J.C.S. Снем. Сомм., 1972

Direct Conversion of 2'-Hydroxychalcones into Isoflavones using Thallium(III) Nitrate: Synthesis of (\pm) -Sophorol and (\pm) -Mucronulatol

By L. FARKAS,* A. GOTTSEGEN, and M. NÓGRÁDI

(Research Group for Alkaloid Chemistry of the Hungarian Academy of Sciences, Budapest, Hungary)

and S. ANTUS

(Chinoin Pharmaceutical and Chemical Works, Budapest)

Summary Rearrangement of 2'-hydroxychalcones with methanolic Tl(NO₃)₃ followed by treatment with acid gives isoflavones.

THE oxidative rearrangement of 2'-benzyloxychalcones by $Tl(OAc)_3$ in hot methanol to acetals of the type (2; $R = CH_2Ph$) was first reported by Ollis and his co-workers¹ and provided a synthetical route to isoflavones though it could not be applied directly to 2'-hydroxychalcones. Later it was shown that using $Tl(NO_3)_3$ the rearrangement of simple chalcones was quantitative at room temperature² and we now report that 2'-hydroxychalcones, *e.g.* (1a and b) can themselves be directly and smoothly rearranged by $Tl(NO_3)_3$ in methanol to hydroxyacetals of the type (2; R=H) which gives the corresponding isoflavones on treatment with acid.

Chalcone (1a) (m.p. 201-203°) was converted into 2',7-dibenzyloxy-4',5'-methylendioxyisoflavone (m.p. 155-156°) (vield 25%). Transformation to 2',7-diacetoxy-4',5'methylenedioxyisoflavone (m.p. 191-192°), hydrogenation

to (\pm) -2',7-diacetoxy-4',5'-methylenedioxyisoflavanone (m.p. 156—158°), and deacetylation completed the first synthesis of (\pm) -sophorol (3) (m.p. 178—180°). (3R)-

Sophorol (m.p. 180-181°) was isolated from Sophora japonica.³

Similarly, chalcone (1b) (m.p. 119-121°) yielded 3',7dibenzyloxy-2',4'-dimethoxyisoflavone (m.p. 144-146°) (yield 70%), which gave on hydrogenation (\pm) -mucro-

nulatol (4) (m.p. 227-229°),4 one of the isoflavan components of Macherium mucronulatum.⁴

All new compounds gave the expected i.r. and n.m.r. spectra and correct elemental analyses.

(Received, 28th January 1972; Com. 128.)

¹ W. D. Ollis, K. L. Ormand, and I. O. Sutherland, J. Chem. Soc. (C), 1970, 119; W. D. Ollis, K. L. Ormand, B. T. Redman, R. J. Roberts, and I. O. Sutherland, *ibid.*, p. 125.
² A. McKillop, B. P. Swann, and E. C. Taylor, Tetrahedron Letters, 1970, 5281.
³ H. Suginome, J. Org. Chem., 1959, 24, 1655.
⁴ K. Kurosawa, W. D. Ollis, I. O. Sutherland, A. Braga de Oliviera, O. R. Gottlieb, and Magelhaes Alves, Chem. Comm., 1968, 1263.