, CHCI-	CH ₃ OH (4%) 75:25 CH ₃ CHCI–	CH ₃ OH (4%) 45:55 CH ₂ CHCI– CH ₂ OH (4%)	60:40 [°] (CH ₃) ₂ O- (CH ₃) ₂ NCHO (4%)	CH ₂ CHCI (5%) CH ₂ CHCI (5%)	CH ₂ CHCI (5%) CH ₂ CHCI (5%)	$CH_2 CHCI (5\%)$
R''	QQ	QQQ	Þ				CH ₃ CH ₃	CH, CH,	C(O)N(CH ₃) ₂
R'	cD, cD,cD,	CH ₂ CD ₃ CH ₂ C ₆ H ₅	ℓ-∪₄π₀				CD, CD, CD,	CH ₂ CD ₃ t-C ₄ H ₆	CH ₃
R	CD CD	CH ² CD ³	cU ₃				5°5	CH ² CD ³	CH ₃
Compd	1	ю4л С	0				9	× 0	10

Hoogasian, Bushweller, Anderson, and Kingsley

Figure 2. Experimental ¹H DNMR spectra (60 MHz) of the *tert*-butyl group of 1 (4% v/v in CH₂CHCI) and theoretical spectra calculated as a function of the rate of *tert*-butyl rotation (k = first-order rate constant for conversion of *one tert*-butyl rotamer to *one* other rotamer).

v/v in CH₂CHCl) also revealed changes at low temperature consistent with slowing *tert*-butyl rotation on the DNMR time scale. While it might be reasonable to expect three *tert*-butyl methyl resonances with slow *tert*-butyl rotation in 7, only two peaks are resolved (Figure 3). It is apparent that the effective diamagnetic anisotropies of CD₃ and CD₂CD₃ toward *tert*-butyl are the same in 7. A comparison of Figures 1 and 2 with Figures 3 and 4 also shows generally longer T_2 values (sharper lines) for the ethers as compared to the alcohols. In the case of 6, the small chemical shift difference between the different *tert*-butyl methyl resonances precluded extraction of accurate ΔH^{\pm} and ΔS^{\pm} values from a complete line shape analysis and only a ΔG^{\pm} value is tabulated (Table I).

The ¹H DNMR spectra of urethane 10 (Figure 5; 5.5 wt % in CH_2Cl_2 above -20 °C and 5 wt % in CH_2CHCl below -20 °C) showed changes consistent with slowing rotation about the carbonyl carbon-nitrogen bond and with slowing tert-butyl rotation. The activation parameters for $N(CH_3)_2$ rotation in 10 ($\Delta H^{\pm} = 15.4 \pm 1.4 \text{ kcal/mol}; \Delta S^{\pm} = 0.3 \pm 5$ gibbs; $\Delta G^{\pm} = 15.3 \pm 0.1$ kcal/mol at 6.3 °C) were determined from a complete ¹H DNMR line shape analysis. NMR and activation parameters for tert-butyl rotation in 10 are compiled in Table I. Similar changes in the ¹H DNMR spectra of thiourethane 11 were also observed (Figure 6; 5.5 wt % in CCl₂CCl₂ above 25 °C and 5 wt % in CH_2CHCl below -20 °C). Complete DNMR line shape analyses yielded the activation parameters for N(CH₃)₂ rotation ($\Delta H^{\pm} = 19.6 \pm 0.8$ kcal/mol; $\Delta S^{\pm} = 8 \pm 2$ gibbs; $\Delta G^{\pm} = 17.0 \pm 0.1$ kcal/mol at 53.0 °C) and tert-butyl rotation (Table I). The barriers to $N(CH_3)_2$ rotation in 10 and

Figure 3. Experimental ¹H DNMR spectra (60 MHz) of the *tert*-butyl group of **7** (5% v/v in CH₂CHCI) and theoretical spectra calculated as a function of the rate of *tert*-butyl rotation (k = first-order rate constant for conversion of *one tert*-butyl rotamer to *one* other rotamer).

11 seem typical¹⁴ and are higher than those for tert-butyl rotation.

It should also be noted that for those compounds in Table I which show changes in the *tert*-butyl ¹H DNMR spectra at low temperatures, the slow exchange spectrum consists of two or three *singlets*. This is of course consistent with rapid rotation on the DNMR time scale of the *individual* methyls of each *tert*-butyl group.¹⁵

Discussion

A perusal of Table I reveals *some* trends which can be correlated with conformational parameters from other systems. For example, the conformational requirements of various alkyl groups as measured by preference for the equatorial conformer in the monosubstituted cyclohexane $(-\Delta G^{\circ} \text{ or } "A \text{ value"})^{16}$ reveals methyl (A = 1.7 kcal/mol)to be slightly smaller than ethyl $(A = 1.8 \text{ kcal/mol})^{16}$ which is in turn comparable in size to benzyl $(A = 1.8 \text{ kcal/mol})^{17}$ The sequence of barriers to *tert*-butyl rotation in proceeding from compound 1 to 2 to 4 parallels reasonably well the corresponding A values for methyl, ethyl, and benzyl.

However, the A value of tert-butyl (~5 kcal/mol) is very large compared to methyl or ethyl and the relatively small increase in the barrier to tert-butyl rotation in 5 as compared to 1, 2, or 4 (Table I) reveals the potential inadequacy of employing A values to predict quantitative trends in potential barriers to rotation. Unexpectedly low barriers to tert-butyl rotation have also been observed in 2,2,3,4,4pentamethyl-3-chloropentane^{6d} which is an analogue of 5. Two approaches may be taken to rationalize the small barrier increase in 5, one involving ground state geometry and -64.1° -84.2° k = 45 sec^{-1} -96.0° 9.4 -101.0° 3.6 -115.3° 0.05

Figure 4. Experimental ¹H DNMR spectra (60 MHz) of the *tert*-butyl group of **9** (5% v/v in CH₂CHCl) and theoretical spectra calculated as a function of the rate of *tert*-butyl rotation (k = first-order rate constant for conversion of *one tert*-butyl rotamer to *one* other rotamer).

Figure 5. ¹H DNMR spectra (60 MHz) of 10 (5.5 wt % in CH₂Cl₂ from 23.8 to -17.7 °C and 5 wt % in CH₂CHCl from -85.9 to -116.1 °C).

The Journal of Physical Chemistry, Vol. 80, No. 6, 1976

Hoogasian, Bushweller, Anderson, and Kingsley

the other transition state geometry. Examination of a model of 5 keeping all bond angles at 109.5° and all vicinal substituents perfectly staggered (12; projection down

C-CD₃ bond) shows severe 1,3-dimethyl repulsions analogous to the 1,3-dimethyl repulsions (\sim 4 kcal/mol) in the diaxial chair conformation of cis-1,3-dimethylcyclohexane. In light of recent electron diffraction and molecular mechanics studies of tri-tert-butylmethane¹⁸ and di-tertbutylmethane,¹⁹ it is highly probable that the geometry of minimum potential energy for 5 is not 12 and that significant deviations from perfect staggering, from local T_d symmetry at each carbon, and normal carbon-carbon bond lengths (1.53 Å) occur. In tri-tert-butylmethane,¹⁸ the central carbon-carbon bond length is stretched to 1.611 Å, the central $(t-C_4H_9)C(t-C_4H_9)$ bond angle opens up to 116.2°, and each tert-butyl group is rotated about 10° away from perfect staggering. All of these adjustments in molecular geometry as compared with less hindered systems are consistent with relief of nonbonded repulsions involving the large tert-butyl groups and are analogous to trends observed in hindered N-tert-butyl-N,N-dialkylamines.9 In di-tert-butylmethane,¹⁹ the central carbon-carbon bond length is nearly normal at 1.545 Å while the central (t- C_4H_9)C(t- C_4H_9) bond angle opens up to 128°!

In light of these observations, it is virtually certain that the central carbon atom in the most stable geometry of 5 does not possess local T_d symmetry and that the central $(t-C_4H_9)C(t-C_4H_9)$ bond angle will be greater than 109.5° and the *tert*-butyl group will rotate away from perfect staggering, i.e., rotate toward the transition state geometry for *tert*-butyl rotation. Any deviation from T_d symmetry at

the central carbon of 5 also precludes achieving any geometry via *tert*-butyl rotation in which all three methyl groups of tert-butyl are perfectly eclipsed with the three other vicinal atoms on the central carbon of 5 bonded to hydroxyl. Thus, partial rotation of tert-butyl in the ground state and less-than-perfect eclipsing in the transition state for tertbutyl rotation would tend presumably to compress the energy difference between ground and transition states and lower the barrier. In addition to these effects of geometry on the barrier to tert-butyl rotation, it is very likely that the potential energy increase associated with one tert-butyl group in 5 rotating against the other may be optimized (i.e., minimized) via a concomitant rotation of both tert-butyl moieties. Other workers^{6d} have suggested such a cog-wheel mechanism in analogues of 5. All of these effects would tend to lower the barrier to tert-butyl rotation below what one would predict by analogy with the A value of tertbutyl.

It is noteworthy that the barrier to *tert*-butyl rotation in 5 in a variety of solvent systems (Table I) having different polarities and capacities to hydrogen bond varies to only a small degree indicating an almost negligible contribution of hydrogen bonding to restricting *tert*-butyl rotation in these relatively hindered systems.

In considering the methyl ethers (6-9; Table I) of interest in this study, a comparison of alcohols 1-5 with ethers 6-9 reveals hydroxyl to be roughly comparable to methoxyl in hindering tert-butyl rotation. However, in proceeding from ether 6 to 7 to 8, there is a clearly defined decrease in the barrier to tert-butyl rotation as steric bulk around the central carbon increases. In ether 9, the barrier then increases reflecting the presence of a much larger tert-butyl group. This inverse dependence of the barrier to tert-butyl rotation in ethers 6-8 on steric bulk is analogous to a similar but more pronounced dependence of the barrier to inversion-rotation about nitrogen in a series of N-tert-butyl-N,N-dialkylamines.⁹ For the ethers 6-8, such a trend is very likely due to yet-to-be-determined adjustments in ground state geometry resulting from the crowding of several bulky groups around the central atom. An important point to be made is that no simple approach can be taken to predict barrier trends in these encumbered systems without knowledge of the intimate details of ground state geometry. It is quite possible that methoxyl exerts a more pronounced buttressing effect than hydroxyl leading to more internal crowding in the ethers than in the alcohols and differences in preferred ground state geometry.

A number of studies have now appeared in which the DNMR method was used to measure the rate of rotation about carbon-carbon single bonds.⁶ In addition, the rate of rotation about the carbonyl carbon-nitrogen bond of several urethanes has been measured using the same technique.¹⁴ In light of these data and the barriers compiled in Table I, it was then possible to predict qualitatively the temperature dependence of the ¹H DNMR spectra of urethanes 10 and 11 (Table I; Figures 5 and 6). Separation of the N(CH₃)₂ resonance of 10 or 11 into two singlets of equal intensity at low temperatures is consistent with slowing the N(CH₃)₂ rotation (eq 2) and a significant degree of π bond-

TABLE II: Free Energies of Activation (ΔG^{\ddagger}) for *tert*-Butyl Rotation in *t*-C₄H₉C(CH₃)₂X

X	ΔG ‡, kcal/mol	Ref
н	6.9	6e,f
F	8.0	20
Cl	10.4	6d,e
Br	10.7	6d,e
I	11.1	20
OH	8.7	This work
OCH ₃	9.3	This work

ing across the carbon-nitrogen bond.¹⁴ The barriers to $N(CH_3)_2$ rotation in 10 ($\Delta H^{\pm} = 15.4 \pm 1.3$ kcal/mol; $\Delta S^{\pm} = 0.3 \pm 5$ gibbs; $\Delta G^{\pm} = 15.3 \pm 0.1$ kcal/mol at 6.3 °C) and 11 ($\Delta H^{\pm} = 19.6 \pm 0.8$ kcal/mol; $\Delta S^{\pm} = 8 \pm 2$ gibbs; $\Delta G^{\mp} = 17.0 \pm 0.1$ kcal/mol at 53 °C) are typical of such ure-thanes.¹⁴ The barriers to *tert*-butyl rotation in 10 and 11 (Table I) reveal the carbamate moiety to be very similar to methoxyl and hydroxyl in its ability to restrict *tert*-butyl rotation.

Finally, it is interesting to compare the abilities of various functionalities incorporated into the same basic carbon skeleton to hinder tert-butyl rotation (Table II). It is not surprising to note that hydrogen is the least effective substituent in restricting rotation. The ability of halogens to hinder tert-butyl rotation (Table II) seems to be more a function of van der Waals radius and does not parallel A value trends.¹⁶ Indeed the A values of methoxyl (0.55 kcal/ mol)¹⁶ and non-hydrogen-bonded hydroxyl (~0.6 kcal/ mol)¹⁶ are almost identical with chlorine $(0.53 \text{ kcal/mol})^{16}$ and yet hydroxyl and methoxyl are significantly less hindering to tert-butyl rotation than chlorine. These comparisons point up the possible pitfalls of using conformational parameters from cyclic compounds to predict trends in both conformational preferences and barriers to rotation in acyclic systems.

Experimental Section

The 60-MHz ¹H DNMR spectra were obtained using a Varian HR-60A spectrometer equipped with a custombuilt variable temperature probe.²¹ The 100-MHz ¹H DNMR spectra were obtained using a Varian HA-100-15 spectrometer equipped with a Varian variable temperature probe and temperature controller.

The theoretical ¹H DNMR spectra¹³ were calculated using DEC PDP-10 and RCA Spectra 70/46 computers and plotted using a Calcomp plotter.

3,3-Dimethyl-2-butanone-1,1,1-d₃ (13) was prepared by repeated exchanges with refluxing deuterium oxide and a trace of sodium carbonate. Alcohols 1, 2, 4, and 5 were prepared by reaction of CD_3MgI , CD_3CD_2MgI , $C_6H_5CH_2MgBr$, and t-C₄H₉MgBr respectively with 13 and worked up in deuterium oxide. Alcohol 3 was prepared by reaction of 2 M equivalents of CD_3CH_2MgI with the ethyl ester of pivalic acid followed by work-up in deuterium oxide.

Methyl ethers 6-9 were prepared from the corresponding alcohols above by initial conversion to the potassium alkoxide using the potassium hydride procedure of $Brown^{22}$ followed by treatment with methyl iodide.

Urethanes 10 and 11 were prepared by treating potassium alkoxide²² of 1 ($R = R' = CH_3$) with N,N-dimethylcarbamoyl chloride and N,N-dimethylthiocarbamoyl chloride, respectively.

Acknowledgment. We are grateful to the National Science Foundation (Grant Nos. GP18197 and MPS74-17544) for support and to the Worcester Area College Computation Center for donated computer time.

References and Notes

- (1) National Science Foundation Undergraduate Research Participant, 972-1973
- (2)Alfred P. Sloan Research Fellow, 1971-1974; Camille and Henry Drey-Alfred P. Sloan Research Fellow, 1971–1974; Camille and Henry Drey-fus Teacher-Scholar, 1972–present; Visiting Associate Professor, Uni-versity of Michigan, Ann Arbor, 1974–1975.
 J. D. Kemp and K. S. Pitzer, *J. Chem. Phys.*, 4, 749 (1936); S. Weiss and G. E. Leroi, *ibid.*, 48, 962 (1968), and references therein.
- (4) I. R. Epstein and W. N. Lipscomb, J. Am. Chem. Soc., 92, 6094 (1970), and references therein
- J. P. Lowe, *Science*, **179**, 527 (1973); L. Radom, W. J. Hehre, and J. A. Pople, *J. Am. Chem. Soc.*, **94**, 2371 (1972).
 (6) (a) P. E. Stevenson, G. Bhat, C. H. Bushweller, and W. G. Anderson, *J. Am. Chem. Soc.*, **96**, 1067 (1974); (b) F. J. Weigart, M. B. Winstead, J. I. Garrels, and J. D. Roberts, *ibid.*, **92**, 7359 (1970); (c) R. A. Newmark and C. H. Subartelating (1974); (b) F. J. Weigart, M. B. Winstead, J. I. Garrels, and J. D. Roberts, *ibid.*, **92**, 7359 (1970); (c) R. A. Newmark and C. H. Subartelating (1974); (c) F. C. R. A. Newmark and C. H. Subartelating (1974); (b) F. J. Weigart, M. B. Winstead, J. I. Garrels, and J. D. Roberts, *ibid.*, **92**, 7359 (1970); (c) R. A. Newmark and C. H. Subartelating (1974); (c) F. Subart I. Garreis, and J. D. Roberts, *ibid.*, *92*, 7359 (1970); (c) H. A. Newmark and C. H. Sederholm, *J. Chem. Phys.*, *43*, 602 (1965); (d) B. L. Hawkins, W. Bremser, S. Borcic, and J. D. Roberts, *J. Am. Chem. Soc.*, *93*, 4472 (1971); (e) J. E. Anderson and H. Pearson, *ibid.*, *97*, 764 (1975); (f) C. H. Bushweiler and W. G. Anderson, *Tetrahedron Lett.*, 1811 (1972); (g) C. H. Bushweiler, S. Hoogasian, W. G. Anderson, and L. J. Letendre, *J. Chem. Soc., Chem. Commun.*, 152 (1975).
 (7) G. Binsch, *Top. Stereochem.*, *3*, 97 (1968).

- (8) C. H. Bushweller, S. Hoogasian, and W. G. Anderson, Tetrahedron Lett., 547 (1974).
- (9) C. H. Bushweller, W. G. Anderson, P. E. Stevenson, D. L. Burkey, and J. W. O'Neil, J. Am. Chem. Soc., 96, 3892 (1974).
 C. H. Bushweller and J. A. Brunelle, J. Am. Chem. Soc., 95, 5949
- (10) C. (1973).
 (11) C. H. Bushweller and M. Z. Lourandos, *Inorg. Chem.*, **13**, 2514 (1974).
- C. H. Bushweller and J. A. Brunelle, Tetrahedron Lett., 893 (1974).
- (13) DNMR3 was written by D. A. Kleier and G. Binsch, J. Magn. Reson., 3, 146 (1970); Program 165, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind. Our local modifications allow the use of larger rate constants, more configurations, more spins, and are de-scribed in detail in C. H. Bushweller, G. Bhat, L. J. Letendre, J. A. Bru-
- Scribed in detail in C. H. Bushweiler, G. Bnat, L. J. Letendre, J. A. Brunelle, H. S. Bilofsky, H. Ruben, D. H. Templeton, and A. Zalkin, J. Am. Chem. Soc., 97, 65 (1975).
 C. H. Bushweiler, P. E. Stevenson, J. Golini, and J. W. O'Neil, J. Phys. Chem., 74, 1155 (1970), and references therein.
 M. Nakamura, M. Oki, and H. Nakanishi, J. Am. Chem. Soc., 95, 7169 (1973); J. E. Anderson and D. I. Rawson, J. Chem. Soc., Chem. Commun. 820 (1972) (15) mun., 830 (1973),
- (16) F. R. Jensen and C. H. Bushweller, Adv. Alicyclic Chem., 3, 139 (1971), and references therein; F. R. Jensen, C. H. Bushweller, and B. H. Beck, J. Am. Chem. Soc., 91, 344 (1969).
- J. E. Anderson, J. Chem. Soc., Perkin Trans. 2, 10 (1974). H. B. Burgi and L. S. Bartell, J. Am. Chem. Soc., **94**, 5236, 5239 (1972). (18)W. Bradford, Ph.D. Thesis, University of Michigan, Ann Arbor, Mich., (19)
- 1975.
- (20) J. E. Anderson and H. Pearson, *Tetradron Lett.*, 2779 (1972).
 (21) F. R. Jensen, L. A. Smith, C. H. Bushweller, and B. H. Beck, *Rev. Sci.*
- Instrum., 43, 894 (1972).
- (22) C. A. Brown, J. Am. Chem. Soc., 95, 982 (1973).

COMMUNICATIONS TO THE EDITOR

Molecular Covolumes of Sphere and Ellipsoid of Revolution Combinations

Sir: In the analysis of equilibrium sedimentation, light scattering, or osmotic pressure results on polydisperse or interacting macromolecular systems it is required to express nonideality effects in terms of activity coefficients that are functions of solution composition. This implies that even for relatively simple interacting systems several self- and cross-term second virial coefficients must either be evaluated from the experimental results or assigned numerical values on the basis of molecular covolume and charge considerations. The former endeavor is formidable and has not been achieved without simplifying assumptions,^{1,2} whereas the latter requires expressions for covolumes. Of particular interest in the protein field are covolume expressions for interactions between various combinations of spheres and ellipsoids of revolution (prolate or oblate). Recently, Ogston and Winzor³ formulated expressions for sphere and prolate ellipsoid combinations, but left unanswered two basic questions. The first pertains to the corresponding expressions for oblate ellipsoids and the second to the correlation of their formulation with the Isihara⁴ treatment of self-covolumes of ellipsoids of either type.

The Journal of Physical Chemistry, Vol. 80, No. 6, 1976

The basic set of equations considered by Ogston and Winzor³ in relation to their Figure 1 was $\{(x^2/a^2) + (y^2/b^2)\}$ = 1, $X = x + r \sin \theta$, $Y = y + r \cos \theta$, $dy/dx = \tan \theta$ where a and b refer to the semimajor and semiminor axes, respectively, of the ellipse, which is tangential at the point (x,y)to a circle of radius r and center (X, Y). This same set of equations applies to the sphere-oblate ellipsoid problem, the difference being that in this instance rotation of the ellipse is considered about the y axis. Formulation of the covolume expressions requires consideration of the volume enclosed by the locus of the point (X, Y) which may be formulated in terms of circular transverse sections. In these terms the molecular covolume U is given by

$$U = 2 \int_{x=0}^{x=a} \pi Y^2 \,\mathrm{d}X \qquad \text{(prolate)} \tag{1a}$$

$$U = 2 \int_{y=0}^{y=b} \pi X^2 \,\mathrm{d} Y \qquad \text{(oblate)} \tag{1b}$$

The indicated integrations may be performed directly once the quantities $Y^2 dX$ and $X^2 dY$ are written (with the use of the basic set of equations) as functions of the respective single variables x and y. Indeed, the required integrals (12) in each case) are in standard form when the substitutions are made that $\epsilon^2 = 1 - (b^2/a^2)$ for the prolate case and