Preliminary communication

Stereospecific synthesis of di- and tri-substituted acids by carbonation of vinyl-copper reagents

J.F. NORMANT, G. CAHIEZ, C. CHUIT

Laboratoire de Chimie des Organoéléments, ERA 31, Tour 44, 4 Place Jussieu, 75230 Paris, Cedex 05 (France)

and J. VILLIERAS

Laboratoire de Synthèse Organique, ERA 31, Tour 44, 4 Place Jussieu, 75230 Paris, Cedex 05 (France) (Received May 1st, 1973)

SUMMARY

Vinylcopper compounds obtained by addition of alkylcopper derivatives to terminal alkynes are converted to the corresponding α ethylenic acids stereospecifically in high yields. The influence of ligands in this insertion is emphasized.

Only recently have reports on the insertion of CO_2 into a C-Cu or C-Ag bond appeared¹⁻³. Apart from its synthetic interest, this reaction can be seen as a preliminary coordination of $CO_2^{\ 4}$ followed by an insertion which is spontaneous or is induced by a ligand.

We have prepared vinylcopper reagents⁵ stereospecifically and we have tried to transform them into acrylic acids as follows:

$$R-Cu,MgBr_2 + R'C \equiv CH \xrightarrow{(1) CO_2} R \xrightarrow{R'} C = C \xrightarrow{COOH} H$$

A vinylcopper—magnesium bromide solution, in ether, does not absorb CO₂. However, in the following example we have studied the influence of various solvents or donor molecules capable of allowing the insertion of CO₂ (Table 1).

$$EtCu,MgBr_2 + Bu - C \equiv C - H + CO_2 \xrightarrow{ligand} \xrightarrow{Et} C = C \xrightarrow{H}$$

TABLE 1					
INFLUEN	CE OF VAI	uous solv	ZENTS AN	D DONOR M	OLECULES
ON THE R	EACTIVIT	Y OF A VIN	YLCOPPE	R REAGEN	TOWARD
CO ₂			- *		

Cosolvent	Ligand	Acid yield (%)	
THF	2 P(OEt),	36	
THF	2 P(NMe ₂),	41	
THF	2 PPh.	45	
N-Methylpyrrolidone		11	
HMPT		48	
HMPT	2 P(NMe ₂) ₃	60	
НМРТ	2 P(OEt),	40	
HMPT	1 P(OEt),	60	
HMPT	1/2 P(OEt) _a	69	
HMPT	1/10 P(OEt),	95	
	1/10 P(OEt) ₃	0	

Acetonitrile, pyridine and pyrrolidine are ineffective, and in contrast to carboxylic amides, phosphoric amide enables the reaction to take place. A practically quantitative yield of acid can be obtained with a catalytic amount of $P(OEt)_3$ present, while a greater amount is unfavourable. This seems to indicate that the vinylcopper— $2P(OEt)_3$ complex is not so suitable as vinylcopper— $1P(OEt)_3$ for coordination with a CO_2 molecule. The catalytic role of $P(OEt)_3$ could be explained by its separation after the insertion of CO_2 . We are studying the mechanism of this reaction.

To make this synthesis general and to prove the stereospecificity of the insertion of CO_2 , we have prepared the following acids:

EtCu,MgBr₂
$$\xrightarrow{(1) \text{ R-C=C-H}}$$
 $\xrightarrow{(2) \text{ CO}_2, \text{HMPT}, 1/10 \text{ P(OEt)}_3}$ \xrightarrow{R} C=C $\xrightarrow{\text{COOH}}$ H

(I) R = Bu (95%)
(II) R = Me (96%)
(III) R = H (62%)

The stereospecificity is proved by NMR spectroscopy and by comparison with the data from the literature (Table 2).

In acids I, II and III the ethylmethylene group shows a shift of 2.62 ppm (TMS) consistent with the *cis* structure of III. Cis- α -olefinic acids are usually obtained by semi-hydrogenation of α -acetylenic acids and by Favorsky's rearrangement of dihaloketones 1.11. The reaction described here is of synthetic value and completes the recently established preparation of *trans*-olefinic acids 5:

$$R-Cu,MgBr_2 + HC = C-COOH \rightarrow R C = C$$
COOH

TABLE 2
PHYSICAL CONSTANTS OF ACIDS I, II AND III

Acid	B.p. (°C/mm) or (m.p. (°C))	n_D^t	NMR, 8 (60 MHz (CCI ₄ -TMS))
Et C=C COOH	134/12	1.4695 (t = 20)	1.05 m (6H); 1.40 m (4H) 2.18 m (2H); 2.62 q (2H) 5.57 s (1H); 12.14 s (1H)
(I)			
Et C=C COOH	35.5 (36.5, lit. ⁶ ; 22-24, lit. ⁷)		1.06 t (3H): 1.90 s (3H) 2.62 q (2H) ^a ; 5.60 s (1H) 12.38 s (1H)
(II)			
Et C=C COOH HB	87/13 lit. ⁸ 88/15 lit. ⁹ 3941/0.4	1.4490 ($t = 20$) lit. ⁸ 1.4480 ($t = 21$) lit. ⁹ 1.4473 ($t = 25$)	1.06 t (3H); 2.65 m (2H) 5.69 d of t (H _B); 6.30 d of t (H _A) $J(H_A-H_B)$ 12 Hz; $J(CH_2-H_A)$ 1.5 H $\Delta H_A-\Delta H_B$ 0.61 b ppm

 $[\]frac{a}{\delta(CH_3-CH_2-C)}$ 2.56 (100 MHz, C_6D_6-TMS) as stated by ref. 7.

Isocyanates can also be inserted into a vinylcopper reagent to obtain amides

EtCu,MgBr₂
$$\xrightarrow{(1) \text{ Ether,BuC}=CH} (2) \text{ HMPT,1/10 P(OEt)}_3$$
 $\xrightarrow{(3) O=C=N-Ph} (4) \text{ H}_3\text{O}^+$ $\xrightarrow{\text{IV (50\%)}}$

(IV): b.p. $151^{\circ}/0.01$ mm, m.p. 46° , NMR (100 MHz (CCl₄ –TMS)) δ 1.02 m (6H); 1.28 m (4H); 2.00 m (2H); 2.66 q (2H); 5.80 s (1H); 7.04 (3H:Ph); 7.60 (2H:Ph); 9.16 (1H:NH);

Our study of the various functionalizations of vinylcopper reagents is being continued.

ACKNOWLEDGEMENTS

We thank the DGRST and the CNRS for their financial support.

REFERENCES

- 1 R.J. De Pasquale and C. Tamborski, J. Org. Chem., 34 (1969) 1736.
- 2 A.M. Yashita and A. Yamamoto, J. Organometal. Chem., 49 (1973) C57.
- 3 G. Dubot, D. Mansuy, S. Lecolier and J.F. Normant, J. Organometal. Chem., 42 (1972) C105.

^b As for cis crotonic acid $\Delta H_A - \Delta H_B$ (cis) 0.66 (ref. 10) while for trans crotonic acid $\Delta H_A - \Delta H_B$ (trans) 1.21 ppm.

- 4 C.D.M. Beverwijk and G.J.M. Van der Kerk, J. Organometal. Chem., 49 (1973) C59.
- 5 J. Normant and M. Bourgain, Tetrahedron Letters, (1971) 2583.
- 6 R.B. Wagner and J.A. Moore, J. Amer. Chem. Soc., 72 (1950) 974.
- 7 T.A. Dobson and L.C. Vining, Can. J. Chem., 46 (1968) 3007.
- 8 M. Bourguel, C.R. Acad. Sci., 188 (1929) 1494.
- 9 C. Rappe and R. Adström, Acta Chem. Scand., 19 (1965) 383.
- 10 V.J. Kowalewski and D.G. de Kowalewski, J. Chem. Phys., 33 (1960) 1794.
- 11 J. Kennedy, M.J. McCorkindale, R.A. Raphael, W.T. Scott and B. Zwanenburg, Proc. Chem. Soc; (1964) 148.