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Abs t r ac t  Singularity analysis is an important subject of the geometric constraint sat- 
isfaction problem. In this paper, three kinds of singularities are described and corresponding 
identification methods are presented for both under-constrained systems and over-constrained 
systems. Another special but common singularity for under-constrained geometric systems, 
pseudo-singularity, is analyzed. Pseudo-singularity is caused by a variety of constraint match- 
ing of under-constrained systems and can be removed by improving constraint distribution. To 
avoid pseudo-singularity and decide redundant constraints adaptively, a differentiation algo- 
rithm is proposed in the paper. Its correctness and efficiency have been validated through its 
practical applications in a 2D/3D geometric constraint solver CBA. 

Keywords  geometric constraint satisfaction, parametric design, singularity, redundant 
constraint, pseudo-singularity 

1 Introduct ion 

Singularity analysis of constraint is a key technology for geometric constraint satisfaction problems 
(GCSP). However, so far most researches and papers on GCSP have been focusing on constraint solving 
planning [1-6], i.e., constraint matching, sorting and decomposition, with only few papers involving 
singularity analysis. DCM is one of the best constraint solvers in the world. But  according to our 
experience, definitions of constraint and dimension in DCM are affected by the operation order for 
under-constrained systems. It seems that  DCM has not perfectly resolved the singularity problem for 
under-constrained systems. Light [1] tried to differentiate the redundancy of a constraint according 
to the singularity of its Jacobian matrix. Wang Boxing [z] indicated that  if there is any redundant 
constraint, the Jacobian matrix of the system must be singular. 

Our research is based on the directed constraint graph. Generally, graph-based singularity analysis 
is fit for well-constrained systems and over-constrained systems. In this paper, this method is extended 
to under-constrained systems. The reasons leading to a singular Jacobian mat r ix  of a geometric 
constraint system are comprehensively analyzed and three types of singularities and corresponding 
judging methods axe further presented. 

2 Basic Concepts  

A geometric constraint  system can be described with a directed graph G [4], in which a directed arc 
a uniquely stands for a constraint c, and c matches with the head vertex of a. The process of creating 
a directed graph is in fact an iterative process of finding the matching vertex for each constraint and 
is essentially the bipar t i te  matching of <c, e>, where e is a geometric element. The following are several 
important  concepts used in the paper. 

C o m p o u n d  V e r t e x .  In a directed graph G, a strongly connected sub-graph can be reduced' to a 
single vertex called compound vertex. 
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R e s i d u a l  D O F  ( R D O F ) .  The difference between the Degree of Freedom (DOF) of a vertex and 
the number of its matching constraints is called its RDOF; P~DOF of a compound vertex is the sum 
of RDOF of all the vertices in it. If  RDOF of a vertex is more than  0, it is free. 

P r o p a g a t i o n  Se t  and  P r e d e t e r m i n a t i o n  Set .  In a Directed Acyclic Graph  (DAG), the vertex 
set found by Depth First Ergodicity (DFE) from vertex v is called the propagat ion set of v, while the 
vertex set found by inverse DFE from v is called its predeterminat ion set. 

Trans i t i ve  P a t h .  Constraints cl and c2 correspond to an in-arc and an out-arc of vertex v 
respectively. The explicit parameter  sets in algebra expressions of cl and c~ are P1 and P2 respectively. 
If P1 A P2 ~ 0, then cl and c2 are transitive at v and any change of either one will affect the other. If 
all the constraints a long a path  are transitive and the end vertex is free, then the path  is transitive. 

The remainder of this paper is organized as follows. Section 3 describes three types of singularity 
and analyzes pseudo-singularity for under-constrained systems. Section 4 advances the symbol method 
and the numerical method for singularity differentiation. Lu the section, a singularity differentiation 
algorithm is presented and some examples are illustrated. Section 5 gives a conclusion. 

3 Singular i ty  Types 

A geometric constraint system can be expressed as a set of non-linear equations. Based on the 
algorithm for the blocking triangular form of sparse matrix,  many  dividing methods [1'3-5's] have been 
proposed to decompose geometric constraint systems so that  each geometric system is reduced to a 
set of sub-systems that  can be solved orderly. In these methods,  singularity analysis of constraint is 
very important .  

3.1 S a t u r a t e d  S i n g u l a r i t y  

Chen Liping [3] presented the concept of Saturated Set: if under geometric constraint set C in 
which there is no redundant constraints, relative DOF between any two geometric entities in entity 
set E is zero, then E is called a Saturated Set under C. A saturated set can be regarded as a rigid 
body composed of its inner geometric entities. Any constraint c added into a saturated set will lead 
to a singular Jacobian matrix and thus is called a saturated redundant  constraint. In this case, the 
bipart i te  matching operation of c, which is to find its matching vertex in the directed graph, will fail. 

dl d2 

(~) (b) 

Fig.1. Saturated singularity. 

In Fig.l(a) ,  when the lengths of the three sides are decided, the triangle is decided and can be 
regarded as a rigid body. The constraints are as follows: 

Geometric entity set: E = {P~,P2,P3, l l ,  12,/3}; Constraint set: C = { c i l i  = 1 , . . . ,  9} 

cl = P n t O n L i n e ( p l , / 1 ) ;  c2 = P n t O n L i n e ( p 2 , / 1 ) ;  c3 -= P n t O n L i n e ( p l , / 3 ) ;  c4 = P n t O n L i n e ( p 3 , / 3 ) ;  

c5 = P n t O n L i n e ( p 2 , / 2 ) ;  c6 = P n t O n L i n e ( p 3 , / 2 ) ;  c7 = D i s t P P ( p l , p l ,  dl); cs = D i s t P P ( p 2 , P 3 ,  d2); 
c9 = D i s t P P  (Pl ,  P3, d3). 
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If a new height constraint Clo = Heigh t (p2 , /3 ,  h) is added between P2 and/3 ,  at0 will cause saturated 
singularity. Fig.l(b) is the corresponding directed graph. 

3.2 E m b r a n c h m e n t  S ingular i ty  

According to mechanism kinematics, if at the time t* there is a position q* of the system where 
the Jacobian matrix (~q(q*, t*) is not singular, then according to the Implicit Function Theorem, for 
d~ > 0, the system has a stable unique solution q(t)  near q* in the period of ]t - t* I <-~. Solution 
1 and Solution 2 in Fig.2(b) are two examples of q*. On the other hand, if there exists locking or 
embranchraent at t ime t*, then when t -~ t* there is no solution and the motion of the system loses 
its certainty. For example, at the position shown in Fig.2(a), the next moving direction of the system 
c a n n o t b e  decided and the system becomes singular. In the research of mult i -body systems, E. J. 
Haug[ 9! and Hong Jiazhen [1~ considered that  this kind of singularity occurs only at isolated points, 
e.g., the position in Fig.2(a), and called it isolated singularity. 

.~Soloo~ution I 

- - t -  o.o ~ 2 c 

Solution x . ~  

(a) (b) 

Fig.2 

12 " ~ p 3  

Fig.3. Embranchment singularity 
caused by tangency. 

This case also occurs in geometric constraint satisfaction problems such as parametr ic  design. 
Consider that  two curves are constrained by a tangency constraint. The constraint system is non- 
linear and the Jacobian matrix ~q is dependent on the orientation parameter  vector q of the system in]. 
The system is singular. Obviously the singularity occurs only when tangency constraint exists or rather  
at the isolated point. We consider the tangent point as the isolated point of the system. 

There is only one difference between embranch- 
ment singularity of mechanism analysis and that  
of GCSP. Kinematics analysis can bc considered 
as G C S P  based on time sequence. But for static 
GCSP like parametric  design, when we say a system 

-,Zp2!c 

Fig.4. A directed graph of embranchment singularity. 

is of embranchment singularity, we mean that  the 
system is at a position where there are constraints 
leading to isolated singular points. For example, if 
the influence of time is not considered in Fig.2(a), 
when some constraints make the quadrilateral to 
be a triangle, the system is of isolated singularity. 
Similarly, in Fig.3, Pl is fixed, ll and 12 are horizon- 

tal, and c is tangent with ll and 12. The constraints can be written as follows: 

cl  = F i x X ( p l ) ;  c2 -- F i x Y ( p l ) ;  c3 = P n t O n L i n e ( p l , / 1 ) ;  c4 -- P n t O n L i n e ( p 2 , / 1 ) ;  c5 = H o r i z o n t a l ( l l ) ;  
c6 = P n t O n C i r c l e ( p 2 ,  c); cT = P n t O n C i r c l e ( p 3 ,  c); cs = P n t O n L i n e ( p 3 , / 2 ) ;  c9 = Horizontal(12);  

clo --  D i s t P P ( p l , p 2 , d l ) ;  c l l =  D i ~ t P P ( p l , p 3 , d 2 ) ;  c12 = Tar~LC( l l , c ) ;  c13 = T a n L C ( I 2 , c ) .  

Fig.4 is the directed graph of Fig.3. The strongly connected sub-graph S C  = {p3,12, c} has  a 7 • 7 
Jacobian matr ix  ~q. ~q is singular and R a n k ( ~ q )  = 5. Its rank deficit is 2, being equal to the number 
of tangent points. Obviously, there is no redundant constraint here and the singularity comes from 
the tangeneies between c and 11, I2. 
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3.3 Redundancy Singularity 

There is no essential difference between redundancy singularity and saturated singularity. They 
both are caused by redundant constraints. When a redundant constraint can be decided by a symbol 
method, the singularity is called saturated singularity. Otherwise it is called redundancy singularity. 
Redundancy singularity is often produced by the existence of equivalent geometric constraints. 

Unlike saturated singularity, redundancy singularity is common when system is under-constrained, 
especially during the initial phase of design. For an under-constrained vertex, the symbol method 
cannot be used to judge its singularity by simply calculating its RDOF, because in this case, singularity 
might still occur even if the vertex is free. For instance, when a vertex DOF of 3 is constrained by two 
geometrically equal constraints, the vertex is free and the directed graph is normal, but singularity 
occurs. Consider the constrained geometry in Fig.5(a): 

cl = HorizontaI( l l );  c2 = Vertical(12); c 3 = P n t O n L i n e ( p l , l l ) ;  c 4 = C e n t ~ ( p o , c ) ;  
c5 -= Cent_Y(po ,  c); c6 = PntOnLine(po, /2) ;  c7 = Tangent( l l ,  c); cs = PntOnCirc le (p l ,  c); 
c9 = P n t O n L i n e ( p l ,  12). 

Fig.5(c) is the directed graph of Fig.5(a). It can be seen that  circle c and its center point P0 
constitute a strongly connected component SC. Although RDOF of S C  seems to be zero in the graph, 
when the radius of c changes, all the constraints can still be satisfied (Fig.5(b)). That  is to say, S C  
is not fixed and the system is singular. The singularity is just caused by the existence of equivalent 
geometric constraints. This kind of singularity cannot be decided by the symbol method and numerical 
method should be adopted. 

ll pl 

(a) (b) (c) 

Fig.5. Redundancy singularity. 

11 

B 12 ~C 

(a) 

/o 
1 

(b) 

Fig.6. Redundancy singularity. 

Fig.6(a) is another example: A B / / D C ,  A D / / B C ,  ]AB] = ]CD], XB = 60 ~ lAB[ = 5. 
constraint set is: 

The 
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cl = PntOnLine(A,/1); c~ = PntOnLine(B,/~.); c3 = PntOnLine(B,/2); c4 = PntOnLine(C,/2); 
c5 = PntOnLine(C,/3); c6 = PntOnLine(D,/3); c7 = PntOnLine(A,/4); cs ---- PntOnLine(D,/4); 
c9 = AngBtLine(ll,12,60); Clo = ParalLL(ll,13); cn  = ParalLL(l~,14); c12 = DistPP(A,B,5);  
c13 = EqualLen((A, B), (C, D)). 

ABCD is a parallelogram. Fig.6(b) is the directed graph of Fig.6(a). Three dashed arcs in Fig.6(b) 
denote the four-element constraint c13 = EqualLen((A,B), (C,D)) ,  which is different from binary 
constraints. Three arcs of c13 mean that  c13 involves 4 vertices. But  they work as a single one and 
reduce DOF of the vertex D by 1. It can be seen that  the total  RDOF of the system is 3 and there is 
no local over-constraint in the graph. The system seems to be well-constrained. However, it is obvious 
tha t  CD can move along AD. Tha t  is to say, the system is under-constrained. So in the system there 
exists singularity. Here.it is also impossible to judge the singularity by calculating DOF of the vertices. 
In fact, constraints A B / / D C  and A D / / B C  are par t ly  equivalent to ]AB[= [CDI, which leads to the 
singularity. 

3.4 Pseudo-Singularity 

For an under-constrained system, the matching modes between constraints and entities are vari- 
ous. Different constraint matching modes produce different solving sequences. Some of these solving 
sequences may contain singular units and are called ill-conditioned solving sequences. However, this 
kind of singularity can be removed by improving the constraint distribution. If a kind of singularity 

"can be avoided by adjusting constraint distribution, it is called pseudo-singularity. 
In the example of Fig.7, 11 is horizontal and fixed, p is the intersection point of ll and 12. A is the 

angle between ll and 12. This under-constrained system has two possible directed graphs (Fig.7(a-1) 
and Fig.7(b-1)). Now add an angle constraint c3 = AngLL(ll,12,180) between ll and 12. Then (a-l) 
and (b-l)  develop to (a-2) and (b-2) respectively, in the case of (b-2), intersection point p cannot be 
solved from two superposed lines ll and 12. The system is singular. However, for the same system, the 
solving sequence in (a-2) is normal. (b-2) is of pseudo-singularity. To avoid the pseudo-singularity in 
(b-2), adjust constraint c2 and let it be matched with v(I2), then the directed graph is optimized to 
(a-2) and the solving sequence v(ll) -+ v(p) --+ v(12) becomes normal. 

Ii 

/ • 2  absolute constraint: 
ll is horizontal and fixed; 

A . /  cl = OnLine(p, ll); 
c2 = OnLine(p,12). 

(a) 

Fig.7. An example of pseudo-singularity. 

~ )  

(b) 

Then we can conclude that:  (1) For an under-constrained system, singularity of a constraint cannot 
be simply determined by the singularity of a single vertex; (2) For an under-constrained system, if a 
constraint has at least a normal solving sequence, then it is normal. 

We adopt the steps as follows to eliminate pseudo-singularity. Once an ill-conditioned vertex v is 
obtained, constraint matching adjustment is] will be implemented on the non-propagation set of v to 
find an inverse transitive pa th  P. Reverse the arcs along P to change the constraints matched with v 
so that  the propagat ion set of v is enlarged and a new solving sequence is obtained. To ensure the new 
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solving sequence is well-conditioned, the algorithm needs to check all the vertices in the new solving 
sequence. Please refer to [8] for details of constraint matching adjustment .  

4 S i n g u l a r i t y  D i f f e r e n t i a t i o n  

4.1 G r a p h  D i f f e r e n t i a t i o n  M e t h o d  

A geometric constraint system has the following three properties: 
P r o p e r t y  1. If  constraint c is not redundant, then there must be a geometric entity e in the 

system, DOF(e) > 0 and c can be matched with e ((c,e}[e e E).  
This property comes from the definition of directed geometric constraint  graph. A normal con- 

straint must have a matching vertex which corresponds to a geometric entity. Otherwise, the directed 
graph cannot be created correctly. 

P r o p e r t y  2. If  constraint c is redundant, then the Jacobian matrix Oq of the matching vertex of 
c is singular. In our research, it means Oq has row rank deficit. 

Any redundant constraint belongs to a dependent constraint set. In our research, each row vector of 
the Jacobian matrix of the dependent constraint set is composed of the partial  derivatives of orientation 
parameters  of one constraint equation in the set. Because of the dependency of the constraint set, the 
row vectors of its Jacobian matrix are also dependent and the Jacobian mat r ix  must have row rank 
deficit. 

P r o p e r t y  3. Assume that vs is a compound vertex and there is no unary constraint that describes 
an absolute position in v~. I f ( i )  the predetermination set of vs is empty and R D O F  of v~ is less than 
that of a rigid body or (ii) the predetermination set of v~ contains only one vertex vp, the RDOF of vs 
is zero and the number of out-arcs from vp to v3 is more than DOF of vp, then there must be saturated 
singularity. 

Generally, there are two methods to position vs. One is using unary constraints that  describe 
absolute positions such as fixed position, horizontal, vertical and so on, which is excluded by Property 
3. The other method is to position by its predetermination set PD3. If PD~ is empty  or includes 
only one geometric entity whose DOF is less than that  of v~, obviously it is impossible for v~ to be 
positioned and there must be saturated singularity among the constraints of vs. 

) 

C2 

(a) (b) 

Fig.8. Graph characteristics of saturated singularity. 

Properties 1 and 2 are two necessary conditions for a normal constraint. Proper ty  3 indicates the 
graph characteristics of saturated singularity and becomes an efficient symbol differentiation method 
for that.  For instance, Fig.8(a) is the strongly connected graph of Fig. l(b) ,  in which the only strongly 
connected sub-graph SC has 4 entities and its RDOF is 2 x 4 - 6 = 2. After the optimal matching 
adjustment  is], which can ensure RDOF of any compound vertex vi: RDOF(vi)  -+ 0, SC contains 3 
entities SC = (Pl,P2,P3} and R D O F ( S C )  = 2 • 3 - 6 = 0 (Fig.8(b)). The predetermination set of 
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S C  is PD~ = {/3}. DOF of 13 is 2. However, it can be seen that  there are three arcs from 13 to SC, 

corresponding to constraints c3, c4, cto, which means rigid body S C  whose DOF is 3 is fully determined 
by 13 whose DOF is 2. It  is obviously impossible. According to Proper ty  3, there must be saturated 
singularity for SC. 

4.2 C o n s t r a i n t  R e s i d u e  P e r t u r b a t i o n  M e t h o d  

For redundancy singularity and embranchment singularity, the numerical judging method should 
be applied. E. J. Haug[ 91 presented a variable per turbat ion method to decide singular points. This 
method is efficient. However, it applies perturbat ion to all entities in the system indiscriminately and 
the scope of per turbat ion does not vary for different entities, which increases the expense of time of 
the method. 

Considering that  singularity is caused only by redundant constraints, we advance the Constraint 
Residue Per turbat ion Method (CRPM) which only involves the redundant  constraint set. 

If  Jacobian matr ix  q)q of a solving unit v is singular, then redundant  constraint set Cr C C can 
be obtained easily by the Gaussian Elimination Method. Here C is the constraint set of v. Set a 
perturbing value 5 for each constraint ci C C~ and then adopt  Newton-Raphson iteration. For 

Vc~ E Cr --~ F~ = F / +  5, 

where 5 > c, c is the iteration precision; 4. means per turbat ion direction; F is the constraint equation. 
Then compute with the iteration formula 

qj+l = qj - ~+  �9 F j ,  qJ 

where q is the orientation parameter  vector of v, ~5+ is the general inverse of Oq. Because the qJ 

perturbat ion is small, after a few steps of iteration we can determine whether there is a solution or 
not. If  there is a solution for either perturbat ion direction for ci and row rank deficit of r decreases, 
the singularity caused by ci is embranchment,  or it is redundancy. By this means, the types of 
singularity of all the constraints in Cr can be decided. 

In Fig.5, there is redundancy among the constraints between compound vertex S C  and its prede- 
termination set P D s  = { l l ,  12,pl} .  Cr = {c6, cT, c8}. For c~, the per turbat ion is: 

a2xo + b~yo + c2 = 4-5, 

where a2,b2,c2 are parameters  of l~.. After perturbation, l~ will have a slight translation and thus 
the intersectidn point of l~ and 12 will not be on circle c (Fig.9(a)). There is no solution for this 
perturbation.  Consider c7, the perturbat ion is: 

al xc + blyc + cl • r = 4-5, 

where at,b~,c~ are parameters  of 11. It means that  l~ moves along 12 (Fig.9(b)). Obviously, the 
perturbing result also makes Pl not on circle c, which is inconsistent with cs and there is also no 
solution. The per turbat ion  for Cs is 

- + ( y c  - y t )  - = •  

It means that  the radius of circle c changes for the perturbation. From Fig.9(c), it can be seen that  
after perturbation,  all the constraints are still satisfied and perturbing solution can be easily obtained. 
The Jacobian matr ix  ~q of S C  is: 

XO YO Xc Yc r 

c4 : 1 0 - 1  0 0 

c5 : 0 1 0 - 1  0 

c6 : a2 b2 0 0 0 

c7: 0 0 al bl 1 
cs : 0 0 (x~ - x t ) / R  (y~ - y l ) / n  - 1  

where E = ( p o , c } ,  C = { c 4 , c 5 , c 6 , c 7 , c s } ,  q = [xo,yo, xc, yc,r] T,  n = v / (Xc  - x l )  2 + (yc - yt) 2. 
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Because p0 and Pl are always on 12 before and after pe r tu rba t ion  and the values of (Xc - xl)/R 
and (yc- yl)/R do not  change, the row rank deficit of ~q is unaltered.  According to CRPM,  Cs causes 
redundancy  singularity. 

Similarly, in Fig.10(b), line l is tangent  with circle c. The  sys tem is singular. After either per- 
tu rba t ion  shown in Fig.10(a) or Fig.10(c), the row rank deficit of  the  Jacob ian  matr ix  of the system 
decreases to 0, which shows the system has embranchment  singularity. 

Po~c ~ c  irbation 

no solution no solution / ~ i perturbation 
l lution 

perturbat ion 
solution ~ ; "  

C ~  C ~  

(a) (b) (c) (a) (b) (c) 

Fig.9. Redundancy singularity. Fig.10. Embranchment singularity. 

The  algori thm of singularity differentiation can be summed up as follows: 
A l g o r i t h m  1. Globally Judging  the Redundancy  of  Const ra in t  c in an Under-Constra ined System 
Step 1. If the bipartite matching of c fails, c is redundant; return FALSE. 
Step 2. Initialize directed graph G; get the propagation set PP, of c. 
Step 3. Adopt the optimal adjustment algorithm is] to obtain the strongly connected sub-graphs on PP, 

and make G a DAG. Then the solving sequence S -= {vi} from c can be obtained along the out-arcs of c. 
Step 4. If (there is v E S and v is of saturated singularity) then c is redundant and return FALSE; 

else if (there is v E S and v is of redundancy singularity) then {search for inverse transitive path 
P on the non-propagation set of v}; 
else {print("c is normal constraint"); output the solving sequence; return TRUE}. 

Step 5. If (P  is empty) c is redundant; return FALSE; 
else{apply reversing operation on P; reset the solving sequence S; goto Step 2}. 

In  Algor i thm 1, Step 4 needs to judge the singularity type of  vertex v. Algor i thm 2 gives this 
judging method:  

A l g o r i t h m  2. Judging  the Singularity Type  of Vertex v 
Step 1. If (v satisfies Property 3) return "v is of saturated singularity". 
Step 2. Compute the Jacobian matrix Oq of v. 
Step 3. If (~q is normal) return "v is normal". 
Step 4. Compute dependent constraint set C~ of v by the Gaussian Elimination Method. 
Step 5. i = 1, r is the number of constraints in C~. 
Step 6. ci E C~, r0 = Rank(~bq). 
Step 7. Add a perturbation 6 on ci. 
Step 8. Solve v. 
Step 9. If (there is no solution) return "v is of redundancy singularity"; 

else if (rl = Rank(cbq) <_ to) return "v is of embranchment singularity". 

Step 10. If (i < r) {i + 1, go to Step 6}. 
Step 11. return "v is normal". 

Algor i thm 1 adaptively enlarges the propagat ion  set of constra int  c according to the singularity 
types of the vertices in the solving sequence SC and eliminates the singularity. Because to repeat  Step 
2 is limited, the complexity of the algori thm is approximately  equal to tha t  of DFE:  O(n + e) [12]. The  
a lgor i thm works well for under-constrained systems. However, it is also efficient for well-constrained 
and over-constrained systems. 
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4 . 3  S o m e  E x a m p l e s  

Using the O-O me thod  we have presented a uni ted model ing m e t h o d  for b o t h  2D and 3D geo- 
metr ic  constra ints  and developed a 2D/3D geometr ic  const ra in t  solver CBA (Cons t ra in t  Broadcas t ing  
Automat ion) .  F ig . l l  i l lustrates the hierarchy of CBA. 

i CbaModel 

.~. CbaModel 2D i 

' ~  Cba.Model 3D ] 

CBA classes ~ CbaObject, . . . .  ~-- 
I 

r -  . . . . .  Y -  . . . .  

CbaBody 7] 

CbaBody 3D - -  

I i CbaGe~ i 
' 

CbaPoint 3D ~.1 CbaPoinr~ 2D i , , 

~ CbaLine 2D . ,F~' CbaLine 3D 

~,  CbaCircle 2D , ,~ CbaPlane 3D 

L~ CbaEllipse 2D i ~'~ "'" 

!~, CbaRelation 

CbaDivertex 
! . . . . . . . . . . . . . . .  

L~ CbaDiEdge 

f 

: .~, CbaDigraph 
a 
'- . . . . . . . .  -~' CbaSolveUnit i 
i L 

i_ . . . .  ~{ CbaConstraint ] 

Cba.Dim 2D 1,~t{CbaConstraint 2D~ 
CbaDim 3D 14{CbaConstraint 3D~--~ 

! Cba o t ', 
CbaSolveUnit i 

-C.__b_a_D2g_ra.ph 3 D ~  

Fig.ll. The hierarchy of CBA. 

I 

1.5728 

J 

.7856 

(~) 

1 " ' "  

�9 "-. ' .3 
~.~ - . . . . .  

(a) (b) 

Fig.12. An example of constraint identification. 

T h e  module  of const ra in t  identification in 
CBA2D t ransforms general engineering graphs  
to pa ramet r i c  ones and identifies geometr ic  con- 
s t ra ints  according to relative posi t ions of geome- 
tric entities. Fig.12(a) shows a key way tha t  has 
n loops. By geometr ic  detect ion,  2 n  + 1 horizon- 
tal constraints ,  2 vert ical  constraints ,  4n tangent  

(b) constra ints  and 4n + 4 point-on-l ine constraints  
are identified. The  a lgor i thm also identifies suc- 
cessfully tha t  there are n -  1 r edundan t  tangency 
and 4n + 1 redundant  point-on-l ine constraints  in 

Fig.13. Tripod assembly. 

these constraints .  Finally, 2n + 1 horizontal constraints ,  2 vertical constraints ,  4 + 3(n - 1) = 3n + 1 
tangent  const ra in ts  and  3 point-on-l ine constraints  are ob ta ined  by CBA2D.  In this example ,  all the 
types  of s ingulari ty men t ioned  above occur. Part icularly,  af ter  the constra int  identification, labeling 
some addi t ional  d imensions  (e.g., Fig.12(b)) will lead to sophis t icated e m b r a n c h m e n t  singularity. 
CBA2D also can deal wi th  such kind of problems.  

In  another  example ,  in Fig.13(a), pole 2 mates  wi th  pole 1 and pole 3 by two co-axis relations. 
Each  co-axis re lat ion includes 4 constraints.  If  ano ther  co-axis relat ion is added be tween pole 1 and 
pole 3, CBA3D will close the t r ipod  and find out two redundan t  constraints  (Fig.13(b)).  (Please refer 
to [11] for our research on geometr ic  constraint  expression and decomposi t ion) .  P rac t i ce  has proved 
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that  the differentiation method presented in this paper is fast and efficient. 

5 C o n c l u s i o n  

Singularity is an important factor that affects directly the solving ability of a geometric constraint 
solver. In this paper, three types of singularities are presented, and pseudo-singularity, which is 
very common in-under-constrained systems, is analyzed. As one part  of the kernel of our geometric 
constraint solver CBA, the graph differentiation method and the constraint residue perturbation 
method are advanced to differentiate efficiently singular constraints. All the algorithms and methods 
proposed in this paper can also be applied to 3D geometric constraint systems and have proved efficient 
and fast in CBA 3D. 
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