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Abstract Traditional database query languages such as datalog and 
SQL allow the user to specify only mandatory requirements on the data to 
be retrieved from a database. In many applications, it may be natural to ex- 
press not only mandatory requirements but also preferences on the data to be 
retrieved. Lacroix and Lavency 1r extended SQL with a notion of preference 
and showed how the resulting query language could still be translated into 
the domain relational calculus. We explore the use of preference in databases 
in the setting of datalog. We introduce the formalism of preference datalog 
programs (PDPs) as preference logic programs without uninterpreted func- 
tion symbols for this purpose. PDPs extend datalog not only with constructs 
to specify which predicate is to be optimized and the criterion for optimiza- 
tion but also with constructs to specify which predicate to be relaxed and 
the criterion to be used for relaxation. We can show that all of the soft re- 
quirements in Reference 1()) can be directly encoded in PDP. We first develop 
a naively-pruned bottom-up evaluation procedure that is sound and complete 
for computing answers to normal and relaxation queries when the PDPs are 
stratified, we then show how the evaluation scheme can be extended to the 
case when the programs are not necessarily stratified, and finally we develop 
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an extension of the magic templates method for datalog 14) that constructs an 
equivalent but more efficient program for bottom-up evaluation. 

Keywords: Database Query Language, Datalog, Preferences and Constraints, 
Relaxation Queries, Bottom-Up Evaluation. 

w Motivation and Approach 
The motivation for our work stems from the observation tha t  traditional 

database query languages allow the user to express only the mandatory  require- 
ments on the da ta  to be retrieved from a database. In many applications, it 
is more natural  to express queries in terms of both mandatory,  or hard, re- 
quirements as well as preferences, or soft requirements. Lacroix and Lavency 1~ 
explore this idea with queries of the form 

select R where H prefer S 

whose result is the set of tuples from R that  satisfy both H and S, if the set is 
nonempty; otherwise, i.e., if no tuple satisfies both H and $, the result is the set of 
tuples that  satisfy just H. In other words, S is a preference, or a soft requirement. 
These authors also permit  nested preferences and extreme-value preferences, and 
show that  all such statements can still be translated into formulae in the domain 
relational calculus. 

This paper  explores the concept of preference in the setting of datalog, 
a framework tha t  offers more expressiveness than the relational calculus by its 
ability to support  transitive closures and general recursive queries. Just  as data- 
log is a restriction of conventional logic programs, our proposed paradigm, called 
preference datalog, is a restriction of preference logic programs (PLPs),  which we 
recently introduced in References ~~ for specifying optimization and relaxation 
problems in a declarative manner. Preference datalog programs (PDPs) are pref- 
erence logic programs (PLPs) without uninterpreted function symbols. PDPs  
extend datalog with constructs to specify which predicate is to be optimized and 
the criterion for optimization. These criteria are stated in terms of preference 
for one kind of solution over another. Furthermore, when optimal solutions are 
impossible to obtain, and we may be interested in finding suboptimal  solutions 
by performing some relaxation. We introduce the notion of a relaxation query 
for this purpose that  allows the user to specify the predicate to be relaxed and 
the criterion to be used for relaxation. 

The contributions of this paper  are two-fold: 

1. At the language level, we show that  preference datalog can directly encode 
all of the soft requirements in Reference1"< We also show tha t  the concept 
of preference provides a modular  and declarative (i.e., logical) means for for- 
mulating optimization as well as relaxation queries in deductive databases. 
It  should be noted that  while several approaches for optimization have been 
proposed in the literature, it is not clear whether any of them can account 
for our formulation of relaxation queries. 
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2. At the computation level, we describe bottom-up evaluation methods for 
preference datalog programs. (The evaluation mechanism for PLPs, on 
the other hand, uses a top-down schemeS"6).) We first develop a naively- 
pruned bottom-up evaluation procedure that is sound and complete for strat- 
ified PDP, we show how the evaluation scheme can be extended to the case 
when the programs are not necessarily stratified, and finally we develop an 
extension of the magic templates method for datalog14) that  constructs an 
equivalent but  more efficient program for bottom-up evaluation. 

In earlier work, we have given a model-theoretic semantics for PLP using 
simple concepts fi'om modal logic. ~ Essentially we provided a possible-worlds 
semantics in which each world is a model for the first-order clauses of the pro- 
gram, and the ordering among the worlds is enforced by the preference clauses. 
We then gave a declarative semantics for optimization queries in terms of prefer- 
ential consequence, or t ruth in strongly optimal worlds. (This is in constrast with 
logical consequence which refers to t ru th  in all worlds.) We also gave the seman- 
tics of relaxation queries in terms of relaxed preferential consequence, i.e., t ru th  in 
suitably-defined suboptimal worlds. All these concepts carry over to preference 
datalog programs as well. The use of modal logic for this purpose is not surpris- 
ing because optimization and relaxations are meta-level non-monotonic notions; 
an area where modal logics have found use in the past. 1,12) Furthermore, since 
we are computing preferential consequences as opposed to logical consequences, 
we do not incur the cost of theorem proving in a general modal logic. 

Our concept of optimization is closely related to the notion of extreme- 
value aggregate operations (such as rain and max) in deductive databases. A 
program with such aggregate operations has an equivalent first-order formula- 
tion using negation. There has been considerable interest recent years in provid- 
ing a satisfactory semantics for aggregate operations. 2.~,1~1~.21) Ganguly et al. 2) 
considered first-order aggregates and showed that  under certain monotonicity 
conditions, the first-order equivalent program has a total well-founded model 22) 
that  can be computed using a greedy fixed-point procedure. Kemp and Stuckey 9) 
examined programs with recursion through aggregation. To give semantics for 
programs with aggregation, they extended two well-known semantics for pro- 
grams with negation, namely, well-founded models and stable models. ~) Ross 
and Sagiv 1~) provide semantics for aggregation where the domain over which the 
aggregation is performed is a complete lattice and the program is monotonic. 
By Tarski's theorem, we are guaranteed the existence of a least fixed-point for 
the aggregate operation. Sudarshan et al. ls..~) provide semantics for a class of 
aggregate operators using valid models for normal programs. Compared with 
these methods, the most noteworthy semantic difference in our approach is that  
the ordering among worlds, which is determined from the preferences, explicitly 
conveys the ordering among solutions, and this ordering is crucial to providing 
the semantics of relaxation queries. Furthermore, our model theory also has the 
desirable property of associating a unique intended preference model with every 
preference logic program--a  feature that  is not necessarily guaranteed by the 
negation-based approaches. 



60 K. Govindarajan, B. Jayaraman and S. Muntha 

In a different setting, the idea of hard and soft requirements has also 
been explored in HCLP (hierarchic constraint logic programming)2~) wherein 
a constraint may be optionally tagged with a weight, such as s t r o n g ,  weak,  
etc. This tag indicates the relative importance of a constraint and serves to 
organize all constraints into a linear hierarchy. The notion of a comparator 
is introduced in order to compare and order alternative solutions to the hard 
constraints by determining how well they satisfy the soft constraints. Given 
a constraint hierarchy, the solutions of interest are those that  satisfy the hard 
constraints and are optimal according to the comparator.  We have shown in 
Reference ~) how HCLP can be directly translated into PLP, thereby showing 
that  PLP is powerful enough to capture the notion of hard and soft constraints 
in HCLP. PLP  is more powerful than HCLP because the latter does not provide 
a general support  for optimization or relaxation queries. 

The rest of the paper is organized as follows: Section 2 introduces the 
syntax of preference datalog programs. Section 3 illustrates optimization and 
relaxation queries and shows how to translate the preference queries of Lacroix 
and Lavency into equivalent preference datalog programs. Section 4 describes 
bot tom-up evaluation techniques preference datalog programs. Section 5 de- 
scribes a magic rewriting technique that  generates a more efficiently executable 
program. Finally, section 6 provides conclusions and directions for further re- 
search. 

w Preference Datalog Programs 

2.1 Syntax of Preference Datalog Programs 
A P D P  has two parts, afirst-order theory (without uninterpreted function 

symbols) and an arbiter, as described below. The first-order par t  consists of 
clauses each of which can take one of two forms: 

1. H ~ B a , . . .  , Bn, (n >_ 0), i.e., definite clauses. Each Bi is an a tom that  
makes use of uninterpreted as well as interpreted predicates (for addition, 
comparison, etc.) as in datalog. In general, we permit  any class of datalog 
programs for which there exist sound and complete bot tom-up evaluation 
schemes with respect to some canonical model. 

2. H ---* G1 . . . . .  Gt I B1 . . . .  , Bin, (I, m >_ 0), i.e., optimization clauses. Vari- 
ables appearing only on the RHS of the --* clause are existentially quantified. 
G1 , . . .  , Gl is called the guard, and each Gi is a literal that  must  be satisfied 
for this clause to be applicable to a goal. The intended meaning of such a 
clause is tha t  the set of solutions to the head is some subset of that  of the 
body. 

Moreover, the predicate symbols appearing in a PDP can be parti t ioned into 
three disjoint sets, depending on the kinds of clauses used to define them: 

1. C-predicates appear  only in the heads of definite clauses and the bodies 
of these clauses contain only other C-predicates (C stands for core). The 
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C-predicates define the mandatory  requirements to be satisfied by each so- 
lution. 

2. O-predicates appear  in the heads of only optimization clauses (O stands 
for optimization). For each ground instance of an optimization clause, the 
instance of the O-predicate at the head is a candidate for the optimal solution 
provided the corresponding instance of the body of the clause is true. Also, 
for simplicity, we assume that  the clause-heads and guards of the --~ clauses 
defining an O-predicate are such that ,  if any two heads unify, the conjunction 
of the respective guards and clause-heads are unsatisfiable. We illustrate 
this requirement by an example in section 3. 

3. D-predicates appear  in the heads of only definite clauses and at least one 
goal in the body of at least one such clause is either an O-predicate or a 
D-predicate. We disallow mutual  recursion between an O-predicate and a 
D-predicate. (D stands for derived from O-predicates.) In other words, if 
a predicate is defined using definite clauses and does not depend on an 
O-predicate, it is classified as a C-predicate. 

The first order theory T can therefore be divided into two disjoint parts,  
Tc and To. The definitions of the C-predicates make up the core program, 
Tc, and the definitions of the O-predicates and the D-predicates make up the 
optimization program, To. A preference datalog program P can be viewed as a 
3-tuple (Tc, To, A), where Tc and To together form T and .A is the arbiter. Note 
that  the C-predicates are different from the D-predicates because the D-predicates 
are eventually defined in terms of O-predicates. This, however, is not the case 
with C-predicates because they are defined in terms of other C-predicates only. 
One can think of the C-predicates as specifying the arbi t rary constraints that  are 
to be satisfied by any potential solution. The D-predicates on the other hand, 
are defined in terms of O-predicates. 

Given any preference datalog program, we can order the O-predicates into 
levels so that,  for any optimization (--~) clause, the level of the O-predicate in 
its head is _> the level of any O-predicate in its body. We can construct the 
predicate call graph amongst the O-predicates and topologically sort it assigning 
equal ordinals to all the O-predicates in a cycle. Note tha t  this construction is 
possible for an arbi t rary preference datalog program. The ordering _> has the 
property that  the equality holds between the levels of two O-predicates 01 and 
02 if and only if they are defined in terms of each other. We can then define the 
level of the D-predicates in the program as the level of the O-predicate used in 
the definition of the D-predicate. If a D-predicate is defined in terms of multiple 
O-predicates, the level of the D-predicate is the level of the highest O-predicate 
used in its definition. 

The arbiter part of a preference datalog program has clauses of the follow- 
ing form: 

p(~ ~_ p(~) *-- LI, . . .  ,Ln (n >_ O) 

where p is an O-predicate and each Li is some literal (positive or negative atom). 
In essence this form of the arbiter states that  p(t-) is less preferred than p(~) if 
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L1,. . .  ,Ln. Each Li is a literal, i.e., an a tom whose head is a C-predicate or 
the negation of such an atom. The right hand side of a such a preference clause 
provides the justification for preferring one solution over another. By allowing 
only C-predicates on the right hand sides of arbiter clauses, we make justification 
for the preferences uniform across the worlds in the possible worlds semantics. 
Since the programmer  has complete flexibility in defining the C-predicates, this 
requirement is not restrictive. 

Finally, we introduce a relaxation query which has the form 

? - RELAX p(t-) wa r  c(~), 

where p is an O-predicate and c is a C-predicate or an interpreted predicate. The 
predicate p is called a relaxable predicate and c(~;) is said to be the relaxation cri- 
terion (WRT is read as 'with respect to').  The intended meaning of the relaxation 
goal is as follows: If  the optimal solutions to p(t-) satisfies c(~), then those are 
the intended solutions to the relaxation goal. Otherwise, the intended solutions 
are got by restricting the feasible solution space of p(t~ by treat ing c(g) as an 
additional constraint and then finding the optimal solutions in this restricted 
space. 

The use of the term 'relaxation'  may at first seem a bit counter-intuitive 
since the effect of a goal RELAX p(t~ WRT c(~) is to t reat  c(g) as an additional 
constraint on the feasible solutions to p(t-). The relaxation is in the sense that  
the optimali ty of p will have to be relaxed in order to satisfy c. 

Finally we note that  a relaxation goal may also appear  in the body of an 
O-predicate or a D-predicate, but we do not consider such goals in this paper. 

w Query Paradigms in Preference Datalog 
We now briefly illustrate a few query paradigms within the PDP frame- 

work. We first show how preferences in the relational calculus can be captured 
within the P D P  framework and we also consider relaxation queries. 

3.1 Preferences in Relational Calculus 
We now show that  the kinds of queries expressible in the framework of 

Lacroix and Lavency 1~ can be encoded in the framework of PDP. We take the 
liberty to stream-line their syntax in this paper. We build on queries of the 
form s e l e c t  R w h e r e  P, whose corresponding relational calculus expression 
for the query is {f  E R]P(~)}. Essentially, this query selects out the tuples 
from the relation R that  satisfy the property P. We can translate queries in the 
domain relational calculus into datalog in the most natural  way. Each relation in 
the database is represented by an EDB predicate and the properties are either 
constraints or are user-defined predicates. A query with a simple preference 
clause has the form 

select X where Q prefer PI. 

Operationally, we first t ry to satisfy Q A P 1. If the resulting answer set is empty, 
we drop P 1 and just  report the tuples that  satisfy Q. The set of solutions to the 



Preference Queries in Deductive Databases 63 

query can be expressed as follows: 

{2 �9 XIQ(~  ) A [39[Q(0) A PI(O)] ~ Pl (2)]}  

The equivalent P D P  query is Xl(~),  where Xl is an optimization predicate 
defined as follows: 

xz (0  -~ Q (0,  x (~. 
xl (~) _~ xl (~2) ~- Pi (h), ~ el (~). 

Suppose no solution to Q satisfies P i, the arbiter is not applicable and all so- 
lutions to Q are reported as solutions to the query, as desired. However, any 
solution for Q that  satisfies P 1 will be preferred over (i.e., will prune) solutions 
for Q that  do not satisfy P 1. This is precisely the effect tha t  is specified by the 
preference clause in the original query. 

Nested Preference Queries: In many situations, some soft requirements are 
more important  than  others. This is captured in Reference 1~ by a nested pref- 
erence clause of the form: 

select X where Q prefer P1 then P2. 

Essentially, tuples in x that  satisfy Q as well as P1 and P2 are returned as 
answers. However, if there are no such tuples, then among the tuples that  
satisfy Q, we pick those that  satisfy P1. However, if the latter set is empty, but 
there are some tha t  satisfy Q and P2, we return them instead. Formally, the 
answer set is: 

{2 E XIQ(2) A [3t3Q(9) A P1(~3) A P2(9) ~ P1(2)  A P2(2)] 

A [~3~3[Q(~) A PI (~ )  A P2(~)] A 39[Q(9) A Pl(9)]  ~ P l (2) ]  

A bm3[@(~) A P l ( ~ )  A P2(~3)] A ~3~[Q(~) A m ( ~ ) ]  A 3~[@(~2) A P2(~)] 

P2(~)]}  

The equivalent query in PDP makes use of hierarchic optimization. The trans- 
lated query is x2 (~) where the optimization predicate X2 is defined as follows: 

x2 (t-) -~ x l  ( t7 
x2 ({1) _~ x2 ({2) ~- P2 ({2), ~ P2 ({1). 
xl (t-) -~ x (t-), Q (~. 
x l  (El) _< x l  (h )  ~- P1 ({2), ~ P1 ({1). 

Equally-Important Preferences: In certain situations, it is important  to enforce 
multiple preferences that  have the same importance. These were formulated in 
the framework of Reference 1~ as follows: 

select X where Q prefer PI, P2 

Informally the effect of this query is to pick from X all tuples tha t  satisfy Q. 
Furthermore, if the solutions t oQ satisfy both P l  and P2 those are the answers 
to the query. However, if the solutions to Q do not satisfy both P 1 and P2, the 
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intended solutions are those that  satisfy at least one of P1 and P2. However, 
if none of the solutions of Q satisfied either P 1 or P2, all the solutions to Q are 
reported as solutions. Formally, the answer set is: 

{/:IQ(~) A [3~[Q(~) A Pl (~ )  A P2(9)] ~ P l ( ~ )  A P2(2)] 

A[-~39[Q(9) A P l ( 9 )  A P2(9)1A 39[Q(9) A [Pl (9  ) V P2(9)1] ~ [Pl (2)  V P2(2)1]} 

The equivalent P D P  is as follows. Note tha t  we have taken the liberty to use 
complex boolean formulae in the antecedents of arbiter clauses below, recogniz- 
ing that  such formulae can be translated into equivalent P D P  clauses. 

x~ (~ -~ x (~, Q @. 
x l  ({1) _< X l  ({2) ~-  P1 ({~), P2 ({~), ~ ( P1 ({1) A P2 ({1)) .  
Xl ({i) -< Xl ({2) +-- ( P1 ({2) V P2 ({2)),-7 ( P1 ({1) V P2 ({1)). 

Extreme-Value Preferences: Preference clauses with a maximum or a minimum 
preference are formulated in the framework of Reference 1~ as follows: 

select X where Q prefer maximum T wrt P 

Essentially, we want to pick from the relation x those tuples that  satisfy Q 
and that  are mapped  by the mapping relation p to the highest possible value. 
Formally the solution set is: 

{2 6 X[Q(~) A [3f/3tQ(9) A P(9,  t) ~ P(2,  t l )  A t l  

= max{t ISg[P( f / , t  ) A Q(t3)]}]} 

where P is the relation that  links the 2% to the t's. The equivalent P D P  program 
as before introduces a new O-predicate Xl as before with the following clauses: 

Xl ({,U)--+ X ({), Q (t-), P ({,U). 

x l  ({1, u l )  _< x l  ({2, u2) ~ -  u l  < u2. 

Thus PDP can express all of the preference clauses introduced in Reference 1~ 
Note that  we have only made use of optimization clauses in the translated pro- 
grams, i.e., relaxation queries are not needed in these translations. 

3.2 Relaxation Queries 
Consider the person (Name, Sex, DOB) and ancestor (Child, Ancestor) 

predicates from the well-known family database example: 

father (Child, Father) . 

mother (Child, Mother) . 

parent (Child, Parent) . 

parent (X, Y) ~- father (X, Y) . 

parent (X, Y) ~- mother (X, Y) . 

ancestor (X, Y) +- parent (X, Y) . 

ancestor (X, Y) +- parent (X,Z), ancestor (Z, Y) . 
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We can give a logical specification for the oldest ancestors as follows: 

oldest_anc (X, Y) -~ ancestor (X, Y) . 

oldest_anc(X, Yl) _--< oldest_anc(X, Y2) +-- 

person(Yl,_,DOBl), person(Y2,_,DOB2), DOB2 < DOBI. 

The first clause introduces the opt imizat ion predicate oldest_anc, whose op- 
t imal solutions are a subset of the solutions for a n c e s t o r  (hence the use of  a 
--* clause). The  arbi ter  clause states the criterion for opt imizat ion:  given two 
solutions for o l d e s t _ a n e ,  the one with the smaller DOB is preferred. 

To il lustrate the relaxation goal, suppose tha t  we want  to re-use the above 
definition of o l d e s t _ a n c  to find the oldest female ancestors. First  note tha t  
the query 

~- oldest_anc(X,Y), person (Y, female,_) 

is not  correct: If  all the oldest ancestors are male, the above query computes  no 
answer. We can use the relaxation goal to solve our  s ta ted problem, as follows. 

~- RELAX oldest_anc (X, Y) WRT person (Y, female, _) . 

This goal works by restricting the feasible space of oldest_anc (X, Y) by treat- 

ing person (Y, female, _) as an additional constraint and then finding the 

optimal  solutions in this restricted space. 

w Bottom-up Evaluation for Preference Datalog 
In  earlier work, ~'6) we introduced a top-down query evaluat ion mechanism 

for preference logic programs.  In many  data log programs a b o t t o m - u p  evaluation 
mechanism is more  efficient as it can avoid unnecessary re -computa t ion  th rough  
memoization.  Fur thermore,  since bo t tom-up  evaluation is be t ter  than  top-down 
for datalog,  2~ we are interested in s tudying  bo t tom-up  evaluat ion techniques 
for preference datalog.  We first consider bo t tom-up  evaluat ion for stratified 
and locally stratified PDP.  Finally, we present a magic rewrit ing technique for 
P D P  so tha t  the bo t t om-up  evaluation of the rewrit ten p rogram does not make 
inferences tha t  are not  relevant to the query. 

4.1 Stratified Programs 
Traditionally,  stratif ication is defined with every respect  to all the predi- 

cates in the program.  In PLP,  however, we are interested in stratif ication as it 
applies to the O-predicates only. 

Definition 4.1 
A preference logic program P is said to be O-stratified if the following holds: 
There is a mapp ing  f from the set of O-predicates to  the set {1, . . .  , n}, for some 
least n, such tha t  if an instance of an O-predicate P1 appears  in the body  of  a 
--* clause defining an O-predicate 192, then f(P1) < f (P2) .  For any O-predicate 
P ,  its rank is defined to be f(P). 
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We first consider O-stratified preference datalog programs. Suppose the 
given preference datalog program has k levels; the naively pruned bot tom-up 
evaluation of the program has k + 1 stages as follows: 

1. Compute  bot tom-up the canonical supported model of the core program, 
and let this be M0. This may be computed incrementally using the semi- 
naive iteration. 

2. Consider the definitions of the O-predicates at level 1. Treating the ~ clauses 
just as ~-- clauses (the conditions before the guard in the --~ clause are 
treated as ordinary goals in the ~-- clause) and start ing from M0, compute 
bot tom-up the canonical model of the clauses defining O-predicates at level 
1. Let this set be O~ p (up stands for unpruned). Suppose S is a set of ground 
atoms and .4 is a set of arbiter clauses. The result of applying the arbiter 
.4 on the set S is a set T defined as follows: 
T -- {p(t-) C S I there does not exist an arbiter clause A C .4 of the form 
P021) _ P(U2) +-- c l (~a) , . . .  ,Cn(f)n), a n  atom P({1) E S and a substitution 
0 such tha t  0 is the most general unifier of the set of equations {p(t-) = 
p(~q),p({a) = p(u2)} and c1(~1)0 . . . .  ,cn(G~)O is true. The set T is said to 
be the result of applying the arbiter on the set S. 
Suppose the result of applying the arbiter on the set O~ p is O1. Now 
consider the definitions of D-predicates of level 1. Start ing with the set O1, 
we construct bot tom-up the canonical model of program whose clauses are 
the definitions of the D-predicates of level 1. Let this set be M1. 

3. For each i > 2, we start  from Mi-1 and construct Mi as in step 2. 

We now state  the soundness and completeness results for the bot tom-up evalu- 
ation technique. We refer the reader to the Appendix for a brief description of 
the model theory. The following lemma states the correctness of interpreting --~ 
clauses as ~-- clauses. 

Lemma 4.1 
Suppose 7" is a O-stratified collection of clauses containing a clause C of the 
form: 

p(t~ ~-- e l (U1)  . . . . .  Cm(~tm),pl(tl) . . . . .  pn(tn) 
Suppose the set S is a supported model for 7-. Now, consider the theory 7-~ = 
(7- \ {C}) U C' where C' is a clause of the form: 

p(t~ 4-4 C l ( U l ) , . . .  ,Cm(Um) I Pl({1) , . . .  ,pn(tn) 

where all the variables that  occur only on the right hand side are existentially 
quantified and the ei's are treated as antecedents of the implication. Any sup- 
ported model S r of 7-r is such that  S r C_ S. Indeed, S itself is a supported model 
for T ~. 

Proof 
Consider the clause of the form: 

p(t--) ---* C l ( U l ) , . . .  ,Cm(Ztm) I p l ( t - 1 ) , . . .  ,Pn({n) 
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Note tha t  the variables tha t  appear  only on the right hand  side of  the ~ clause 
are existentially quantified. A set of a toms S will model  such a clause if it 
has the following property.  Suppose a ground instance p(t-)O of the  head of  the 
clause is in S, t ha t  is 19 satisfies Cl( f i l ) , . . .  ,Cm(tm),  then there must  be some 
assignment cr for the variables tha t  occur only on the right hand  side such tha t  
{ p l ( t l ) 0 ~ , . . .  ,pn( t~)0~} C S. 
Now consider a clause of the form: 

p(t--) +--- Cl (Ul) , . . .  , Cm(tm),Pl({1),... ,Pn({n) 

Note tha t  for such a clause, every variable tha t  occurs in the  clause is universally 
quantified. Suppose a set of a toms Sa is a suppor ted  model  for this clause. This 
means tha t  for every subst i tut ion ~ such tha t  {cl (ta)~?, �9 �9 �9 , cm (tim)r/, Pl (tl)~, �9 �9 �9 , 
Pn({n)~} _C $1, we have tha t  p(t~T/C $1. Clearly each set S tha t  models the  --* 
clause is a subset of  the set $1 tha t  models the corresponding ~- clause. This is 
because we can decide not to include a part icular  instance of  the head of the +-- 
clause into the set S and still model the --~ clause. The  set $1 itself is a model  
for the --~ clause as long as the variables tha t  appear  only on the r ight hand side 
of the --~ clause are existentially quantified. Therefore, by t rea t ing the --~ clause 
as a ~-- clause, we can obtain  all the possible subst i tut ions for the goal with an 
O-predicate p at its head tha t  can model the clause for the p. �9 

The  consequence of the above lemma is tha t  solutions to any O-predicate 
goal G can be compu ted  by t reat ing --* clauses as *- clauses. In wha t  follows, a 
worm is a collection of  instances of the predicates in the p rogram tha t  is a model  
for the clauses of  the program. 

Theorem 4.1 (Soundness and Completeness) 
Given a O-stratif ied preference data log p rogram with n levels, an a tom A belongs 
to the set Mn cons t ruc ted  by the naively pruned bo t t om-up  evaluat ion procedure  
if and only if A is a preferential consequence of  the program.  

Proof 
The proof  is by induct ion on the level of  O-predicates in the  program.  Clearly, 
we are interested in the case when the head of the a tom is an O-predicate, since 
the correctness of  the  other  kinds of  a toms  will follow from that .  
Base ease: Consider an a tom A = p(t-) such tha t  the level of the O-predicate p 
is 1. Since the p rogram is O-stratified, each model for the ~ clause is a subset 
of  the corresponding +-- clause. From this it follows tha t  any instance of p tha t  
appears  in any world is a subset of the set O~ p. Furthermore,  if the arbiter ap- 
plies between two instances of p then the corresponding worlds in the intended 
preference model  are related. Since the program is O-stratified, the s trongly 
opt imal  worlds are not  related to themselves (for proof  see Reference4)). There-  
fore, the set of  instances of  p tha t  remain  after the pruning  step are precisely 
the set of  preferential consequences. Since the D-predicates are defined in terms 
of O-predicates via ~-- clauses, if we star t  with the pruned set of O-predicates and 
compute  b o t t o m - u p  the least fixed point  of  the clauses defining the D-predicates 
we would get the declarative semantics of the program at level 1. 
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Inductive Hypothesis: Given a preference logic program, the set Alk is the declar- 
ative semantics of the program at level k. 
Inductive Step: Consider the definitions of the O-predicates at level k + 1. By 
our inductive hypothesis, the set ]ilk is the declarative semantics of the program 
up to level k. Recall that the worlds in the intended preference model at level 
k + 1 were constructed by extending the set Mk with instances of O-predicates 
and D-predicates so that each world models the clauses for the predicates at level 
k + 1. We can use the lemma from the previous chapter to conclude that each 

up 
instance of an O-predicate that occurs in any world is present in the set Ok+ 1. 
Furthermore, after pruning, the set of instances O-predicates are precisely those 
that are true in some strongly optimal world. Extending the set Ok+l to the 
set 5ik+1 (using the definitions of the D-predicates at level k + 1), gives us the 
declarative semantics for the program at level k + 1 as bottom-up evaluation is 
complete for +- clauses defining the D-predicates. �9 

If the program is not O-stratified, a naively-pruned bottom-up evaluation 
is not complete. For instance, consider the following non-stratified program: 

q(X) +- p(X). 

p(b) --+ p(a), r(a) . 

p(a) -+ p(b), r(b) . 

p(a) -< p(b) . 

p(b) -< p(a) . 

r(a) . 

r(b) . 

The query q (X) has two correct optimal answers: X = a and x = b since 
q (a) ,  and q (b) are both preferential consequences of the program (see ap- 
pendix for definition). The reader may note that standard model theoretic tech- 
niques such as well-founded models would not classify these as correct answers. 
The possible worlds semantics that we associate with preference programs that 
defines these to be the correct answers. Since the least model of the set of clauses 
obtained by treating the --+ clauses as +- clauses is {r(a) ,  r(b)},  the naively- 
pruned bot tom-up evaluation will not compute either answer for this query. This 
example also illustrates why top-down evaluation may be more suited for pref- 
erence logic programs than bottom-up evaluation. Since bottom-up evaluation 
works with ground instances, it is more difficult to guarantee soundness and 
completeness. In top-down evaluation, the requirement that the invoked goals 
be sufficiently non-ground was crucial in guaranteeing soundness. In bottom-up 
evaluation, however, that requirement is difficult to enforce. If the program is 
locally O-stratified, bottom-up evaluation succeeds as lemma in showed that the 
various models for the -~ clause are subsets of the canonical model for the cor- 
responding +- clause. Non-stratification, however, had a profound effect on the 
top-down operational semantics. The search tree emanating from the goal was 
infinite which is not the case for bot tom-up evaluation. 

4.2 Locally Stratified Programs 
We now consider programs that are not necessarily O-stratified and show 
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how the bottom-up evaluation can be extended to those programs. 

Definition 4.2 
A preference logic program P is said to be locally O-stratified if the following two 
conditions hold: 

1. There is a mapping f from the set of O-predicates to {1 . . . .  , n} for the least 
n such that if an instance of an O-predicate t'1 appears in the body of a 
clause defining an O-predicate P2, then f(P1) _< f(P2). In addition, for any 
O-predicate P, f(P) is the rank of P. 

2. There is a well-founded ordering -~k over the set of ground instances of all 
O-predicates of rank k, defined as follows: (i) ground instances of base facts 
of O-predicates of rank k all map to the • of the ordering -~k; and (ii) ground 
instances of optimization clauses have the property that  each instance of an 
O-predicate of rank k that appears in the body is -<k the instance of the 
O-predicate of rank k that appears in the head. 
Furthermore, the ordering -% is defined by considering only those argument 
positions of a ground instance that  are not used by the arbiter clauses to 
prefer one solution over another. 

When the program was O-stratified, we were able to perform a bottom- 
up evaluation of the program level by level. However, when the program is not 
O-stratified, we cannot do the same. The technique works for programs that 
are O-stratified because by the time we are evaluating the program at level k, 
we accurately know the preferential consequences of predicates upto level k - 1. 
This however is not the case when the program is not O-stratified. 

Consider the following dynamic-programming formulation for the minimum- 
distance problem as follows: 

min_dist (X, X, 0, 0) . 

min_dist (X, Y, I, C) 

min_dist (X,Y,N+I,CI+C2) 

-~ X <> Y I edge(X,Y,C) . 

-~ N > 0, X <> Y ] 

min_dist (X, Z, i, Cl) , 

min_dist(Z,Y,N, C2) . 

min_dist (X, Y, N, Cl) ~ min_dist (X, Y, N, C2) +- C2 < Cl. 

The optimal subproblem property of the minimum-distance problem is ex- 
pressed well by the above formulation: each call to m i n _ d i s t  uses only the 
optimal solutions to subsequent recursive calls on r a i n _ d i s t .  Note that this 
program has function symbols such as +. However, for the purposes of the dis- 
cussion here, we will treat such function symbols as being pre-interpreted and 
the resulting program is a constraint datalog program, s) 

The technique outlined in the previous subsection will work for such lo- 
cally O-stratified programs, since we can prove a lemma similar to lemma 4.1 
and thereby treat --* clauses as ~-- clauses for the purpose of generating solu- 
tions. However, it is possible that non-optimal versions of some O-predicates 
may be used to generate facts that will then get pruned later. Therefore, the 
level by level bot tom-up evaluation will generate unnecessary facts. We need to 
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make sure tha t  when using a recursive rule for an O-predicate p, we only consider 
instances of the p in the body that  are known to be optimal. 

A similar problem arises in bo t tom-up  evaluation of programs with nega- 
tion. There, when using a recursive rule for a predicate Pl tha t  depends neg- 
atively on itself, we need to make sure tha t  we have enough information to 
actually infer the negative instance in the body. Ross 1G) discusses a technique 
for bot tom-up evaluation of such programs that  addresses this problem. We now 
show how a similar technique can be used for bot tom-up evaluation of preference 
datalog programs. 

In keeping with the standard terminology, we refer to the predicates de- 
fined using base facts Extensional Database  predicates (EDB predicates) and 
those defined using rules Intensional Database  predicates (IDB predicates). Fol- 
lowing Ross, TM we introduce the following auxiliary predicates: 

1. A depends predicate (abbreviated as depo) that  keeps a record of which 
atoms depend on optimal instances of other atoms. 

2. A unary un-depends predicate (abbreviated as depo') that  keeps a record of 
atoms whose optimali ty has been decided. 

3. A currently depends predicate (abbreviated as dd). This relation is precisely 
depo - depd. 

4. An extra  modal operator o. Intuitively, op(t~ holds if at the previous fixed 
point, p(t-) is known to be optimally true. Tha t  is, no other instance of p is 
preferred over p(t-) at the previous fixed point. 

The relations depo, depo ~, and dd are maintained by the bot tom-up eval- 
uation procedure. We only provide intuitive definitions for them. However, they 
could be implemented a much more efficiently than described here. The key 
intuition behind using the modal operator  o is that  we want to postpone the 
firing of some rules until optimal instances of the goals on right hand side have 
been computed. I ts  effect on the bo t tom-up  computat ion is that  the bot tom-up 
evaluation reaches many fixed points. At each fixed point, some new optimal  
instances may be inferred and that  enables some more new rules to fire. This 
goes on till at  some fixed point no more new optimal instances are inferred. 

Furthermore,  we also use me ta  variables that  can unify with arbi trary 
atoms. Given a rule r, the opt-replacement of r is the rule obtained by replacing 
each O-predicate goal q(t-) in the body of r with oq(t-). 

Definition 4.3 
Given a preference datalog program P,  we define the opt-rewritten version popt-R 
of P as follows: 

1. For every rule r, the opt-replacement of r is in popt-R. 
2. For_every rule of the form p (~  --~ P1~[1),--- ,Pn(~n) (or p(t-) ~-- P l ( t t ) , - - -  , 

pn(t~)), and for i from 1 to n, if p~(ti) is an O-predicate goal, we add the 
opt-replacement of the rule: 
depo(p(t-),pi(ti)) *-- pl(~-l), . . .  ,Pi-x(~-i-1) 

3. For every rule of the form p(t--) --~ P l ( t l ) , - . -  ,P,~(tn) (or p(t-) ~ P1(/1), . . .  , 
p~(/,~)), and for i from 1 to n, ifp~(ti) is not an O-predicate goal or an EDB 
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predicate, we add the opt replacement of the rule: 
depo(p( t~, X) ~-- p1({1), �9 . �9 ,p i - l ({ / -1) ,  dd(pi({i ), X) 

4. We also add the following rules to popt-R 

depo'(Q) +- dd(Q, R), R. 
depo'(Q) ~ dd(Q, R), oR. 

5. There is a meta-rule in popt-R. 

oP +-- VQ(depo(P, Q) ~ depo'(Q)), optimal(P). 

The meta-rule is defined in terms of an embedded implication =~. Basi- 
cally, it says that  a fact of the form oP  can be inferred if for each fact Q such that  
depo(P, Q) is true at  the current fixed point, it is the case that  depo'(Q) is true. 
Furthermore, P is optimal  in that  there is no other instance of the predicate at 
the head of P tha t  is true at the current fixed point that  is preferred according 
to the arbiter. The meta-rule succintly captures the computat ion that  has to be 
performed by the bot tom-up evaluation procedure at each fixed point. 

Now, consider the program for m i n - d i  s t  from before. The opt-rewrit ten 
version of that  program looks as follows: 

m i n _ d i s t  (X, X, 0, 0) . 
min_dist (X, Y, l, C) -~ X <> 

min_dist (X,Y,N+I,CI+C2) -~ 

Y I edge(X,Y,C). 

N > i, X <> Y I 
o min_dist (X, Z, i, Cl) , 

o min_dist (Z,Y,N, C2) . 

min_dist (X, Y, N, Cl) _~ min_dist (X, Y, N, C2) ~- C2 < Cl. 

depo (min_dist (X, Y, N+I, CI+C2), min_dist (X, Y, i, Cl) ) ~- 

N > 0, X <> Y. 

depo (min_dist (X, Y,N+I, CI+C2), min_dist (Z, Y, N, C2) ) ~- 

N > 0, X <> Y, o min_dist(X,Z,l,Cl). 

The naively-pruned bot tom-up evaluation now proceeds along using pro- 
gram popt- R. 

1. First compute the least fixed point of the clauses defining the core predicates 
in the program. Let this set be M0. 

2. Now consider the clauses that  define the O-predicates and D-predicates at 
level 1. Apply the clauses at level 1 till you reach a fixed point. At this 
point, we can infer some instances of op(t-) for some O-predicates. Note that  
the predicates depo, depo', and dd will get modified as this computat ion 
proceeds. Use the optimal (o) instances currently computed to restart  the 
bot tom-up evaluation of the level 1 of the program. We continue until a 
particular pass of the bot tom-up evaluation does not produce any more new 
facts. The set produced at this point is the set M1, the set of preferential 
consequences at  level 1. 

3. Repeat  step 2 for each level of the program resulting in the set /t~/~ where 
n is the number  of levels in the program. 

In the example above, the first step will result in the production of a set 
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that  contains all the instances of the e d g e  predicate in the program. When the 
rules making up the predicate m i n _ d i s t  are considered, the first fixed point is 
reached by using only the base fact and the rule for m i n _ d i s t  tha t  depends on 
edge .  This is because the other rules have o goals in their bodies. Now, we 
will be able to infer facts of form o m i n _ d i s t  (X,Y, 1 ,C)  for various X and 
Y. This is because m i n _ d i s t  (X, Y, 1, C) instances depend only on the EDB 
predicate e d g e .  The meta  rule will be applicable because the embedded im- 
plication is vacuously true. The only instances that  survive will be the ones 
that  actually correspond to the shortest edges between any pair of nodes. When 
the next fixed point is reached, we will be able to infer facts of the form o 
m i n _ d i s t  (X, Y, 2, C) and so on. This essentially mimics the dynamic pro- 
gramming algorithm for shortest path. 

Note that  we have used auxiliary predicates to indicate how the bot tom- 
up evaluation should proceed. We can come up with efficient implementations 
for maintaining the relations depo, depo', and dd so that  the generation of the o 
facts using the meta  rule is reasonably efficient. 

Lemma 4.2 
Given a preference datalog program P with n levels, suppose for some 0 < i < n, 
the bo t tom up evaluation procedure outlined above produces the set hIi then, 
when executing the procedure for level i + 1 of the program, if at any fixed point, 
an instance of the form op(t-) is inferred using the meta  rule, then the a tom p(t-) 
is a member  of the set Mi+l. 

Proof 
Essentially, all we want to show is tha t  once an a tom has been deemed to be 
optimal, its opt imali ty  is not rescinded. This follows from the observation that  
the ordering that  determines local stratification is defined using the argument 
positions that  are the same in both instances of the O-predicate in the head of 
an arbiter clause and not the argument positions that  are used by the body of 
the arbiter to choose one instance over the other. Therefore, if at a fixed point, 
the optimali ty of p(t-) depends on the optimali ty of p(g),  because a -~ clause is 
applicable with p (~  at the head and p(g) in the body, then no arbiter clause is 
applicable between any instance of p(t-) and p(~). �9 

Theorem 4.2 
Given a preference datalog program that  is locally O-stratified with n levels, an 
a tom A belongs to the set Mn constructed by the bot tom-up procedure outlined 
above if and only if A is a preferential consequence of the program. 

Proof 
The proof is by induction over the levels of the program. For level 1, suppose 
an a tom A belongs to the set M1 tha t  is constructed at the end of iteration at 
level 1. Suppose further that  A is an instance of an O-predicate at level 1. If 
A belongs to the set M1, it must have been introduced dur ing some iteration. 
Suppose that  it was the jth iteration and the set at the (j - 1) th fixed point the 
set of a toms deemed to be true was. MI.(j-1) and after the jth iteration, the set 
was M].j. We want to show that  A is a preferential consequence of the program. 
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This however, follows from the observation that  since the a tom A survived the 
pruning that  created the set M14. Furthermore, it was created by using the 
optimal instances of all the O-predicates that  it depended on. Therefore, the 
instance of A is optimal.  Furthermore, by the previous lemma, we also know 
that  once A has been deemed to be optimal,  it indeed is optimal.  

A similar proof holds for each level in the program. �9 

4.3 Relaxation Queries 
We now describe a bot tom-up procedure to compute the answers to relax- 

ation queries. To provide the semantics for RELAX goals, we first note that,  for 
t ruth in the optimal world, both  constraints and preferences must be satisfied. 
If we consider only the worlds that  contain instances of both  the relaxable pred- 
icate and the relaxation criterion to determine the best solution, we effectively 
relax the preferences that  made the worlds without instances of the relaxation 
criterion better.  

Definition 4.4 
Given a preference logic program P and a relaxable query G = RELAX p({) WRT 
c(~), the relaxed intended preference model for P and G is a sub-frame MT of the 
intended preference model M for P such that  MT contains all the worlds in M 
such that  the only instances of p({) that  appear  in each world correspond to 
substitutions tha t  are solutions of c(~). 

Definition 4.5 
Given a preference logic program P,  an a tom A that  depends on a relaxable goal 
G is said to be a relaxed preferential consequence of P and G if it is true in some 
strongly optimal world in the relaxed intended preference model for P and G. 

Given a preference datalog program without relaxation goals in the bodies of 
clauses and a relaxation query to the program, we first rewrite the program 
with the relaxation query into a preference datalog program and a new query. 

Definition 4.6 
Given a relaxable query G = RELAX p(t-) NRT C(U), the function relax(p(t~, c(ft)) 
returns the set of relaxed clauses for p by including, for every clause p(2) --~ 
Pl (21) . . . .  , Pn (2n) for p, the following pair of clauses: 

1. relax_p(t, ft) ~ 2 = { pit_21),... , p n ( 3 C n ) , C ( ~ t  ) .  
2. relax_p(2,0) ---* <2, v> r <t,u> p1(21) . . . . .  pn(2n) 

Furthermore, for every arbiter clause ofp  of the form P({1) _~ P({2) ~- L1 . . . . .  Ln, 
relax(p(t-), c(g)) includes the following arbiter clauses: 

1. relax_p({81, ~81) ~_ relax_p({82, f~82) ~- 51o1~r2 . . . .  , Ln~l~2, 
e(fZSl],e(g82),_ where 81 and 82 are variable renaming substitutions such 
that  t81 and t82 do not share any common variables. The substitutions o"1 
is the most general unifier of {1 and {81, and ~r2 is the most general unifier 
of {2 and {82. 

2. relax_p({1,01) ~ relax_p(h, 02) ~ L1 . . . . .  L~, ({ ~s {1 V { ~s {2), (U r 01 V 
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r v2). 

The relaxed query corresponding to G is relax_p({, ~). 

In essence, given a preference datalog program P and a relaxation query 
of the form RELAX p(~  WRT c(fi), the set relax(p(~, c(~)) of relaxed clauses for p 
introduces a new O-predicate relax_p, the relaxed version of p, into the program. 
The clauses for relax_p are obtained from the clauses for p by modifying every 
clause for p tha t  is applicable to p(t~ in the relaxation goal by adding c(fi) to 
the body; clauses for p that  are not applicable to p(t~ are not modified. If some 
instance of a clause for p is applicable to p (~  then we obtain two clauses in the 
relaxed version, one that  is applicable to t with the body containing c(~), and 
the other tha t  is not applicable to { with the body as before. The arbiter clauses 
for relax_p are obtained from the arbiter clauses for p in a similar manner. The 
reader is referred to appendix B for an example. Note that  we have made use 
of ordered pairs in the translation for the sake of convenience. An equivalent 
translation without ordered pairs is easily devised. Furthermore, the relaxed 
query corresponding to the relaxation query RELAX p(~  NRT c(~) is relax_p({, ~). 
The soundness of the translation is established by the following theorem. 

Theorem 4.3 (Correctness of Translation) 
Given a preference datalog program P and a relaxation goal G = 
RELA• p(~  NRT c(fi), p(t-)O A c(~)0 is a relaxed preferential consequence of P 
and G if and only if relax_p({, ~)0 is a preferential consequence of the program 
P U relax(p(~, c(~)). 

Proof 
Suppose there is an instance relax_p(t~O in a world in the intended preference 
model for P U relax(p(~, c(~)). Clearly, the instance p (~0  belongs to a world 
in the relaxed intended preference model of P and G as e(fi)0 is true. Similarly, 
we can show tha t  if an instance p({, ~ )a  occurs in any world in the relaxed 
intended preference model of P and G, then the instance relax_p~{, ~)a occurs 
in some world in the intended preference model of P U relax(p(~, c(~)). The 
arbiter clauses for relax_p enforce the same ordering when the solutions to p 
satisfy c. �9 

The naively-pruned bot tom-up evaluation technique for a O-stratified preference 
datalog program P and a relaxation query G consists of the following steps: (i) 
Augment P with the relaxed clauses for the relaxable predicate in G to produce 
program PP. Let G '  be the relaxed query corresponding to the relaxation query 
G. (ii) Perform naivelyipruned bot tom-up evaluation of the program P ' .  

Theorem 4.4 (Soundness and Completeness) 
Given a (locally) O-stratified preference datalog program P and a relaxation 
query G = RELAX p(t-) WRT c(~), an instance relax_p(t-)O is computed by the 
naively pruned bot tom-up evaluation technique applied to the program P t2 
relax(p(t-), e(~)) if and only if p({, fi)0 is a relaxed preferential consequence of P 
and G. 
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Proof 
If P is a (locally) O-stratified preference logic program and G = RELAX p(t-) 
WRT c(fi) is a relaxable goal then P' = P U relax(p(t~, c(~)) is also a O-stratified 
program. Furthermore,  from the correctness of translation theorem we know 
that  the set of correct relaxed answers to the goal relax_p(t~ with respect to the 
program P '  are the answers of interest. Since P' is also (locally) O-stratified, 
naively pruned bo t tom-up  evaluation is sound and complete and we have our 
desired result. �9 

4.4 Magic Rewriting 
The bo t tom-up  evaluation mechanism outlined above is inefficient in that  

it may compute the set of all preferential consequences of the program in order 
to answer a given query. We now describe an improvement based on the magic 
rewriting presented in Reference 1~). We first consider queries to preference data- 
log programs that  are not relaxation queries and later describe the technique for 
making the evaluation of relaxation queries more efficient by magic rewriting. 

Let P be a P D P  program and a query Q = q($). Traditionally in magic 
rewriting, for each IDB predicate p in P,  we define a new predicate magic_p 
such that  the bo t tom-up  evaluation of the program generates a fact magic_p(~z) 
if while solving for q($) the top-down evaluation had to solve for p(~). However, 
in our setting, we will find it more convenient to introduce the magic predicates 
as meta  predicates. In particular, we have two versions of the magic predi- 
cates. One for the O-predicates, magico, and one for the C-predicates and D- 
predicates in the program, magic. Furthermore, we will use the supplementary 
magic rewriting along the lines of the magic rewriting for datalog programs with 
negation presented in Reference1% Therefore, for each rule rj  in the program 
that  has k goals in the body, we introduce k + 1 supplementary predicates 8upj.i 
for i = 0 . . . . .  k. Essentially, supj.i t ransmits  the relevant variable bindings from 
the (i - 1) th goal through the n th goal to the head. Each predicate supj.i can 
have as arguments all the variables that  occur in the clause. However, this can 
be optimized by following the scheme in Reference 1~) by retaining variables that  
either appear  in the rule head or variables that  occur in the (i - 1) th subgoal 
that  also occur the rest of the body. We assume that  a left-to-right sideways 
information passing (sip) 13) is used. 

In addition to the magic predicates, we have the following meta  predicates: 

1. dep(P, Q), which means that  P depends on Q in the normal sense. 
2. depolP, Q), which means that  P depends on an optimal  instance of Q. 
3. depo (Q) which is the complementary version of depo which means that  

the instances of depo are not useful anymore as the opt imal  status of Q is 
known. 

4. We also use the o operator as before. 

The meta  predicate magico is special. An instance of the form magico(p(t~) is 
a shortened notation for an ordered pair of the form (magico(p(t')), E = t'}. The 
term ~i is the te rm E where all the positions in t that  are used by the arbiter for p 
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are replaced by new variables. The constraint f = {' is then enforced before the 
optimality of p(t-) is used to infer other facts. For instance, before facts of the 
form depo'(p(t~) are inferred. This captures the non-groundness condition that  
the top-down semantics described in References 5'6) placed on the O-predicate 
goals that  were encountered in the top-down computation.  This is necessary 
because we want to be able to guarantee that  all the solutions for the argument 
positions used by the arbiter are produced before pruning is performed. 

Let p m  be the program that  is the result of performing the magic template  
transformation on the program-query pair (P,Q).  p m  has three components 
( P ~ ,  P ~ ,  P ~  ) . 

We now describe what is included in each component  in turn. 

The following is in P ~ :  

(0) If the initial query is ?- p(t-) where p is not an O-predicate, then include 
the rule: 

 agic(p( ). 
(Oa) If  the initial query is ?- p(t~ where p is an O-predicate, where the argu- 

ments positions that  are used by the arbiter to choose amongst  alternative 
solutions of p are unbound in p(t~, then include the rule: 

rnagico(p( t~ ). 

The following are included in p~n: 

(1) If the head of rule rj is p(t-), and p is not an O-predicate, we include the 
rule: 

supj.o(~t) ~-- raagic(p(t~ ). 

(la) If the head of rule rj is p(t~, and p is an O-predicate, we include the rule: 

supj.o(ft) *-- magico(p(t~ ). 

(2) If  the head of rule rj is p(t~, rj has k goals in the body, and p is not an 
O-predicate, then include the rule: 

p(t-) ,-- supj.k( ). 

(2a) If the head of rule rj is p(t~, rj has k goals in the body, and p is an 
O-predicate, then include the rule: 

p(t  supj.k( ) 

(3) If p(t-) is the i th goal in the body of rule rj. If p is not an O-predicate 
and the arguments of supj.(i-1) are g, then include the rule: 

magic(p(  t~ ) *--- sup j.( i_ l ) ( ft ). 

(3a) If p(t-) is the i th goal in the body of rule rj, and p is an O-predicate, then 
include the rule: 

magico(p(t~ ) ~-- supj.(i-1)(ft) 
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(4) If p(~  is the i th goal in the body of rule rj and rj has k goals in the body. 
If p is not an O-predicate and i < k, include the rule: 

supt.i(~) *- supt.(~- 1)(~), p(~. 

(4a) Ifp(t~ is the i th goal in the body of rule r t and rj has k goals in the body. 
If p is an O-predicate and i _< k, include the rule: 

supt.~(~) *- supt.(i-i)(v),  op(~. 

(5) If p(t~ is the i th goal in the body of rule rj and q(~) is the head of rj.  If 
p is not an O-predicate and q is not an O-predicate, include the rules: 

dep( q( $), p( t~ ) , -  magie(  q( $) ), sup t,( i_ 1) ( u ). 
dep( P, p( ~ ) ~--- ,dep( P, q( ~) ), suP t.(i_ l ) ( ~ ). 

(5a) If p(t-) is the i th goal in the body of rule r t and q(~) is the head of rj.  If 
p is an O-predicate and q is not an O-predicate, include the rules: 

depo(q($), p(t~ ) *-- magie(q($) ), suPt,( i_ 1) (u). 
depo(P, p(t-)) , -  dep(P, q(~)), supj.(i_l  ) (~t). 

(5b) If p(t~ is the i th goal in the body of rule rj and q($) is the head of r t .  If 
p is an O-predicate and q is an O-predicate, include the rules: 

depo(q($), p(t~ ) , -  magico(q($) ), supt,(i_ 1)(f~). 
depo(P, p(t~) *- depo(P, q(~)), supt.( i_i  ) (s 

(5c) If p(t-) is the i th goal in the body of rule rj and q($) is the head of r t .  If 
p is not an O-predicate and q is an O-predicate, include the rules: 

dep( q( $) , p( t-) ) *- magico( q( $) ), sup j,( i_ 1)(s 
dep(P, p(t-) ) ~-- depo(P, q(~) ), supj.(i_ 1) (u)- 

(5d) Include the rule: 

depo'(Q) ~- magico(Q),  oQ. 

The following meta-rule is introduced in P ~ :  

oP  +- magico( P),  VQ( depo( P, Q) ~ depo' ( Q ) ), op t imal (P) .  

The meta rule in p~n essentially states that  we infer a fact of the form oP  
only when the optimal t ruth of all the facts that  it depends on has been deter- 
mined. This meta-rule is fired only at fixed points in the bot tom-up computation 
using the rules in p~n. Therefore, the bottom-up computation algorithm pro- 
ceeds in the following loop: 

1. Assert the facts in p~n. 
2. Using the facts in P ~ ,  the bottom-up computation proceeds until a fixed 

point is reached. 
3. At the fixed point, new instances of o and depo I are inferred using the 

meta rule p~n and the rule for depd until a fixed point is reached. If new 
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o instances were inferred in this iteration, go to step 2, else bottom-up 
computation is complete. 

Example $.1 Consider the following preference dataiog program: 

path (X, Y, C) ~- edge (X, Y, C) . 
path (X, Y, C) ~- edge (X, Z, CI), path (Z, Y, C2), 

C = C1 + C2. 
naive_sh_path (X, Y, C) -* path (X, Y, C) . 
naive_sh_path (X, Y, Cl) _-< naive.sh_path (X, Y, C2) ~- C2 < Cl. 

and suppose the query to the program is ?- naive_sh_path (a, b, X) . The 
magic rewriting described above would produce the following program: The 
program component P ~  contains: 
magico (na ive_sh_pa th  (a, b,  X) ) . 

The component P ~  contains the following rules: 

supI.o(X,Y,C) ~- magic(path(X,Y,C) ) . 

sup2.o(X,Y,C) ~- magic(path(X,Y,C) ) . 

suP3.o (X, Y, C) +- magiCo (naive_sh_path (X, Y, C) ) . 

path (X, Y, C) ~- SUpl.1 (X, Y, C) . 
path (X, Y, C) ~- sup2.3 (X, Y, C, ) . 
naive_sh_path (X, Y, C) -* sups.1 (X, Y, C) . 

magic(path(X,Y, C2) ) ~- sup2.1(X,Y,C,Z, CI,C2). 
marc (path (X, Y, C) ) ~- sup3.o(X,Y,C) . 

supl.l (X, Y, C) ~- supl.o (X, Y, C), edge (X, Y, C) . 
sup2.1(X,Y,C,Z,CI) ~- sup2.0(X,Y,C), edge (X, Z, Cl) . 
sup2.2(X,Y,C, CI,C2) ~- sup2.1(X,Y,C,Z, Cl), path (Z, Y, C2) . 
sup2.3 (X, Y, C) ~- suI~.2 (X, Y, C, CI,C2), C ffi C1 + C2. 
sup3.1 (X, Y, C) ~- sup3.o (X, Y, C), path (X, Y, C) . 

dep(X, path(Z,Y, C2)) +- 

dep(X, path (X, Y, C) ) ~- 

dep (path (X, Y, C) , path(Z, 

dep (naive_sh_path (X, Y, C), 

dep(X, path (X, Y, C) ) , 

sup2.1 (X, Y, C, Z, CI) . 
depo (X, naive_sh_path (X, Y, C) ), 

8uP3.o (X, Y, C) . 
Y, C2)) +- magic(path(X,Y,C)), 

sup2.1 (X, Y, C, Z, Cl) . 
path (X, Y, C) ) ~- magic(path(X,Y,C)), 

sup3.o (X, Y, C). 

depo'(x) ~ ~ c o ( X ) ,  o X. 

naive-sh_path (X, Y, C1) _~ naive_sh_path (X, Y, C2) ~- C2 < Cl. 



Preference Queries in Deductive Databases  79 

The program fragment p~n has the following meta-rule: 

o naive_sh_path(X,Y,C) ~- magico(naive_sh_path(X,Y,C) ), 

VQ(depo(nai ve_sh_path(X, Y, C), Q) ~ depo'(Q) ), 
optimal(naive_sh_path(X, Y, C)). 

The magic predicates, magic and magico, and all the other supplemen- 
tary predicates are defined using just definite clauses. Therefore, no circular 
non-stratified dependencies are introduced by this kind of magic rewriting. In 
addition, the reader may note that  the above rewriting technique requires local 
stratification amongst  the O-predicates. This however does not place any re- 
striction on the cyclic dependence amongst  instances of C-predicates. Therefore, 
even if the graph in the above example has a cyclic edge relation, the bot tom-up 
procedure will be able to terminate. 

Theorem 4.5 
Given a PDP P and a normal query Q = q(t~, suppose pm is the result of 
applying magic rewriting to the program-query pair (P, Q); then P and pm are 
equivalent with respect to the answers to the query q(t~. 

Proof 
We outline the proof of the theorem when q is an O-predicate. The other cases fol- 
low in a natural  fashion. Furthermore, to show that  this is true for O-predicates, 
we induct on the level of the O-predicates. In the base case, suppose the level 
of the O-predicate is 1. Since we can interpret the ~ clauses as +-- clauses, 
we can show that  the bot tom-up evaluation of the rewritten program generates 
a fact of the form magic(p(~)) if the top-down evaluation start ing from q(t-) 
had to solve for p(~). The soundness of the rewriting technique requires that  a 
predicate appearing at the head of an optimization clause must be invoked with 
unbound variables at certain argument posi t ions-- the values at these positions 
being determined by the body of the optimization clause and used by the arbiter 
to prefer one solution over another. Therefore, the query added to the program 
should be of the form magico(q(t~) where some of the argument  positions in { 
are unbound. If the goal G is not sufficiently uninstantiated, it could happen 
that  the optimal  instances are not computed by the bot tom-up evaluation at 
all. This requirement is identical to the non-groundness requirement that  the 
top down evaluation technique introduced by us in ReferencesS'6( Therefore, we 
can show that  the rewritten program and the original program are equivalent 
with respect to the answers to the  query for this case. The inductive case is 
similar. �9 

The rewriting technique for computing answers for relaxation queries is 
a straightforward extension of the foregoing ideas. Given a preference datalog 
program P and a relaxation query Q, we first augment P with the relaxed 
clauses for the relaxable predicate in Q to produce the program PP. Furthermore, 
suppose the relaxed query corresponding to Q is Q'.  Note tha t  P '  is a preference 
datalog program without any relaxation goals and Q'  is a normal query, not a 
relaxation query. We can then perform magic rewriting on the program query 
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pair (P ' ,  Q').  By the correctness of the translation, we can prove the correctness 
theorem for relaxation queries. 

w Conclusions and Further Research 
In this paper,  we have shown that  the notion of preference adds substan- 

tial power to deductive database query languages such as datalog by allowing one 
to express criterion for optimization and relaxation in a declarative and mod- 
ular manner. We introduced preference datalog programs as preference logic 
programs 5,~) without any uninterpreted function symbols as the formalism in 
which to explore the use of preference in deductive databases. We proposed a 
bot tom-up evaluation technique for evaluating answers to normal and relaxation 
queries as opposed to the top-down evaluation technique proposed in our earlier 
work. ~'~) We also developed a modification of magic rewriting technique so that  
the bot tom-up evaluation of the rewrit ten program will not make any deductions 
that  are not relevant to answering the query. 

While we discussed the evaluation of relaxable queries, we did not describe 
the evaluation technique when relaxable goals appear  in bodies of clauses defining 
various predicates. The usefulness of such a construct is made apparent  by the 
following example that  computes the pa th  with the nth-lowest cost between any 
two nodes in a graph: 

n_sh_path ( l, X, Y, C, P) ~- naive_sh_path (X, Y, C, P) . 

n_sh_path(N+l,X,Y,C,P) ~- n_sh_path (N, X, Y, D, _) , 

RELAX sh_path(X,Y,C,P) WRT C > D. 

The top-down evaluation technique presented in Reference ~) performed a pro- 
gram transformation and evaluated the rewritten program to answer such queries. 
We are investigating efficient ways of incorporating such a scheme in our bot tom- 
up evaluation technique. The relaxation regime presented here allowed the user 
to specify how to modify the definition of the optimization predicates to obtain 
solutions when none exists. One can also envisage a similar modification of the 
preference clauses of any O-predicate. 

Another direction for further research would be to extend P D P  by per- 
mitting in the bodies of clauses constraints as in CLP. 7~ The resulting paradigm 
can be viewed as an extension of CQL s) with preferences. Just  as this paper  
extended the bot tom-up evaluation technique for datalog to preference datalog, 
we would have to extend the bot tom-up evaluation technique for CQLs s'17) to 
the extended paradigm. 

We are also interested in extending the paradigm to incorporate inductive 
aggregates such as sum. This may be achieved by adding bags as a built-in 
data-type.  The interaction of inductive aggregates and relaxation also provides 
interesting problems for research. The queries that  we allow are first order 
queries and the bodies of arbiter clauses are not allowed to have preferential 
goals. A very natural  kind of query to allow is whether some solution to a 
goal is preferred over another. It  is also natural  to have preferences about our 
preferences, and for certain preferences to depend on other preferences. 
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We believe that preferences will provide an important technique for query- 
ing the world-wide web for information. In traditional database systems, the 
data is standardized with respect to some data model, and there is a close re- 
lationship between the query langauge and the data model. However, when the 
amount of information being stored in the database is very large or there are data 
sources with dissimilar data formats, querying by traditional query languages can 
be problematic. Often, specifying a query purely in terms of constraints results 
in either to too many solutions or non at all. The problem is compounded when 
sources of data do not necessarily conform to any fixed data model as in the 
case of the world-wide web (WWW). Most web search engines today allow the 
queries that often result in very unintuitive answers. The number of answers 
returned by these search engines are either in the millions or none at all. And, 
sometimes an apparently more specific query provides more answers. 

The query power and flexibility provided by preference datalog will be 
very relevant in such applications, as it will help the user better control the 
search. Preferences can be thought of as modular additions to current search 
engines. For instance, if one is interested in a web-page with a certain property, 
one can formulate a query with that property as a preference. This way, the 
web-pages that do not satisfy that property will not be reported as potential 
answers. However, in the event that  no web-page has the property, the user will 
get whatever the search engine currently provides. 
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Appendix 
We provide here a brief description of the model theory of preference logic 

programs; a full description may be found in Govindarajan 's  dissertation. 4) We 
begin with a a brief review of the logic of preference. The syntax of the logic of 
preference introduced by Mantha 11) extended the syntax of first-order logic by 
introducing a unary modal operator P /  with the associated rule of formation: 
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If F is a formula, then so is 79fF. Preference logic programs are to be viewed as 
theories in this logic by translating each definite preference clause p(t~ ~ p(fz) ~-- 
L1, . . .  , Ln into a clause of the form p(t~ --* 79f(p(fz) /X L1 A . . .  /X L,~) 

A preference model A4 is a triple (kV, -~, ~;), where )IV is a non-empty set 
of possible worlds, -< is a binary relation over W, and ~2 is a valuation function 
that  determines the t ruth  of atomic formulae at individual worlds. Boolean con- 
nectives such as A, V, 9, -% etc. have the standard interpretation. The  semantics 
of preference formulae of the form 79fF is given as follows*q 

~y~ P / F  iff (Vv �9 W) [ ( ~  F)  -~ (w _~ v)]. 

Informally, P / F  is true in a world w in a preference model iff every world v 
where F is true is related to w by the relation w ~ v. If P s F  is true at a world 
w, then F is said to be a preference criterion at world w. In other words, any 
world v where F is true is at least as good as w. A preference model Ad is said 
to be supported if and only if, for any two worlds w and v, if w -4 v then, there is 
a formula T' /A such that  ~ ~ I A  and ~ a  A. A supported preference model 
is also the preference model that  minimizes the relation _~. Given a preference 
model M = (W, -~, ]; / '  a world w C l/V is said to be strongly optimal if and only 
if there is no w o r e  w different from w such that  w _~ w ~. 

We build models for preference logic programs in stages. We stratify the 
O-predicates into levels so that ,  for any optimization (-~) clause, the level of 
the O-predicate in its head is _> the level of any O-predicate in its body. This 
can be done by constructing the predicate call-graph among the O-predicates 
in the program and topologically sorting the graph to obtain the ordinal levels 
of the O-predicates. First we consider programs tha t  have at most one level of 
O-predicates. We shall henceforth assume in this subsection that  a preference 
logic program P satisfies this requirement. At the end of this subsection, we will 
extend the semantics to programs with any number of levels O-predicates. 
The pre-interpretation I of interest to us interprets functions such as + over the 
appropriate domain (as in CLP) and leaves all other function symbols uninter- 
preted (as in Herbrand interpretations). For the rest of the paper  we fix this 
pre-interpretation I .  We are interested in a canonical model for the core pro- 
gram derived from the pre-interpretation I ,  as it specifies the constraints to be 
satisfied. For definite programs, this is given by the l ea s t / -based  model for the 
program. 

Following Mantha,  11) we give a possible-worlds semantics for preference 
logic programs. Given a preference logic program, its preference model is con- 
structed by first by defining the worlds (the valuation function )2) in the model 
Essentially, each world is constructed by extending the canonical model for Tc 
by including instances of O-predicates so tha t  it becomes a model for Tc ATo A.A. 
The instances of D-predicates (and O-predicates) at each world have to be sup- 
ported, i.e. if p(t-) is a ground instance of a D-predicate (or an O-predicate), then 
there is a clause in the program whose head unifies with p(t-) and the instances 
of the goals in the body are present in the world. Satisfying .A enforces the 

** We write ~y~  F to mean tha t  the formula F is assigned the t r u t h  value t r u e  by V in the 
world w in the preference model 2k4. 
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ordering among the worlds in the preference model. 

Definition A.1 
Given a preference logic program P, the intended preference model .M is the preference 
model (]42, -<, ]2} that maximizes the number of worlds in ]A) and minimizes the relation 
-< (i.e. is supported) and is such that ]2 assigns different interpretations to different 
worlds. 
Consider the following formulation of shortest path: 

path (X, Y, C, [e (X, Y) ] ) ~- 
path (X, Y, C, [e(X,Z)iLl]) ~- 

edge (X, Y, C) . 

edge (X, Z,CI) , path (Z, Y, C2, LI) , 
C = Cl + C2. 
path (X, Y, C, L) . 
sh_dist(X,Y,C2,Ll) ~- C2 < CI. 

s h _ d i s t  (X, Y, C, L) --~ 
s h _ d i s t  (X, Y, C l ,  L) -< 

We use the above program to illustrate the model theory. Consider a directed 
graph with the following edges { e d g e  ( a , b ,  5 ) ,  e d g e  ( b , c ,  1 0 ) ,  e d g e  
(a ,  c ,  25) } . The canonical model M for riG of interest to us here is the 

set: 

{edge(a,b,5), edge(b,c, lO), edge (a, c, 25) } U 
{path(a,b,5, [e(a,b) ]), path(b,c, lO, [e(b,c)]), 

path (a, c, 25, [e(a,c)]), path (a, c,15, [e(b,c),e(a,b) ])}. 

The following is a fragment of the intended preference model for the example 
program considered above and is used to illustrate how the ordering among 
worlds is enforced. For brevity, we have considered worlds that  have instances 
of s h _ d i s t  ( a , b , _ , _ )  and s h _ d i s t  ( b , c , _ , _ )  since there is only one pa th  
between the associated vertices in the graph. These worlds are shown below: 

i. ~'/U {sh_dist (a,b,5, [e(a,b) ]), sh_dist (b,c, lO, [e(b,c) ]), 
sh_dist (a,c,25, [e(a,c) ] ), sh_dist (a,c,15, [e (b, c) , e (a, c) ]) 
U { 15 < 25, ~f(sh_dist (a,c,15,_), 15 < 25) }. 

9. /it0 {sh_dist (a,b,5, [e(a,b) ]), sh_dist (b,c, lO, [e(b,c) ]), 
sh_dist (a,c,25, [e(a,c) ])}0 { 15 < 25, ~f(sh_dist (a,c,15,_) 
15 < 2s) }. 

3. ~IO {sh_dist (a,b,5, [e(a,b)]), sh_dist (b, c, lO, [e(b,c)]), 
sh_dist (a, c,15, [e(b,c),e(a,c)]), 15 < 25 }. 

The arbiter is satisfied by the following binary relation -< on the set of worlds: 
{ ! _ 1 ,  1 -<3 ,  2 - < 1 ,  2 ~ 3 } .  

Definition A.2 
Given a preference logic program P, and a negation-free formula F, let A4 denote the 
intended preference model for P. F is said to be a preferential consequence of P if F is 
true in some strongly optimal world in ]k4. 
For instance, in the example above, world 3 is an optimal world. Note that  only 
s h _ d i s t  (a ,  a ,  15,  _) and no other s h _ d i s t  (a ,  e ,  X, _) for any X is true in an 
optimal world (model 3). Suppose there is a world w where s h_di  s t  (a ,  c ,  X, _) 
is true for some X > 15, then the formula ( s h _ d i s t  (a ,  c ,  15,_) A 15 < X) 
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becomes a preference criterion at  w, mak ing  world 3 above  b e t t e r  t h a n  w. Given  
a preference logic p r o g r a m  P whose H e r b r a n d  Base is Bp and an  a tom A if A 
is a preferent ia l  consequence  of the  p rog ram,  we wr i te  P N A. T h e  dec la ra t ive  
semantics ,  Dp, is defined to be the  set {A c B p  I P N A}. 

The  above  discussion provides  the  dec la ra t ive  semant ics  for p rog rams  wi th  
exac t ly  one level of O-predicates. We now briefly descr ibe  how the  semant ics  
is ex t ended  to the  case when there  are  m a n y  levels of O-predicates in stages.  
Essential ly,  given the  level-k dec la ra t ive  semant ics  for k > 1, we cons t ruc t  the  
k + 1 dec la ra t ive  semant ics  as follows: Each  world in the  level-k + 1 in tended  
preference model  is an extens ion  of the  level-k dec la ra t ive  semant ics  to the  O- 
and D-predicates in level k + 1. The  order ing  among the  worlds  is enforced using 
the a rb i t e r  c lauses re levant  to  O-predicates in level k + 1. Thus  the  dec la ra t ive  
semant ics  of a preference logic p r o g r a m  wi th  n levels of O-predicates is the  level-n 
dec la ra t ive  semant ics  as ou t l ined  above.  
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