
New Generation Computing, 19(2001)57-86
Ohmsha, Ltd. and Springer-Verlag EW GE ERATjOH COMPUTING

@Ohmsha, Ltd. 2001

Preference Queries in Deductive Databases

K a n n a n G O V I N D A R A J A N
E-speak Operation
Hewtett-Packard Company
Cupertino, CA 95014, U.S.A.
k ~ n n a n g ~ h p l , hp. com

Bhara t JAYARAMAN
Department of Computer Science and Engineering
State Universio' of New York at Buffalo
Buffalo, NY 14260, U.S.A.
bharat ~cse. buffalo, edu

Surya MANTHA
Communications and Software Services Group
Pittiglio Todd Rabin & McGrath
1000, Potomac Street, N. W.
Washington, D.C. 20007, U.S.A.
smantha~prtm, tom

Received 4 February 1998
Revised manuscript received 30 March 2000

Abstract Traditional database query languages such as datalog and
SQL allow the user to specify only mandatory requirements on the data to
be retrieved from a database. In many applications, it may be natural to ex-
press not only mandatory requirements but also preferences on the data to be
retrieved. Lacroix and Lavency 1r extended SQL with a notion of preference
and showed how the resulting query language could still be translated into
the domain relational calculus. We explore the use of preference in databases
in the setting of datalog. We introduce the formalism of preference datalog
programs (PDPs) as preference logic programs without uninterpreted func-
tion symbols for this purpose. PDPs extend datalog not only with constructs
to specify which predicate is to be optimized and the criterion for optimiza-
tion but also with constructs to specify which predicate to be relaxed and
the criterion to be used for relaxation. We can show that all of the soft re-
quirements in Reference 1()) can be directly encoded in PDP. We first develop
a naively-pruned bottom-up evaluation procedure that is sound and complete
for computing answers to normal and relaxation queries when the PDPs are
stratified, we then show how the evaluation scheme can be extended to the
case when the programs are not necessarily stratified, and finally we develop

58 K. Govindarajan, B. Jayaraman and S. Mantha

an extension of the magic templates method for datalog 14) that constructs an
equivalent but more efficient program for bottom-up evaluation.

Keywords: Database Query Language, Datalog, Preferences and Constraints,
Relaxation Queries, Bottom-Up Evaluation.

w Motivation and Approach
The motivation for our work stems from the observation tha t traditional

database query languages allow the user to express only the mandatory require-
ments on the da ta to be retrieved from a database. In many applications, it
is more natural to express queries in terms of both mandatory, or hard, re-
quirements as well as preferences, or soft requirements. Lacroix and Lavency 1~
explore this idea with queries of the form

select R where H prefer S

whose result is the set of tuples from R that satisfy both H and S, if the set is
nonempty; otherwise, i.e., if no tuple satisfies both H and $, the result is the set of
tuples that satisfy just H. In other words, S is a preference, or a soft requirement.
These authors also permit nested preferences and extreme-value preferences, and
show that all such statements can still be translated into formulae in the domain
relational calculus.

This paper explores the concept of preference in the setting of datalog,
a framework tha t offers more expressiveness than the relational calculus by its
ability to support transitive closures and general recursive queries. Just as data-
log is a restriction of conventional logic programs, our proposed paradigm, called
preference datalog, is a restriction of preference logic programs (PLPs), which we
recently introduced in References ~~ for specifying optimization and relaxation
problems in a declarative manner. Preference datalog programs (PDPs) are pref-
erence logic programs (PLPs) without uninterpreted function symbols. PDPs
extend datalog with constructs to specify which predicate is to be optimized and
the criterion for optimization. These criteria are stated in terms of preference
for one kind of solution over another. Furthermore, when optimal solutions are
impossible to obtain, and we may be interested in finding suboptimal solutions
by performing some relaxation. We introduce the notion of a relaxation query
for this purpose that allows the user to specify the predicate to be relaxed and
the criterion to be used for relaxation.

The contributions of this paper are two-fold:

1. At the language level, we show that preference datalog can directly encode
all of the soft requirements in Reference1"< We also show tha t the concept
of preference provides a modular and declarative (i.e., logical) means for for-
mulating optimization as well as relaxation queries in deductive databases.
It should be noted that while several approaches for optimization have been
proposed in the literature, it is not clear whether any of them can account
for our formulation of relaxation queries.

Pre fe rence Quer i e s in D e d u c t i v e D a t a b a s e s 59

2. At the computation level, we describe bottom-up evaluation methods for
preference datalog programs. (The evaluation mechanism for PLPs, on
the other hand, uses a top-down schemeS"6).) We first develop a naively-
pruned bottom-up evaluation procedure that is sound and complete for strat-
ified PDP, we show how the evaluation scheme can be extended to the case
when the programs are not necessarily stratified, and finally we develop an
extension of the magic templates method for datalog14) that constructs an
equivalent but more efficient program for bottom-up evaluation.

In earlier work, we have given a model-theoretic semantics for PLP using
simple concepts fi'om modal logic. ~ Essentially we provided a possible-worlds
semantics in which each world is a model for the first-order clauses of the pro-
gram, and the ordering among the worlds is enforced by the preference clauses.
We then gave a declarative semantics for optimization queries in terms of prefer-
ential consequence, or t ruth in strongly optimal worlds. (This is in constrast with
logical consequence which refers to t ru th in all worlds.) We also gave the seman-
tics of relaxation queries in terms of relaxed preferential consequence, i.e., t ru th in
suitably-defined suboptimal worlds. All these concepts carry over to preference
datalog programs as well. The use of modal logic for this purpose is not surpris-
ing because optimization and relaxations are meta-level non-monotonic notions;
an area where modal logics have found use in the past. 1,12) Furthermore, since
we are computing preferential consequences as opposed to logical consequences,
we do not incur the cost of theorem proving in a general modal logic.

Our concept of optimization is closely related to the notion of extreme-
value aggregate operations (such as rain and max) in deductive databases. A
program with such aggregate operations has an equivalent first-order formula-
tion using negation. There has been considerable interest recent years in provid-
ing a satisfactory semantics for aggregate operations. 2.~,1~1~.21) Ganguly et al. 2)
considered first-order aggregates and showed that under certain monotonicity
conditions, the first-order equivalent program has a total well-founded model 22)
that can be computed using a greedy fixed-point procedure. Kemp and Stuckey 9)
examined programs with recursion through aggregation. To give semantics for
programs with aggregation, they extended two well-known semantics for pro-
grams with negation, namely, well-founded models and stable models. ~) Ross
and Sagiv 1~) provide semantics for aggregation where the domain over which the
aggregation is performed is a complete lattice and the program is monotonic.
By Tarski's theorem, we are guaranteed the existence of a least fixed-point for
the aggregate operation. Sudarshan et al. ls..~) provide semantics for a class of
aggregate operators using valid models for normal programs. Compared with
these methods, the most noteworthy semantic difference in our approach is that
the ordering among worlds, which is determined from the preferences, explicitly
conveys the ordering among solutions, and this ordering is crucial to providing
the semantics of relaxation queries. Furthermore, our model theory also has the
desirable property of associating a unique intended preference model with every
preference logic program--a feature that is not necessarily guaranteed by the
negation-based approaches.

60 K. Govindarajan, B. Jayaraman and S. Muntha

In a different setting, the idea of hard and soft requirements has also
been explored in HCLP (hierarchic constraint logic programming)2~) wherein
a constraint may be optionally tagged with a weight, such as s t r o n g , weak,
etc. This tag indicates the relative importance of a constraint and serves to
organize all constraints into a linear hierarchy. The notion of a comparator
is introduced in order to compare and order alternative solutions to the hard
constraints by determining how well they satisfy the soft constraints. Given
a constraint hierarchy, the solutions of interest are those that satisfy the hard
constraints and are optimal according to the comparator. We have shown in
Reference ~) how HCLP can be directly translated into PLP, thereby showing
that PLP is powerful enough to capture the notion of hard and soft constraints
in HCLP. PLP is more powerful than HCLP because the latter does not provide
a general support for optimization or relaxation queries.

The rest of the paper is organized as follows: Section 2 introduces the
syntax of preference datalog programs. Section 3 illustrates optimization and
relaxation queries and shows how to translate the preference queries of Lacroix
and Lavency into equivalent preference datalog programs. Section 4 describes
bot tom-up evaluation techniques preference datalog programs. Section 5 de-
scribes a magic rewriting technique that generates a more efficiently executable
program. Finally, section 6 provides conclusions and directions for further re-
search.

w Preference Datalog Programs

2.1 Syntax of Preference Datalog Programs
A P D P has two parts, afirst-order theory (without uninterpreted function

symbols) and an arbiter, as described below. The first-order par t consists of
clauses each of which can take one of two forms:

1. H ~ B a , . . . , Bn, (n >_ 0), i.e., definite clauses. Each Bi is an a tom that
makes use of uninterpreted as well as interpreted predicates (for addition,
comparison, etc.) as in datalog. In general, we permit any class of datalog
programs for which there exist sound and complete bot tom-up evaluation
schemes with respect to some canonical model.

2. H ---* G1 Gt I B1 , Bin, (I, m >_ 0), i.e., optimization clauses. Vari-
ables appearing only on the RHS of the --* clause are existentially quantified.
G1 , . . . , Gl is called the guard, and each Gi is a literal that must be satisfied
for this clause to be applicable to a goal. The intended meaning of such a
clause is tha t the set of solutions to the head is some subset of that of the
body.

Moreover, the predicate symbols appearing in a PDP can be parti t ioned into
three disjoint sets, depending on the kinds of clauses used to define them:

1. C-predicates appear only in the heads of definite clauses and the bodies
of these clauses contain only other C-predicates (C stands for core). The

Pre fe rence Quer i e s in D e d u c t i v e D a t a b a s e s 61

C-predicates define the mandatory requirements to be satisfied by each so-
lution.

2. O-predicates appear in the heads of only optimization clauses (O stands
for optimization). For each ground instance of an optimization clause, the
instance of the O-predicate at the head is a candidate for the optimal solution
provided the corresponding instance of the body of the clause is true. Also,
for simplicity, we assume that the clause-heads and guards of the --~ clauses
defining an O-predicate are such that , if any two heads unify, the conjunction
of the respective guards and clause-heads are unsatisfiable. We illustrate
this requirement by an example in section 3.

3. D-predicates appear in the heads of only definite clauses and at least one
goal in the body of at least one such clause is either an O-predicate or a
D-predicate. We disallow mutual recursion between an O-predicate and a
D-predicate. (D stands for derived from O-predicates.) In other words, if
a predicate is defined using definite clauses and does not depend on an
O-predicate, it is classified as a C-predicate.

The first order theory T can therefore be divided into two disjoint parts,
Tc and To. The definitions of the C-predicates make up the core program,
Tc, and the definitions of the O-predicates and the D-predicates make up the
optimization program, To. A preference datalog program P can be viewed as a
3-tuple (Tc, To, A), where Tc and To together form T and .A is the arbiter. Note
that the C-predicates are different from the D-predicates because the D-predicates
are eventually defined in terms of O-predicates. This, however, is not the case
with C-predicates because they are defined in terms of other C-predicates only.
One can think of the C-predicates as specifying the arbi t rary constraints that are
to be satisfied by any potential solution. The D-predicates on the other hand,
are defined in terms of O-predicates.

Given any preference datalog program, we can order the O-predicates into
levels so that, for any optimization (--~) clause, the level of the O-predicate in
its head is _> the level of any O-predicate in its body. We can construct the
predicate call graph amongst the O-predicates and topologically sort it assigning
equal ordinals to all the O-predicates in a cycle. Note tha t this construction is
possible for an arbi t rary preference datalog program. The ordering _> has the
property that the equality holds between the levels of two O-predicates 01 and
02 if and only if they are defined in terms of each other. We can then define the
level of the D-predicates in the program as the level of the O-predicate used in
the definition of the D-predicate. If a D-predicate is defined in terms of multiple
O-predicates, the level of the D-predicate is the level of the highest O-predicate
used in its definition.

The arbiter part of a preference datalog program has clauses of the follow-
ing form:

p(~ ~_ p(~) *-- LI, . . . ,Ln (n >_ O)

where p is an O-predicate and each Li is some literal (positive or negative atom).
In essence this form of the arbiter states that p(t-) is less preferred than p(~) if

62 K. Govindarajan, B. Jayaraman and S. Mantha

L1,. . . ,Ln. Each Li is a literal, i.e., an a tom whose head is a C-predicate or
the negation of such an atom. The right hand side of a such a preference clause
provides the justification for preferring one solution over another. By allowing
only C-predicates on the right hand sides of arbiter clauses, we make justification
for the preferences uniform across the worlds in the possible worlds semantics.
Since the programmer has complete flexibility in defining the C-predicates, this
requirement is not restrictive.

Finally, we introduce a relaxation query which has the form

? - RELAX p(t-) wa r c(~),

where p is an O-predicate and c is a C-predicate or an interpreted predicate. The
predicate p is called a relaxable predicate and c(~;) is said to be the relaxation cri-
terion (WRT is read as 'with respect to'). The intended meaning of the relaxation
goal is as follows: If the optimal solutions to p(t-) satisfies c(~), then those are
the intended solutions to the relaxation goal. Otherwise, the intended solutions
are got by restricting the feasible solution space of p(t~ by treat ing c(g) as an
additional constraint and then finding the optimal solutions in this restricted
space.

The use of the term 'relaxation' may at first seem a bit counter-intuitive
since the effect of a goal RELAX p(t~ WRT c(~) is to t reat c(g) as an additional
constraint on the feasible solutions to p(t-). The relaxation is in the sense that
the optimali ty of p will have to be relaxed in order to satisfy c.

Finally we note that a relaxation goal may also appear in the body of an
O-predicate or a D-predicate, but we do not consider such goals in this paper.

w Query Paradigms in Preference Datalog
We now briefly illustrate a few query paradigms within the PDP frame-

work. We first show how preferences in the relational calculus can be captured
within the P D P framework and we also consider relaxation queries.

3.1 Preferences in Relational Calculus
We now show that the kinds of queries expressible in the framework of

Lacroix and Lavency 1~ can be encoded in the framework of PDP. We take the
liberty to stream-line their syntax in this paper. We build on queries of the
form s e l e c t R w h e r e P, whose corresponding relational calculus expression
for the query is {f E R]P(~)}. Essentially, this query selects out the tuples
from the relation R that satisfy the property P. We can translate queries in the
domain relational calculus into datalog in the most natural way. Each relation in
the database is represented by an EDB predicate and the properties are either
constraints or are user-defined predicates. A query with a simple preference
clause has the form

select X where Q prefer PI.

Operationally, we first t ry to satisfy Q A P 1. If the resulting answer set is empty,
we drop P 1 and just report the tuples that satisfy Q. The set of solutions to the

Preference Queries in Deductive Databases 63

query can be expressed as follows:

{2 �9 XIQ(~) A [39[Q(0) A PI(O)] ~ Pl (2)]}

The equivalent P D P query is Xl(~), where Xl is an optimization predicate
defined as follows:

xz (0 -~ Q (0, x (~.
xl (~) _~ xl (~2) ~- Pi (h), ~ el (~).

Suppose no solution to Q satisfies P i, the arbiter is not applicable and all so-
lutions to Q are reported as solutions to the query, as desired. However, any
solution for Q that satisfies P 1 will be preferred over (i.e., will prune) solutions
for Q that do not satisfy P 1. This is precisely the effect tha t is specified by the
preference clause in the original query.

Nested Preference Queries: In many situations, some soft requirements are
more important than others. This is captured in Reference 1~ by a nested pref-
erence clause of the form:

select X where Q prefer P1 then P2.

Essentially, tuples in x that satisfy Q as well as P1 and P2 are returned as
answers. However, if there are no such tuples, then among the tuples that
satisfy Q, we pick those that satisfy P1. However, if the latter set is empty, but
there are some tha t satisfy Q and P2, we return them instead. Formally, the
answer set is:

{2 E XIQ(2) A [3t3Q(9) A P1(~3) A P2(9) ~ P1(2) A P2(2)]

A [~3~3[Q(~) A PI (~) A P2(~)] A 39[Q(9) A Pl(9)] ~ P l (2)]

A bm3[@(~) A P l (~) A P2(~3)] A ~3~[Q(~) A m (~)] A 3~[@(~2) A P2(~)]

P2(~)]}

The equivalent query in PDP makes use of hierarchic optimization. The trans-
lated query is x2 (~) where the optimization predicate X2 is defined as follows:

x2 (t-) -~ x l (t7
x2 ({1) _~ x2 ({2) ~- P2 ({2), ~ P2 ({1).
xl (t-) -~ x (t-), Q (~.
x l (El) _< x l (h) ~- P1 ({2), ~ P1 ({1).

Equally-Important Preferences: In certain situations, it is important to enforce
multiple preferences that have the same importance. These were formulated in
the framework of Reference 1~ as follows:

select X where Q prefer PI, P2

Informally the effect of this query is to pick from X all tuples tha t satisfy Q.
Furthermore, if the solutions t oQ satisfy both P l and P2 those are the answers
to the query. However, if the solutions to Q do not satisfy both P 1 and P2, the

64 K. Govindarajan, B. Jayaraman and S. Mantha

intended solutions are those that satisfy at least one of P1 and P2. However,
if none of the solutions of Q satisfied either P 1 or P2, all the solutions to Q are
reported as solutions. Formally, the answer set is:

{/:IQ(~) A [3~[Q(~) A Pl (~) A P2(9)] ~ P l (~) A P2(2)]

A[-~39[Q(9) A P l (9) A P2(9)1A 39[Q(9) A [Pl (9) V P2(9)1] ~ [Pl (2) V P2(2)1]}

The equivalent P D P is as follows. Note tha t we have taken the liberty to use
complex boolean formulae in the antecedents of arbiter clauses below, recogniz-
ing that such formulae can be translated into equivalent P D P clauses.

x~ (~ -~ x (~, Q @.
x l ({1) _< X l ({2) ~- P1 ({~), P2 ({~), ~ (P1 ({1) A P2 ({1)) .
Xl ({i) -< Xl ({2) +-- (P1 ({2) V P2 ({2)),-7 (P1 ({1) V P2 ({1)).

Extreme-Value Preferences: Preference clauses with a maximum or a minimum
preference are formulated in the framework of Reference 1~ as follows:

select X where Q prefer maximum T wrt P

Essentially, we want to pick from the relation x those tuples that satisfy Q
and that are mapped by the mapping relation p to the highest possible value.
Formally the solution set is:

{2 6 X[Q(~) A [3f/3tQ(9) A P(9, t) ~ P(2, t l) A t l

= max{t ISg[P(f / , t) A Q(t3)]}]}

where P is the relation that links the 2% to the t's. The equivalent P D P program
as before introduces a new O-predicate Xl as before with the following clauses:

Xl ({,U)--+ X ({), Q (t-), P ({,U).

x l ({1, u l) _< x l ({2, u2) ~ - u l < u2.

Thus PDP can express all of the preference clauses introduced in Reference 1~
Note that we have only made use of optimization clauses in the translated pro-
grams, i.e., relaxation queries are not needed in these translations.

3.2 Relaxation Queries
Consider the person (Name, Sex, DOB) and ancestor (Child, Ancestor)

predicates from the well-known family database example:

father (Child, Father) .

mother (Child, Mother) .

parent (Child, Parent) .

parent (X, Y) ~- father (X, Y) .

parent (X, Y) ~- mother (X, Y) .

ancestor (X, Y) +- parent (X, Y) .

ancestor (X, Y) +- parent (X,Z), ancestor (Z, Y) .

Preference Queries in Deduc t ive Da tabases 65

We can give a logical specification for the oldest ancestors as follows:

oldest_anc (X, Y) -~ ancestor (X, Y) .

oldest_anc(X, Yl) _--< oldest_anc(X, Y2) +--

person(Yl,_,DOBl), person(Y2,_,DOB2), DOB2 < DOBI.

The first clause introduces the opt imizat ion predicate oldest_anc, whose op-
t imal solutions are a subset of the solutions for a n c e s t o r (hence the use of a
--* clause). The arbi ter clause states the criterion for opt imizat ion: given two
solutions for o l d e s t _ a n e , the one with the smaller DOB is preferred.

To il lustrate the relaxation goal, suppose tha t we want to re-use the above
definition of o l d e s t _ a n c to find the oldest female ancestors. First note tha t
the query

~- oldest_anc(X,Y), person (Y, female,_)

is not correct: If all the oldest ancestors are male, the above query computes no
answer. We can use the relaxation goal to solve our s ta ted problem, as follows.

~- RELAX oldest_anc (X, Y) WRT person (Y, female, _) .

This goal works by restricting the feasible space of oldest_anc (X, Y) by treat-

ing person (Y, female, _) as an additional constraint and then finding the

optimal solutions in this restricted space.

w Bottom-up Evaluation for Preference Datalog
In earlier work, ~'6) we introduced a top-down query evaluat ion mechanism

for preference logic programs. In many data log programs a b o t t o m - u p evaluation
mechanism is more efficient as it can avoid unnecessary re -computa t ion th rough
memoization. Fur thermore, since bo t tom-up evaluation is be t ter than top-down
for datalog, 2~ we are interested in s tudying bo t tom-up evaluat ion techniques
for preference datalog. We first consider bo t tom-up evaluat ion for stratified
and locally stratified PDP. Finally, we present a magic rewrit ing technique for
P D P so tha t the bo t t om-up evaluation of the rewrit ten p rogram does not make
inferences tha t are not relevant to the query.

4.1 Stratified Programs
Traditionally, stratif ication is defined with every respect to all the predi-

cates in the program. In PLP, however, we are interested in stratif ication as it
applies to the O-predicates only.

Definition 4.1
A preference logic program P is said to be O-stratified if the following holds:
There is a mapp ing f from the set of O-predicates to the set {1, . . . , n}, for some
least n, such tha t if an instance of an O-predicate P1 appears in the body of a
--* clause defining an O-predicate 192, then f(P1) < f (P2) . For any O-predicate
P , its rank is defined to be f(P).

66 K. Govindarajan, B. Jayaraman and S. Mantha

We first consider O-stratified preference datalog programs. Suppose the
given preference datalog program has k levels; the naively pruned bot tom-up
evaluation of the program has k + 1 stages as follows:

1. Compute bot tom-up the canonical supported model of the core program,
and let this be M0. This may be computed incrementally using the semi-
naive iteration.

2. Consider the definitions of the O-predicates at level 1. Treating the ~ clauses
just as ~-- clauses (the conditions before the guard in the --~ clause are
treated as ordinary goals in the ~-- clause) and start ing from M0, compute
bot tom-up the canonical model of the clauses defining O-predicates at level
1. Let this set be O~ p (up stands for unpruned). Suppose S is a set of ground
atoms and .4 is a set of arbiter clauses. The result of applying the arbiter
.4 on the set S is a set T defined as follows:
T -- {p(t-) C S I there does not exist an arbiter clause A C .4 of the form
P021) _ P(U2) +-- c l (~a) , . . . ,Cn(f)n), a n atom P({1) E S and a substitution
0 such tha t 0 is the most general unifier of the set of equations {p(t-) =
p(~q),p({a) = p(u2)} and c1(~1)0 ,cn(G~)O is true. The set T is said to
be the result of applying the arbiter on the set S.
Suppose the result of applying the arbiter on the set O~ p is O1. Now
consider the definitions of D-predicates of level 1. Start ing with the set O1,
we construct bot tom-up the canonical model of program whose clauses are
the definitions of the D-predicates of level 1. Let this set be M1.

3. For each i > 2, we start from Mi-1 and construct Mi as in step 2.

We now state the soundness and completeness results for the bot tom-up evalu-
ation technique. We refer the reader to the Appendix for a brief description of
the model theory. The following lemma states the correctness of interpreting --~
clauses as ~-- clauses.

Lemma 4.1
Suppose 7" is a O-stratified collection of clauses containing a clause C of the
form:

p(t~ ~-- e l (U1) Cm(~tm),pl(tl) pn(tn)
Suppose the set S is a supported model for 7-. Now, consider the theory 7-~ =
(7- \ {C}) U C' where C' is a clause of the form:

p(t~ 4-4 C l (U l) , . . . ,Cm(Um) I Pl({1) , . . . ,pn(tn)

where all the variables that occur only on the right hand side are existentially
quantified and the ei's are treated as antecedents of the implication. Any sup-
ported model S r of 7-r is such that S r C_ S. Indeed, S itself is a supported model
for T ~.

Proof
Consider the clause of the form:

p(t--) ---* C l (U l) , . . . ,Cm(Ztm) I p l (t - 1) , . . . ,Pn({n)

Pre fe rence Quer ies in D e d u c t i v e D a t a b a s e s 67

Note tha t the variables tha t appear only on the right hand side of the ~ clause
are existentially quantified. A set of a toms S will model such a clause if it
has the following property. Suppose a ground instance p(t-)O of the head of the
clause is in S, t ha t is 19 satisfies Cl(f i l) , . . . ,Cm(tm), then there must be some
assignment cr for the variables tha t occur only on the right hand side such tha t
{ p l (t l) 0 ~ , . . . ,pn(t~)0~} C S.
Now consider a clause of the form:

p(t--) +--- Cl (Ul) , . . . , Cm(tm),Pl({1),... ,Pn({n)

Note tha t for such a clause, every variable tha t occurs in the clause is universally
quantified. Suppose a set of a toms Sa is a suppor ted model for this clause. This
means tha t for every subst i tut ion ~ such tha t {cl (ta)~?, �9 �9 �9 , cm (tim)r/, Pl (tl)~, �9 �9 �9 ,
Pn({n)~} _C $1, we have tha t p(t~T/C $1. Clearly each set S tha t models the --*
clause is a subset of the set $1 tha t models the corresponding ~- clause. This is
because we can decide not to include a part icular instance of the head of the +--
clause into the set S and still model the --~ clause. The set $1 itself is a model
for the --~ clause as long as the variables tha t appear only on the r ight hand side
of the --~ clause are existentially quantified. Therefore, by t rea t ing the --~ clause
as a ~-- clause, we can obtain all the possible subst i tut ions for the goal with an
O-predicate p at its head tha t can model the clause for the p. �9

The consequence of the above lemma is tha t solutions to any O-predicate
goal G can be compu ted by t reat ing --* clauses as *- clauses. In wha t follows, a
worm is a collection of instances of the predicates in the p rogram tha t is a model
for the clauses of the program.

Theorem 4.1 (Soundness and Completeness)
Given a O-stratif ied preference data log p rogram with n levels, an a tom A belongs
to the set Mn cons t ruc ted by the naively pruned bo t t om-up evaluat ion procedure
if and only if A is a preferential consequence of the program.

Proof
The proof is by induct ion on the level of O-predicates in the program. Clearly,
we are interested in the case when the head of the a tom is an O-predicate, since
the correctness of the other kinds of a toms will follow from that .
Base ease: Consider an a tom A = p(t-) such tha t the level of the O-predicate p
is 1. Since the p rogram is O-stratified, each model for the ~ clause is a subset
of the corresponding +-- clause. From this it follows tha t any instance of p tha t
appears in any world is a subset of the set O~ p. Furthermore, if the arbiter ap-
plies between two instances of p then the corresponding worlds in the intended
preference model are related. Since the program is O-stratified, the s trongly
opt imal worlds are not related to themselves (for proof see Reference4)). There-
fore, the set of instances of p tha t remain after the pruning step are precisely
the set of preferential consequences. Since the D-predicates are defined in terms
of O-predicates via ~-- clauses, if we star t with the pruned set of O-predicates and
compute b o t t o m - u p the least fixed point of the clauses defining the D-predicates
we would get the declarative semantics of the program at level 1.

68 K. G o v i n d a r a j a n , B. J a y a r a m a n a n d S. M a n t h a

Inductive Hypothesis: Given a preference logic program, the set Alk is the declar-
ative semantics of the program at level k.
Inductive Step: Consider the definitions of the O-predicates at level k + 1. By
our inductive hypothesis, the set]ilk is the declarative semantics of the program
up to level k. Recall that the worlds in the intended preference model at level
k + 1 were constructed by extending the set Mk with instances of O-predicates
and D-predicates so that each world models the clauses for the predicates at level
k + 1. We can use the lemma from the previous chapter to conclude that each

up
instance of an O-predicate that occurs in any world is present in the set Ok+ 1.
Furthermore, after pruning, the set of instances O-predicates are precisely those
that are true in some strongly optimal world. Extending the set Ok+l to the
set 5ik+1 (using the definitions of the D-predicates at level k + 1), gives us the
declarative semantics for the program at level k + 1 as bottom-up evaluation is
complete for +- clauses defining the D-predicates. �9

If the program is not O-stratified, a naively-pruned bottom-up evaluation
is not complete. For instance, consider the following non-stratified program:

q(X) +- p(X).

p(b) --+ p(a), r(a) .

p(a) -+ p(b), r(b) .

p(a) -< p(b) .

p(b) -< p(a) .

r(a) .

r(b) .

The query q (X) has two correct optimal answers: X = a and x = b since
q (a) , and q (b) are both preferential consequences of the program (see ap-
pendix for definition). The reader may note that standard model theoretic tech-
niques such as well-founded models would not classify these as correct answers.
The possible worlds semantics that we associate with preference programs that
defines these to be the correct answers. Since the least model of the set of clauses
obtained by treating the --+ clauses as +- clauses is {r(a) , r(b)}, the naively-
pruned bot tom-up evaluation will not compute either answer for this query. This
example also illustrates why top-down evaluation may be more suited for pref-
erence logic programs than bottom-up evaluation. Since bottom-up evaluation
works with ground instances, it is more difficult to guarantee soundness and
completeness. In top-down evaluation, the requirement that the invoked goals
be sufficiently non-ground was crucial in guaranteeing soundness. In bottom-up
evaluation, however, that requirement is difficult to enforce. If the program is
locally O-stratified, bottom-up evaluation succeeds as lemma in showed that the
various models for the -~ clause are subsets of the canonical model for the cor-
responding +- clause. Non-stratification, however, had a profound effect on the
top-down operational semantics. The search tree emanating from the goal was
infinite which is not the case for bot tom-up evaluation.

4.2 Locally Stratified Programs
We now consider programs that are not necessarily O-stratified and show

Prefe rence Quer ies in D e d u c t i v e D a t a b a s e s 69

how the bottom-up evaluation can be extended to those programs.

Definition 4.2
A preference logic program P is said to be locally O-stratified if the following two
conditions hold:

1. There is a mapping f from the set of O-predicates to {1 , n} for the least
n such that if an instance of an O-predicate t'1 appears in the body of a
clause defining an O-predicate P2, then f(P1) _< f(P2). In addition, for any
O-predicate P, f(P) is the rank of P.

2. There is a well-founded ordering -~k over the set of ground instances of all
O-predicates of rank k, defined as follows: (i) ground instances of base facts
of O-predicates of rank k all map to the • of the ordering -~k; and (ii) ground
instances of optimization clauses have the property that each instance of an
O-predicate of rank k that appears in the body is -<k the instance of the
O-predicate of rank k that appears in the head.
Furthermore, the ordering -% is defined by considering only those argument
positions of a ground instance that are not used by the arbiter clauses to
prefer one solution over another.

When the program was O-stratified, we were able to perform a bottom-
up evaluation of the program level by level. However, when the program is not
O-stratified, we cannot do the same. The technique works for programs that
are O-stratified because by the time we are evaluating the program at level k,
we accurately know the preferential consequences of predicates upto level k - 1.
This however is not the case when the program is not O-stratified.

Consider the following dynamic-programming formulation for the minimum-
distance problem as follows:

min_dist (X, X, 0, 0) .

min_dist (X, Y, I, C)

min_dist (X,Y,N+I,CI+C2)

-~ X <> Y I edge(X,Y,C) .

-~ N > 0, X <> Y]

min_dist (X, Z, i, Cl) ,

min_dist(Z,Y,N, C2) .

min_dist (X, Y, N, Cl) ~ min_dist (X, Y, N, C2) +- C2 < Cl.

The optimal subproblem property of the minimum-distance problem is ex-
pressed well by the above formulation: each call to m i n _ d i s t uses only the
optimal solutions to subsequent recursive calls on r a i n _ d i s t . Note that this
program has function symbols such as +. However, for the purposes of the dis-
cussion here, we will treat such function symbols as being pre-interpreted and
the resulting program is a constraint datalog program, s)

The technique outlined in the previous subsection will work for such lo-
cally O-stratified programs, since we can prove a lemma similar to lemma 4.1
and thereby treat --* clauses as ~-- clauses for the purpose of generating solu-
tions. However, it is possible that non-optimal versions of some O-predicates
may be used to generate facts that will then get pruned later. Therefore, the
level by level bot tom-up evaluation will generate unnecessary facts. We need to

70 K. Gov inda ra j an , B. J a y a r a r a a n and S. M a n t h a

make sure tha t when using a recursive rule for an O-predicate p, we only consider
instances of the p in the body that are known to be optimal.

A similar problem arises in bo t tom-up evaluation of programs with nega-
tion. There, when using a recursive rule for a predicate Pl tha t depends neg-
atively on itself, we need to make sure tha t we have enough information to
actually infer the negative instance in the body. Ross 1G) discusses a technique
for bot tom-up evaluation of such programs that addresses this problem. We now
show how a similar technique can be used for bot tom-up evaluation of preference
datalog programs.

In keeping with the standard terminology, we refer to the predicates de-
fined using base facts Extensional Database predicates (EDB predicates) and
those defined using rules Intensional Database predicates (IDB predicates). Fol-
lowing Ross, TM we introduce the following auxiliary predicates:

1. A depends predicate (abbreviated as depo) that keeps a record of which
atoms depend on optimal instances of other atoms.

2. A unary un-depends predicate (abbreviated as depo') that keeps a record of
atoms whose optimali ty has been decided.

3. A currently depends predicate (abbreviated as dd). This relation is precisely
depo - depd.

4. An extra modal operator o. Intuitively, op(t~ holds if at the previous fixed
point, p(t-) is known to be optimally true. Tha t is, no other instance of p is
preferred over p(t-) at the previous fixed point.

The relations depo, depo ~, and dd are maintained by the bot tom-up eval-
uation procedure. We only provide intuitive definitions for them. However, they
could be implemented a much more efficiently than described here. The key
intuition behind using the modal operator o is that we want to postpone the
firing of some rules until optimal instances of the goals on right hand side have
been computed. I ts effect on the bo t tom-up computat ion is that the bot tom-up
evaluation reaches many fixed points. At each fixed point, some new optimal
instances may be inferred and that enables some more new rules to fire. This
goes on till at some fixed point no more new optimal instances are inferred.

Furthermore, we also use me ta variables that can unify with arbi trary
atoms. Given a rule r, the opt-replacement of r is the rule obtained by replacing
each O-predicate goal q(t-) in the body of r with oq(t-).

Definition 4.3
Given a preference datalog program P, we define the opt-rewritten version popt-R
of P as follows:

1. For every rule r, the opt-replacement of r is in popt-R.
2. For_every rule of the form p (~ --~ P1~[1),--- ,Pn(~n) (or p(t-) ~-- P l (t t) , - - - ,

pn(t~)), and for i from 1 to n, if p~(ti) is an O-predicate goal, we add the
opt-replacement of the rule:
depo(p(t-),pi(ti)) *-- pl(~-l), . . . ,Pi-x(~-i-1)

3. For every rule of the form p(t--) --~ P l (t l) , - . - ,P,~(tn) (or p(t-) ~ P1(/1), . . . ,
p~(/,~)), and for i from 1 to n, ifp~(ti) is not an O-predicate goal or an EDB

Preference Queries in Deductive Databases 71

predicate, we add the opt replacement of the rule:
depo(p(t~, X) ~-- p1({1), �9 . �9 ,p i - l ({ / -1) , dd(pi({i), X)

4. We also add the following rules to popt-R

depo'(Q) +- dd(Q, R), R.
depo'(Q) ~ dd(Q, R), oR.

5. There is a meta-rule in popt-R.

oP +-- VQ(depo(P, Q) ~ depo'(Q)), optimal(P).

The meta-rule is defined in terms of an embedded implication =~. Basi-
cally, it says that a fact of the form oP can be inferred if for each fact Q such that
depo(P, Q) is true at the current fixed point, it is the case that depo'(Q) is true.
Furthermore, P is optimal in that there is no other instance of the predicate at
the head of P tha t is true at the current fixed point that is preferred according
to the arbiter. The meta-rule succintly captures the computat ion that has to be
performed by the bot tom-up evaluation procedure at each fixed point.

Now, consider the program for m i n - d i s t from before. The opt-rewrit ten
version of that program looks as follows:

m i n _ d i s t (X, X, 0, 0) .
min_dist (X, Y, l, C) -~ X <>

min_dist (X,Y,N+I,CI+C2) -~

Y I edge(X,Y,C).

N > i, X <> Y I
o min_dist (X, Z, i, Cl) ,

o min_dist (Z,Y,N, C2) .

min_dist (X, Y, N, Cl) _~ min_dist (X, Y, N, C2) ~- C2 < Cl.

depo (min_dist (X, Y, N+I, CI+C2), min_dist (X, Y, i, Cl)) ~-

N > 0, X <> Y.

depo (min_dist (X, Y,N+I, CI+C2), min_dist (Z, Y, N, C2)) ~-

N > 0, X <> Y, o min_dist(X,Z,l,Cl).

The naively-pruned bot tom-up evaluation now proceeds along using pro-
gram popt- R.

1. First compute the least fixed point of the clauses defining the core predicates
in the program. Let this set be M0.

2. Now consider the clauses that define the O-predicates and D-predicates at
level 1. Apply the clauses at level 1 till you reach a fixed point. At this
point, we can infer some instances of op(t-) for some O-predicates. Note that
the predicates depo, depo', and dd will get modified as this computat ion
proceeds. Use the optimal (o) instances currently computed to restart the
bot tom-up evaluation of the level 1 of the program. We continue until a
particular pass of the bot tom-up evaluation does not produce any more new
facts. The set produced at this point is the set M1, the set of preferential
consequences at level 1.

3. Repeat step 2 for each level of the program resulting in the set /t~/~ where
n is the number of levels in the program.

In the example above, the first step will result in the production of a set

72 K. Govindara jan , B. J a y a r a m a n and S. Man tha

that contains all the instances of the e d g e predicate in the program. When the
rules making up the predicate m i n _ d i s t are considered, the first fixed point is
reached by using only the base fact and the rule for m i n _ d i s t tha t depends on
edge . This is because the other rules have o goals in their bodies. Now, we
will be able to infer facts of form o m i n _ d i s t (X,Y, 1 ,C) for various X and
Y. This is because m i n _ d i s t (X, Y, 1, C) instances depend only on the EDB
predicate e d g e . The meta rule will be applicable because the embedded im-
plication is vacuously true. The only instances that survive will be the ones
that actually correspond to the shortest edges between any pair of nodes. When
the next fixed point is reached, we will be able to infer facts of the form o
m i n _ d i s t (X, Y, 2, C) and so on. This essentially mimics the dynamic pro-
gramming algorithm for shortest path.

Note that we have used auxiliary predicates to indicate how the bot tom-
up evaluation should proceed. We can come up with efficient implementations
for maintaining the relations depo, depo', and dd so that the generation of the o
facts using the meta rule is reasonably efficient.

Lemma 4.2
Given a preference datalog program P with n levels, suppose for some 0 < i < n,
the bo t tom up evaluation procedure outlined above produces the set hIi then,
when executing the procedure for level i + 1 of the program, if at any fixed point,
an instance of the form op(t-) is inferred using the meta rule, then the a tom p(t-)
is a member of the set Mi+l.

Proof
Essentially, all we want to show is tha t once an a tom has been deemed to be
optimal, its opt imali ty is not rescinded. This follows from the observation that
the ordering that determines local stratification is defined using the argument
positions that are the same in both instances of the O-predicate in the head of
an arbiter clause and not the argument positions that are used by the body of
the arbiter to choose one instance over the other. Therefore, if at a fixed point,
the optimali ty of p(t-) depends on the optimali ty of p(g), because a -~ clause is
applicable with p (~ at the head and p(g) in the body, then no arbiter clause is
applicable between any instance of p(t-) and p(~). �9

Theorem 4.2
Given a preference datalog program that is locally O-stratified with n levels, an
a tom A belongs to the set Mn constructed by the bot tom-up procedure outlined
above if and only if A is a preferential consequence of the program.

Proof
The proof is by induction over the levels of the program. For level 1, suppose
an a tom A belongs to the set M1 tha t is constructed at the end of iteration at
level 1. Suppose further that A is an instance of an O-predicate at level 1. If
A belongs to the set M1, it must have been introduced dur ing some iteration.
Suppose that it was the jth iteration and the set at the (j - 1) th fixed point the
set of a toms deemed to be true was. MI.(j-1) and after the jth iteration, the set
was M].j. We want to show that A is a preferential consequence of the program.

Preference Queries in Deductive Databases 73

This however, follows from the observation that since the a tom A survived the
pruning that created the set M14. Furthermore, it was created by using the
optimal instances of all the O-predicates that it depended on. Therefore, the
instance of A is optimal. Furthermore, by the previous lemma, we also know
that once A has been deemed to be optimal, it indeed is optimal.

A similar proof holds for each level in the program. �9

4.3 Relaxation Queries
We now describe a bot tom-up procedure to compute the answers to relax-

ation queries. To provide the semantics for RELAX goals, we first note that, for
t ruth in the optimal world, both constraints and preferences must be satisfied.
If we consider only the worlds that contain instances of both the relaxable pred-
icate and the relaxation criterion to determine the best solution, we effectively
relax the preferences that made the worlds without instances of the relaxation
criterion better.

Definition 4.4
Given a preference logic program P and a relaxable query G = RELAX p({) WRT
c(~), the relaxed intended preference model for P and G is a sub-frame MT of the
intended preference model M for P such that MT contains all the worlds in M
such that the only instances of p({) that appear in each world correspond to
substitutions tha t are solutions of c(~).

Definition 4.5
Given a preference logic program P, an a tom A that depends on a relaxable goal
G is said to be a relaxed preferential consequence of P and G if it is true in some
strongly optimal world in the relaxed intended preference model for P and G.

Given a preference datalog program without relaxation goals in the bodies of
clauses and a relaxation query to the program, we first rewrite the program
with the relaxation query into a preference datalog program and a new query.

Definition 4.6
Given a relaxable query G = RELAX p(t-) NRT C(U), the function relax(p(t~, c(ft))
returns the set of relaxed clauses for p by including, for every clause p(2) --~
Pl (21) , Pn (2n) for p, the following pair of clauses:

1. relax_p(t, ft) ~ 2 = { pit_21),... , p n (3 C n) , C (~ t) .
2. relax_p(2,0) ---* <2, v> r <t,u> p1(21) pn(2n)

Furthermore, for every arbiter clause ofp of the form P({1) _~ P({2) ~- L1 Ln,
relax(p(t-), c(g)) includes the following arbiter clauses:

1. relax_p({81, ~81) ~_ relax_p({82, f~82) ~- 51o1~r2 , Ln~l~2,
e(fZSl],e(g82),_ where 81 and 82 are variable renaming substitutions such
that t81 and t82 do not share any common variables. The substitutions o"1
is the most general unifier of {1 and {81, and ~r2 is the most general unifier
of {2 and {82.

2. relax_p({1,01) ~ relax_p(h, 02) ~ L1 L~, ({ ~s {1 V { ~s {2), (U r 01 V

74 K. Govindarajan, B. Jayaraman and S. Mantha

r v2).

The relaxed query corresponding to G is relax_p({, ~).

In essence, given a preference datalog program P and a relaxation query
of the form RELAX p(~ WRT c(fi), the set relax(p(~, c(~)) of relaxed clauses for p
introduces a new O-predicate relax_p, the relaxed version of p, into the program.
The clauses for relax_p are obtained from the clauses for p by modifying every
clause for p tha t is applicable to p(t~ in the relaxation goal by adding c(fi) to
the body; clauses for p that are not applicable to p(t~ are not modified. If some
instance of a clause for p is applicable to p (~ then we obtain two clauses in the
relaxed version, one that is applicable to t with the body containing c(~), and
the other tha t is not applicable to { with the body as before. The arbiter clauses
for relax_p are obtained from the arbiter clauses for p in a similar manner. The
reader is referred to appendix B for an example. Note that we have made use
of ordered pairs in the translation for the sake of convenience. An equivalent
translation without ordered pairs is easily devised. Furthermore, the relaxed
query corresponding to the relaxation query RELAX p(~ NRT c(~) is relax_p({, ~).
The soundness of the translation is established by the following theorem.

Theorem 4.3 (Correctness of Translation)
Given a preference datalog program P and a relaxation goal G =
RELA• p(~ NRT c(fi), p(t-)O A c(~)0 is a relaxed preferential consequence of P
and G if and only if relax_p({, ~)0 is a preferential consequence of the program
P U relax(p(~, c(~)).

Proof
Suppose there is an instance relax_p(t~O in a world in the intended preference
model for P U relax(p(~, c(~)). Clearly, the instance p (~0 belongs to a world
in the relaxed intended preference model of P and G as e(fi)0 is true. Similarly,
we can show tha t if an instance p({, ~)a occurs in any world in the relaxed
intended preference model of P and G, then the instance relax_p~{, ~)a occurs
in some world in the intended preference model of P U relax(p(~, c(~)). The
arbiter clauses for relax_p enforce the same ordering when the solutions to p
satisfy c. �9

The naively-pruned bot tom-up evaluation technique for a O-stratified preference
datalog program P and a relaxation query G consists of the following steps: (i)
Augment P with the relaxed clauses for the relaxable predicate in G to produce
program PP. Let G ' be the relaxed query corresponding to the relaxation query
G. (ii) Perform naivelyipruned bot tom-up evaluation of the program P ' .

Theorem 4.4 (Soundness and Completeness)
Given a (locally) O-stratified preference datalog program P and a relaxation
query G = RELAX p(t-) WRT c(~), an instance relax_p(t-)O is computed by the
naively pruned bot tom-up evaluation technique applied to the program P t2
relax(p(t-), e(~)) if and only if p({, fi)0 is a relaxed preferential consequence of P
and G.

Pre fe rence Quer i e s in D e d u c t i v e D a t a b a s e s 75

Proof
If P is a (locally) O-stratified preference logic program and G = RELAX p(t-)
WRT c(fi) is a relaxable goal then P' = P U relax(p(t~, c(~)) is also a O-stratified
program. Furthermore, from the correctness of translation theorem we know
that the set of correct relaxed answers to the goal relax_p(t~ with respect to the
program P ' are the answers of interest. Since P' is also (locally) O-stratified,
naively pruned bo t tom-up evaluation is sound and complete and we have our
desired result. �9

4.4 Magic Rewriting
The bo t tom-up evaluation mechanism outlined above is inefficient in that

it may compute the set of all preferential consequences of the program in order
to answer a given query. We now describe an improvement based on the magic
rewriting presented in Reference 1~). We first consider queries to preference data-
log programs that are not relaxation queries and later describe the technique for
making the evaluation of relaxation queries more efficient by magic rewriting.

Let P be a P D P program and a query Q = q($). Traditionally in magic
rewriting, for each IDB predicate p in P, we define a new predicate magic_p
such that the bo t tom-up evaluation of the program generates a fact magic_p(~z)
if while solving for q($) the top-down evaluation had to solve for p(~). However,
in our setting, we will find it more convenient to introduce the magic predicates
as meta predicates. In particular, we have two versions of the magic predi-
cates. One for the O-predicates, magico, and one for the C-predicates and D-
predicates in the program, magic. Furthermore, we will use the supplementary
magic rewriting along the lines of the magic rewriting for datalog programs with
negation presented in Reference1% Therefore, for each rule rj in the program
that has k goals in the body, we introduce k + 1 supplementary predicates 8upj.i
for i = 0 k. Essentially, supj.i t ransmits the relevant variable bindings from
the (i - 1) th goal through the n th goal to the head. Each predicate supj.i can
have as arguments all the variables that occur in the clause. However, this can
be optimized by following the scheme in Reference 1~) by retaining variables that
either appear in the rule head or variables that occur in the (i - 1) th subgoal
that also occur the rest of the body. We assume that a left-to-right sideways
information passing (sip) 13) is used.

In addition to the magic predicates, we have the following meta predicates:

1. dep(P, Q), which means that P depends on Q in the normal sense.
2. depolP, Q), which means that P depends on an optimal instance of Q.
3. depo (Q) which is the complementary version of depo which means that

the instances of depo are not useful anymore as the opt imal status of Q is
known.

4. We also use the o operator as before.

The meta predicate magico is special. An instance of the form magico(p(t~) is
a shortened notation for an ordered pair of the form (magico(p(t')), E = t'}. The
term ~i is the te rm E where all the positions in t that are used by the arbiter for p

76 K. G o v i n d a r a j a n , B. J a y a r a m a n a n d S. M a n t h a

are replaced by new variables. The constraint f = {' is then enforced before the
optimality of p(t-) is used to infer other facts. For instance, before facts of the
form depo'(p(t~) are inferred. This captures the non-groundness condition that
the top-down semantics described in References 5'6) placed on the O-predicate
goals that were encountered in the top-down computation. This is necessary
because we want to be able to guarantee that all the solutions for the argument
positions used by the arbiter are produced before pruning is performed.

Let p m be the program that is the result of performing the magic template
transformation on the program-query pair (P,Q). p m has three components
(P ~ , P ~ , P ~) .

We now describe what is included in each component in turn.

The following is in P ~ :

(0) If the initial query is ?- p(t-) where p is not an O-predicate, then include
the rule:

 agic(p().
(Oa) If the initial query is ?- p(t~ where p is an O-predicate, where the argu-

ments positions that are used by the arbiter to choose amongst alternative
solutions of p are unbound in p(t~, then include the rule:

rnagico(p(t~).

The following are included in p~n:

(1) If the head of rule rj is p(t-), and p is not an O-predicate, we include the
rule:

supj.o(~t) ~-- raagic(p(t~).

(la) If the head of rule rj is p(t~, and p is an O-predicate, we include the rule:

supj.o(ft) *-- magico(p(t~).

(2) If the head of rule rj is p(t~, rj has k goals in the body, and p is not an
O-predicate, then include the rule:

p(t-) ,-- supj.k().

(2a) If the head of rule rj is p(t~, rj has k goals in the body, and p is an
O-predicate, then include the rule:

p(t supj.k()

(3) If p(t-) is the i th goal in the body of rule rj. If p is not an O-predicate
and the arguments of supj.(i-1) are g, then include the rule:

magic(p(t~) *--- sup j.(i_ l) (ft).

(3a) If p(t-) is the i th goal in the body of rule rj, and p is an O-predicate, then
include the rule:

magico(p(t~) ~-- supj.(i-1)(ft)

Prefe rence Quer i e s in D e d u c t i v e D a t a b a s e s 77

(4) If p(~ is the i th goal in the body of rule rj and rj has k goals in the body.
If p is not an O-predicate and i < k, include the rule:

supt.i(~) *- supt.(~- 1)(~), p(~.

(4a) Ifp(t~ is the i th goal in the body of rule r t and rj has k goals in the body.
If p is an O-predicate and i _< k, include the rule:

supt.~(~) *- supt.(i-i)(v), op(~.

(5) If p(t~ is the i th goal in the body of rule rj and q(~) is the head of rj. If
p is not an O-predicate and q is not an O-predicate, include the rules:

dep(q($), p(t~) , - magie(q($)), sup t,(i_ 1) (u).
dep(P, p(~) ~--- ,dep(P, q(~)), suP t.(i_ l) (~).

(5a) If p(t-) is the i th goal in the body of rule r t and q(~) is the head of rj. If
p is an O-predicate and q is not an O-predicate, include the rules:

depo(q($), p(t~) *-- magie(q($)), suPt,(i_ 1) (u).
depo(P, p(t-)) , - dep(P, q(~)), supj.(i_l) (~t).

(5b) If p(t~ is the i th goal in the body of rule rj and q($) is the head of r t . If
p is an O-predicate and q is an O-predicate, include the rules:

depo(q($), p(t~) , - magico(q($)), supt,(i_ 1)(f~).
depo(P, p(t~) *- depo(P, q(~)), supt.(i_i) (s

(5c) If p(t-) is the i th goal in the body of rule rj and q($) is the head of r t . If
p is not an O-predicate and q is an O-predicate, include the rules:

dep(q($) , p(t-)) *- magico(q($)), sup j,(i_ 1)(s
dep(P, p(t-)) ~-- depo(P, q(~)), supj.(i_ 1) (u)-

(5d) Include the rule:

depo'(Q) ~- magico(Q), oQ.

The following meta-rule is introduced in P ~ :

oP +- magico(P), VQ(depo(P, Q) ~ depo' (Q)), op t imal (P) .

The meta rule in p~n essentially states that we infer a fact of the form oP
only when the optimal t ruth of all the facts that it depends on has been deter-
mined. This meta-rule is fired only at fixed points in the bot tom-up computation
using the rules in p~n. Therefore, the bottom-up computation algorithm pro-
ceeds in the following loop:

1. Assert the facts in p~n.
2. Using the facts in P ~ , the bottom-up computation proceeds until a fixed

point is reached.
3. At the fixed point, new instances of o and depo I are inferred using the

meta rule p~n and the rule for depd until a fixed point is reached. If new

78 K. Govindarajan, B. Jayarsman and S. Mantha

o instances were inferred in this iteration, go to step 2, else bottom-up
computation is complete.

Example $.1 Consider the following preference dataiog program:

path (X, Y, C) ~- edge (X, Y, C) .
path (X, Y, C) ~- edge (X, Z, CI), path (Z, Y, C2),

C = C1 + C2.
naive_sh_path (X, Y, C) -* path (X, Y, C) .
naive_sh_path (X, Y, Cl) _-< naive.sh_path (X, Y, C2) ~- C2 < Cl.

and suppose the query to the program is ?- naive_sh_path (a, b, X) . The
magic rewriting described above would produce the following program: The
program component P ~ contains:
magico (na ive_sh_pa th (a, b, X)) .

The component P ~ contains the following rules:

supI.o(X,Y,C) ~- magic(path(X,Y,C)) .

sup2.o(X,Y,C) ~- magic(path(X,Y,C)) .

suP3.o (X, Y, C) +- magiCo (naive_sh_path (X, Y, C)) .

path (X, Y, C) ~- SUpl.1 (X, Y, C) .
path (X, Y, C) ~- sup2.3 (X, Y, C,) .
naive_sh_path (X, Y, C) -* sups.1 (X, Y, C) .

magic(path(X,Y, C2)) ~- sup2.1(X,Y,C,Z, CI,C2).
marc (path (X, Y, C)) ~- sup3.o(X,Y,C) .

supl.l (X, Y, C) ~- supl.o (X, Y, C), edge (X, Y, C) .
sup2.1(X,Y,C,Z,CI) ~- sup2.0(X,Y,C), edge (X, Z, Cl) .
sup2.2(X,Y,C, CI,C2) ~- sup2.1(X,Y,C,Z, Cl), path (Z, Y, C2) .
sup2.3 (X, Y, C) ~- suI~.2 (X, Y, C, CI,C2), C ffi C1 + C2.
sup3.1 (X, Y, C) ~- sup3.o (X, Y, C), path (X, Y, C) .

dep(X, path(Z,Y, C2)) +-

dep(X, path (X, Y, C)) ~-

dep (path (X, Y, C) , path(Z,

dep (naive_sh_path (X, Y, C),

dep(X, path (X, Y, C)) ,

sup2.1 (X, Y, C, Z, CI) .
depo (X, naive_sh_path (X, Y, C)),

8uP3.o (X, Y, C) .
Y, C2)) +- magic(path(X,Y,C)),

sup2.1 (X, Y, C, Z, Cl) .
path (X, Y, C)) ~- magic(path(X,Y,C)),

sup3.o (X, Y, C).

depo'(x) ~ ~ c o (X) , o X.

naive-sh_path (X, Y, C1) _~ naive_sh_path (X, Y, C2) ~- C2 < Cl.

Preference Queries in Deductive Databases 79

The program fragment p~n has the following meta-rule:

o naive_sh_path(X,Y,C) ~- magico(naive_sh_path(X,Y,C)),

VQ(depo(nai ve_sh_path(X, Y, C), Q) ~ depo'(Q)),
optimal(naive_sh_path(X, Y, C)).

The magic predicates, magic and magico, and all the other supplemen-
tary predicates are defined using just definite clauses. Therefore, no circular
non-stratified dependencies are introduced by this kind of magic rewriting. In
addition, the reader may note that the above rewriting technique requires local
stratification amongst the O-predicates. This however does not place any re-
striction on the cyclic dependence amongst instances of C-predicates. Therefore,
even if the graph in the above example has a cyclic edge relation, the bot tom-up
procedure will be able to terminate.

Theorem 4.5
Given a PDP P and a normal query Q = q(t~, suppose pm is the result of
applying magic rewriting to the program-query pair (P, Q); then P and pm are
equivalent with respect to the answers to the query q(t~.

Proof
We outline the proof of the theorem when q is an O-predicate. The other cases fol-
low in a natural fashion. Furthermore, to show that this is true for O-predicates,
we induct on the level of the O-predicates. In the base case, suppose the level
of the O-predicate is 1. Since we can interpret the ~ clauses as +-- clauses,
we can show that the bot tom-up evaluation of the rewritten program generates
a fact of the form magic(p(~)) if the top-down evaluation start ing from q(t-)
had to solve for p(~). The soundness of the rewriting technique requires that a
predicate appearing at the head of an optimization clause must be invoked with
unbound variables at certain argument posi t ions-- the values at these positions
being determined by the body of the optimization clause and used by the arbiter
to prefer one solution over another. Therefore, the query added to the program
should be of the form magico(q(t~) where some of the argument positions in {
are unbound. If the goal G is not sufficiently uninstantiated, it could happen
that the optimal instances are not computed by the bot tom-up evaluation at
all. This requirement is identical to the non-groundness requirement that the
top down evaluation technique introduced by us in ReferencesS'6(Therefore, we
can show that the rewritten program and the original program are equivalent
with respect to the answers to the query for this case. The inductive case is
similar. �9

The rewriting technique for computing answers for relaxation queries is
a straightforward extension of the foregoing ideas. Given a preference datalog
program P and a relaxation query Q, we first augment P with the relaxed
clauses for the relaxable predicate in Q to produce the program PP. Furthermore,
suppose the relaxed query corresponding to Q is Q'. Note tha t P ' is a preference
datalog program without any relaxation goals and Q' is a normal query, not a
relaxation query. We can then perform magic rewriting on the program query

80 K. G o v i n d a r a j a n , B. J a y a r a m a n a n d S. M a n t h a

pair (P ' , Q'). By the correctness of the translation, we can prove the correctness
theorem for relaxation queries.

w Conclusions and Further Research
In this paper, we have shown that the notion of preference adds substan-

tial power to deductive database query languages such as datalog by allowing one
to express criterion for optimization and relaxation in a declarative and mod-
ular manner. We introduced preference datalog programs as preference logic
programs 5,~) without any uninterpreted function symbols as the formalism in
which to explore the use of preference in deductive databases. We proposed a
bot tom-up evaluation technique for evaluating answers to normal and relaxation
queries as opposed to the top-down evaluation technique proposed in our earlier
work. ~'~) We also developed a modification of magic rewriting technique so that
the bot tom-up evaluation of the rewrit ten program will not make any deductions
that are not relevant to answering the query.

While we discussed the evaluation of relaxable queries, we did not describe
the evaluation technique when relaxable goals appear in bodies of clauses defining
various predicates. The usefulness of such a construct is made apparent by the
following example that computes the pa th with the nth-lowest cost between any
two nodes in a graph:

n_sh_path (l, X, Y, C, P) ~- naive_sh_path (X, Y, C, P) .

n_sh_path(N+l,X,Y,C,P) ~- n_sh_path (N, X, Y, D, _) ,

RELAX sh_path(X,Y,C,P) WRT C > D.

The top-down evaluation technique presented in Reference ~) performed a pro-
gram transformation and evaluated the rewritten program to answer such queries.
We are investigating efficient ways of incorporating such a scheme in our bot tom-
up evaluation technique. The relaxation regime presented here allowed the user
to specify how to modify the definition of the optimization predicates to obtain
solutions when none exists. One can also envisage a similar modification of the
preference clauses of any O-predicate.

Another direction for further research would be to extend P D P by per-
mitting in the bodies of clauses constraints as in CLP. 7~ The resulting paradigm
can be viewed as an extension of CQL s) with preferences. Just as this paper
extended the bot tom-up evaluation technique for datalog to preference datalog,
we would have to extend the bot tom-up evaluation technique for CQLs s'17) to
the extended paradigm.

We are also interested in extending the paradigm to incorporate inductive
aggregates such as sum. This may be achieved by adding bags as a built-in
data-type. The interaction of inductive aggregates and relaxation also provides
interesting problems for research. The queries that we allow are first order
queries and the bodies of arbiter clauses are not allowed to have preferential
goals. A very natural kind of query to allow is whether some solution to a
goal is preferred over another. It is also natural to have preferences about our
preferences, and for certain preferences to depend on other preferences.

Preference Queries in Deductive Databases 81

We believe that preferences will provide an important technique for query-
ing the world-wide web for information. In traditional database systems, the
data is standardized with respect to some data model, and there is a close re-
lationship between the query langauge and the data model. However, when the
amount of information being stored in the database is very large or there are data
sources with dissimilar data formats, querying by traditional query languages can
be problematic. Often, specifying a query purely in terms of constraints results
in either to too many solutions or non at all. The problem is compounded when
sources of data do not necessarily conform to any fixed data model as in the
case of the world-wide web (WWW). Most web search engines today allow the
queries that often result in very unintuitive answers. The number of answers
returned by these search engines are either in the millions or none at all. And,
sometimes an apparently more specific query provides more answers.

The query power and flexibility provided by preference datalog will be
very relevant in such applications, as it will help the user better control the
search. Preferences can be thought of as modular additions to current search
engines. For instance, if one is interested in a web-page with a certain property,
one can formulate a query with that property as a preference. This way, the
web-pages that do not satisfy that property will not be reported as potential
answers. However, in the event that no web-page has the property, the user will
get whatever the search engine currently provides.

References
1) Brown, A., Mantha, S. and Wakayama, T., "Preference Logics: Towards a Uni-

fied Approach to Non-Monotonicity in Deductive Reasoning," Annals of Mathe-
matics and Artificial Intelligence, 10~ pp. 233-280, 1994.

2) Ganguly, S., Creco, S. and Zaniolo, C., "Minimum and Maximum Predicates in
Logic Programming," in Proc. of lOth ACM Symp. on Principles of Database Systems,
pp. 154-163, 1991.

3) Gelfond M. and Lifschitz, V., "The Stable Model Semantics for Logic Pro-
gramming," in Proc. of 5th Joint International Conference and Symposium on Logic
Programming (Kowalski, R. A. and Bowen, K. A., eds.), pp. 1081-1086, 1988.

4) Govindarajan, K., "Optimization and Relaxation in Logic Languages," PhD
thesis, Dept. of Computer Science, SUNY-Buffalo, 1997.

5) Govindarajan, K., Jayaraman, B. and Mantha, S., "Preference Logic Program-
ming," in Proc. of l2th Intl. Conf. on Logic Programming, pp. 731-745. MIT Press,
1995.

6) Govindarajan, K., Jayaraman, B. and Mantha, S., "Optimization and Relax-
ation in Constraint Logic Languages," in Proc. of23rdACM Symposiun on Princi-
ples of Programming Languages, pp. 91-103, 1996.

7) Jaffar, J. and Lassez, J. L., "Constraint Logic Programming," in Proc. of 14th
A CM Syrup. on Principles of Programming Languages, pp. 111-119, 1987.

8) Kannelakis, P. C., Kuper, G. M. and Revesz, P. Z., "Constraint Query Lan-
guages," in Proc. of ACM Syrup. on Principles of Database Systems, pp. 299-313,
1990.

82 K. Govindarajan, B. Jayaraman and S. Mantha

9) Kemp, D. B. and Stuckey, P. J., "Semantics of Logic Programs with Aggregates,"
in Proc. of lnternational Logic Programming Symposium, 1991.

10) Lacroix, M. and Lavency, P., "Preferences: Putting More Knowledge into
Queries," in Proc. of l3th Intl. Conf. on Veo' Large Data Bases, pp. 21~225, 1987.

11) Mantha, S., "First-Order Preference Theories and their Applications," PhD the-
sis, University of Utah, November, 1991.

12) Marek, V. W., Schwarz, G. F. and Truszczynski, M., "Modal Nonmonotonic
Logics: Ranges, Characterization, Computation," JACM, 40, 4, pp. 963 990,
September 1993.

13) Ramakrishnan, R., "Magic Templates: A Spellbinding Approach to Logic Pro-
grams," in Proc. of 5th Joint Intl. Conf. and Symp. on Logic Programming, pp. 140-
159, 1988.

14) Ramakrishnan, R., Srivastava, D. and Sudarshan, S., "Efficient Bottom-up Eval-
uation of Logic Programs," in the State of the Art in Computer Systems and Software
Engineering (Vandewalle, J., ed.), Kluwer Academic Publishers, 1992.

15) Ross, K. A. and Sagiv, Y., "Monotonic Aggregation in Deductive Databases,"
in Proc. of ACM Symp. on Principles of Database Systems, pp. 114-126, 1992.

16) Ross, K. A., "Modular Stratification and Magic Sets for Datalog Programs with
Negation," Journal oftheACM, 41, 6, pp. 1216-1266, 1994.

17) Srivastava, D. and Ramakrishnan, R., "Pushing Constraint Selections," Journal
of Logic Programming, 16, 3-4, pp. 361-414, 1993. A Preliminary Version Ap-
peared in the Proc. ACM Symp. on Principles of Database Systems 1992.

18) Sudarshan, S. and Ramakrishnan, R., "Aggregation and Relevance in Deductive
Databases," in Proc. of the International Conference on Ve~. Large Databases, 1991.

19) Sudarshan, S., Srivastava, D., Ramakrishnan, R. and Beeri, C., "Extending
the Well-Founded and Valid Semantics for Aggregation," in Proc. oflnternational
Logic Programming Symposium, pp. 590-608, 1993.

20) Ullman, J. D., "Bottom-up Beats Top-down for Datalog," in Proc. of ACMSymp.
on Principles of Database Systems, 1989.

21) van Gelder, A., "The Well-founded Semantics of Aggregation," in Proc. of l l th
ACM Symposium on Principles of Database Systems, pp. 127-138, 1992.

22) van Gelder, A., Ross, K. and Schlipf, J. S., "Unfounded Sets and Well-Founded
Semantics for General Logic Programs," JACM, 38, 3, pp. 620-650, 1991.

23) Wilson, M. and Borning, A., "Hierarchical Constraint Logic Programming,"
Journal of Logic Programming, 16, pp. 277-318, 1993.

Appendix
We provide here a brief description of the model theory of preference logic

programs; a full description may be found in Govindarajan 's dissertation. 4) We
begin with a a brief review of the logic of preference. The syntax of the logic of
preference introduced by Mantha 11) extended the syntax of first-order logic by
introducing a unary modal operator P / with the associated rule of formation:

Preference Queries in Deductive Databases 83

If F is a formula, then so is 79fF. Preference logic programs are to be viewed as
theories in this logic by translating each definite preference clause p(t~ ~ p(fz) ~--
L1, . . . , Ln into a clause of the form p(t~ --* 79f(p(fz) /X L1 A . . . /X L,~)

A preference model A4 is a triple (kV, -~, ~;), where)IV is a non-empty set
of possible worlds, -< is a binary relation over W, and ~2 is a valuation function
that determines the t ruth of atomic formulae at individual worlds. Boolean con-
nectives such as A, V, 9, -% etc. have the standard interpretation. The semantics
of preference formulae of the form 79fF is given as follows*q

~y~ P / F iff (Vv �9 W) [(~ F) -~ (w _~ v)].

Informally, P / F is true in a world w in a preference model iff every world v
where F is true is related to w by the relation w ~ v. If P s F is true at a world
w, then F is said to be a preference criterion at world w. In other words, any
world v where F is true is at least as good as w. A preference model Ad is said
to be supported if and only if, for any two worlds w and v, if w -4 v then, there is
a formula T' /A such that ~ ~ I A and ~ a A. A supported preference model
is also the preference model that minimizes the relation _~. Given a preference
model M = (W, -~,]; / ' a world w C l/V is said to be strongly optimal if and only
if there is no w o r e w different from w such that w _~ w ~.

We build models for preference logic programs in stages. We stratify the
O-predicates into levels so that , for any optimization (-~) clause, the level of
the O-predicate in its head is _> the level of any O-predicate in its body. This
can be done by constructing the predicate call-graph among the O-predicates
in the program and topologically sorting the graph to obtain the ordinal levels
of the O-predicates. First we consider programs tha t have at most one level of
O-predicates. We shall henceforth assume in this subsection that a preference
logic program P satisfies this requirement. At the end of this subsection, we will
extend the semantics to programs with any number of levels O-predicates.
The pre-interpretation I of interest to us interprets functions such as + over the
appropriate domain (as in CLP) and leaves all other function symbols uninter-
preted (as in Herbrand interpretations). For the rest of the paper we fix this
pre-interpretation I . We are interested in a canonical model for the core pro-
gram derived from the pre-interpretation I , as it specifies the constraints to be
satisfied. For definite programs, this is given by the l ea s t / -based model for the
program.

Following Mantha, 11) we give a possible-worlds semantics for preference
logic programs. Given a preference logic program, its preference model is con-
structed by first by defining the worlds (the valuation function)2) in the model
Essentially, each world is constructed by extending the canonical model for Tc
by including instances of O-predicates so tha t it becomes a model for Tc ATo A.A.
The instances of D-predicates (and O-predicates) at each world have to be sup-
ported, i.e. if p(t-) is a ground instance of a D-predicate (or an O-predicate), then
there is a clause in the program whose head unifies with p(t-) and the instances
of the goals in the body are present in the world. Satisfying .A enforces the

** We write ~y~ F to mean tha t the formula F is assigned the t r u t h value t r u e by V in the
world w in the preference model 2k4.

84 K. Govindarajan, B. Jayaraman and S. Mantha

ordering among the worlds in the preference model.

Definition A.1
Given a preference logic program P, the intended preference model .M is the preference
model (]42, -<,]2} that maximizes the number of worlds in]A) and minimizes the relation
-< (i.e. is supported) and is such that]2 assigns different interpretations to different
worlds.
Consider the following formulation of shortest path:

path (X, Y, C, [e (X, Y)]) ~-
path (X, Y, C, [e(X,Z)iLl]) ~-

edge (X, Y, C) .

edge (X, Z,CI) , path (Z, Y, C2, LI) ,
C = Cl + C2.
path (X, Y, C, L) .
sh_dist(X,Y,C2,Ll) ~- C2 < CI.

s h _ d i s t (X, Y, C, L) --~
s h _ d i s t (X, Y, C l , L) -<

We use the above program to illustrate the model theory. Consider a directed
graph with the following edges { e d g e (a , b , 5) , e d g e (b , c , 1 0) , e d g e
(a , c , 25) } . The canonical model M for riG of interest to us here is the

set:

{edge(a,b,5), edge(b,c, lO), edge (a, c, 25) } U
{path(a,b,5, [e(a,b)]), path(b,c, lO, [e(b,c)]),

path (a, c, 25, [e(a,c)]), path (a, c,15, [e(b,c),e(a,b)])}.

The following is a fragment of the intended preference model for the example
program considered above and is used to illustrate how the ordering among
worlds is enforced. For brevity, we have considered worlds that have instances
of s h _ d i s t (a , b , _ , _) and s h _ d i s t (b , c , _ , _) since there is only one pa th
between the associated vertices in the graph. These worlds are shown below:

i. ~'/U {sh_dist (a,b,5, [e(a,b)]), sh_dist (b,c, lO, [e(b,c)]),
sh_dist (a,c,25, [e(a,c)]), sh_dist (a,c,15, [e (b, c) , e (a, c)])
U { 15 < 25, ~f(sh_dist (a,c,15,_), 15 < 25) }.

9. /it0 {sh_dist (a,b,5, [e(a,b)]), sh_dist (b,c, lO, [e(b,c)]),
sh_dist (a,c,25, [e(a,c)])}0 { 15 < 25, ~f(sh_dist (a,c,15,_)
15 < 2s) }.

3. ~IO {sh_dist (a,b,5, [e(a,b)]), sh_dist (b, c, lO, [e(b,c)]),
sh_dist (a, c,15, [e(b,c),e(a,c)]), 15 < 25 }.

The arbiter is satisfied by the following binary relation -< on the set of worlds:
{ ! _ 1 , 1 -<3 , 2 - < 1 , 2 ~ 3 } .

Definition A.2
Given a preference logic program P, and a negation-free formula F, let A4 denote the
intended preference model for P. F is said to be a preferential consequence of P if F is
true in some strongly optimal world in]k4.
For instance, in the example above, world 3 is an optimal world. Note that only
s h _ d i s t (a , a , 15, _) and no other s h _ d i s t (a , e , X, _) for any X is true in an
optimal world (model 3). Suppose there is a world w where s h_di s t (a , c , X, _)
is true for some X > 15, then the formula (s h _ d i s t (a , c , 15,_) A 15 < X)

Pre fe rence Quer i e s in D e d u c t i v e D a t a b a s e s 85

becomes a preference criterion at w, mak ing world 3 above b e t t e r t h a n w. Given
a preference logic p r o g r a m P whose H e r b r a n d Base is Bp and an a tom A if A
is a preferent ia l consequence of the p rog ram, we wr i te P N A. T h e dec la ra t ive
semantics , Dp, is defined to be the set {A c B p I P N A}.

The above discussion provides the dec la ra t ive semant ics for p rog rams wi th
exac t ly one level of O-predicates. We now briefly descr ibe how the semant ics
is ex t ended to the case when there are m a n y levels of O-predicates in stages.
Essential ly, given the level-k dec la ra t ive semant ics for k > 1, we cons t ruc t the
k + 1 dec la ra t ive semant ics as follows: Each world in the level-k + 1 in tended
preference model is an extens ion of the level-k dec la ra t ive semant ics to the O-
and D-predicates in level k + 1. The order ing among the worlds is enforced using
the a rb i t e r c lauses re levant to O-predicates in level k + 1. Thus the dec la ra t ive
semant ics of a preference logic p r o g r a m wi th n levels of O-predicates is the level-n
dec la ra t ive semant ics as ou t l ined above.

, Kannan Govindarajan, Ph.D.: He obtained his bachelors degree
in Computer Science and Engineering from the Indian Inst i tute
of Technology, Madras, and he completed his Ph.D. degree in
Computer Science from the State University of New York at Buf-
falo. His dissertation research was on optimization and relaxation
techniques for logic languages. His interests lie in the areas of
programming languages, databases, and distr ibuted systems. He
currently leads the t rading community effort in the E-speak Op-
eration in Hewlett Packard Company. Prior to that , he was a
member of the Java Products Group in Oracle Corporation.

Bharat Jayaraman, Ph.D.: He is a Professor in the Department of
Computer Science at the State University of New York at Buffalo.
He obtained his bachelors degree in Electronics from the Indian
Inst i tute of Technology, Madras (1975), and his Ph.D. from the
University of Utah (1981). His research interests are in program-
ming languages and declarative modeling of complex systems. Dr.
Jayaraman has published over 50 papers in refereed conferences
and journals. He has served on the program committees of sev-
eral conferences in the area of programming languages, and he is
presently on the Editorial Board of the Journal of Functional and
Logic Programming.

86 K. Govindarajan, B. Jayaraman and S. Mantha

Surya Mantha, Ph.D.: He is a manager in the Communications
and Software Services Group of Pittiglio Rabin Todd &: McGrath
(PRTM), a management consulting firm serving high technology
industries. He obtained a bachelors degree in Computer Science
and Engineering from the Indian Institute of Technology, Kanpur,
an MBA in Finance and Competitive Strategy from the University
of Rochester, and a Ph.D. in Computer Science from the Univer-
sity of Utah (1991). His research interests are in the modeling of
complex business processes, inter-enterprise application integra-
tion, and business strategy. Dr. Mantha has two US patents, and
has published over 10 research papers. Prior to joining PRTM, he

was a researcher and manager in the Architecture and Document
Services Technology Center at Xerox Corporation in Rochester,
New York.

