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Abstract: Low-valent titanium alkoxide prepared from Ti( O-i-Pr)4 and i-PrMgCl (1:2) 
incorporates acetylene to give an acetylene complex, titanacyclopropene, as evidenced by 
its reaction with deuterium oxide. Carbonyl compounds likewise reacted with the 
acetylene complex to give allyl alcohols. Introduction of two different electrophiles at 
each of both acetylenic termini was possible in a regio- and stereo-selective manner. 

Transition metal-acetylene complexes of the type 1 and/or 2 have attracted much interest recently as 

reaction intermediates or as stoichiometric reagents. Among them, Cp2Ti-, Cp2Zr-, ClnNb-, and ClnTa- 

acetylene complexes are frequently used in organic synthesis. 1 However, alkoxy complexes such as (RO)nZr- 

or (RO)nTi-acetylene complexes, which may be prepared from more economical starting materials, have not 

been utilized yet. 
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Herein we wish to disclose efficient and practical method for the synthesis of alkoxytitanium-acetylene 

complex 4 (eq 1). The procedure is operationally simple: i-PrMgCI (2 equiv to the titanium) is added to an 

ethereal solution of Ti(O-i-Pr)4 and an acetylene at -78 °C and the mixture is then stirred at -50 °C. The reaction 

most likely proceeds via a ligand exchange reaction between a low-valent titanium alkoxide 2 (likely exsisting as 

its propylene complex 3)3,4, 5 and an acetylene. 

i-PrMgCI 
Ti(O-i-Pr)4 ~, 

Tii°' r'  ] %T 
R 1 ~ • -~. -- R: i(O-i'Pr)2 

/ j~J~Ti(O_i_Pr)2 R 2 -  

t. (3) (4) 

R 1 D 

~. ( 1 )  

R 2 /  ~D 

(5) 

3203 



3204 

Table I. Generation and Deuteration of the Titanium Complex 4 a 

Period b Yield of Incorporation of D e 
Entry R 1 R 2 (11) 415 5 (%)c,d d2 dl do Z:E = 

1 C, sH11 CsH11 2 • 93 (81) 96 3 1 >99:1 
2 Cell13 Me 2 b 100 100 0 0 >99:1 
3 CsH13 CH2OEE f 2 ¢ 100(96) 94 6 0 >99:1 
4 Ph Me 2 d 74 >86 - <14- >99:1 
5 Ph Ph 2 • (96) >91 - <9 - 99.4:0.6 
6 Me3Si Cell13 2 f 94 (89) 96 4 0 >99:1 
7 Me3Si Me3Si 5 g 100 100 0 0 >99:1 

"Reactant ratio: Ti(O-/-Pr)4:/-PrMgCl:acelyMne=1:2.5:0.8. In these experiments, a slignt 

excess of the Gdgnard reagent (2.5 equiv toTi(O-/-Pr)4) was used to insure a complete 
reaction, bwith respect to the generation of 4 (see text), c Determirted by 1H NMR and/or 
GC analysis, dlsolated yields in parentheses, e[:)etermined by 1H NMR and/or GC-MS analysis. 
fEE: 1-ethoxyethyl. 

Although isolation and characterization of 4 were unsuccessful at present, the formation of 4 was verified by its 

reaction with deuterium oxide, which cleanly gave bis-deuterated alkene $ in good yields with pure Z 

configuration as well as the high isotopic purities (Table 1). Terminal acetylenes failed to participate in the 

present reaction. 

The acetylene complexes 4 were also reactive enough towards carbonyl compounds to give allyl alcohols 

(Table 2).6, 7 The addition step was completed at a temperature as low as -75 - -70 °C for a few hours. The 

reaction of 4 with carbonyl compounds cleanly stopped at the stage of the single ~ddition to give the 1:1 adduct 

(7 and 8) in good yields due probably to the formation of less reactive alkenyltitanium species 6 (vide infra). 
No allylic diol arising from the double addition of a carbonyl compound was observed. The stereochemical 

assignments of the products were made based on the above deuteration experiments as well as comparison with 

authentic samples in a couple of cases. 8 In the case of unsymmetrical acetylenes, a regiochemical problem 

arises. It is interesting to note that 4 generated from a phenylacetylene preferentially reacted with an aldehyde at 

the carbon having the phenyl group (entries 2 and 3), while 4 from a silylacetylene gave a major product 

resulting from the reaction at the remote carbon from the silyl group (entries 4-12). Aldehydes having a normal 

alkyl chain afforded a mixture of 6 and 7 in a 79:21 ratio (entry 4), which was somewhat improved in the case 

of a-branched aldehydes (entries 2, 3, 5, 6, and 7). Crotonaldehyde and benzaldehyde showed much higher 

regiosclectivities (entries 8 and 9). An excellent regioselectivitiy of 96:4 was also attained in the reaction of 

silylatcd titanacyclopropene ,If and a ketone (entries 10-12). In addition to the generality of the present reaction 

as shown above, the titanium complex 4f has an ability to discriminate between ketone and ester (entry 12) as 

other organotitanium reagents can. 9 

When a silylaeetylene gave an inseparable mixture of the regioisomeric products 7 and 8, hydroxy- 

assisted, selective desilylation was found to be useful for a facile separation of the minor isomer as illustrated in 
cq2.10 

7e + 8e THF ~ on silica gel 7e  + CHHI3 ( 2 )  
(85:15) 

80% 14% OH 



3205 

Table 2. Reaction of Titanium-Acetylene Complex with Carbonyl Compounds 

91 

i~ 2 2) R3R4CO 1:12 4 R OH R4 R 2 l j j  R4 

(6) (7) (8) 

Yield (%)a 

Based on Based on Ratio 
Entry R 1 R 2 RaR4CO 6/7/8 acetylene b FI3RACOC 7:8 

1 C5Hll C5Hll cyclohex anecarbaldehyde • 70 -- 
2 Ph Me . b 81 16:84 
3 - - 90 14:86 
4 Me3Si CsH13 hexanal c 79 79:21 
5 2-methylbutanel d 84 d 86:14 
6 cyclohexanecarbaldehyde • 86 85:15 
7 84 86:14 
8 crotonaldehyde f 72 96:4 
9 benzaldehyde g 47 93:7 

10 cyclohexanone h 84 96:4 
11 83 96:4 
12 methyl 4-oxopontanoate I 83 e exclusively 7 
13 Me3Si Me3Si cyclohexanecarbaldehyde j 70 -- 

"Isolated yield of a mixture of 7 and 8. bReactant ratio: Ti(O-/-Pr)4:/-PrMgCl:acetylene:R3R4CO=l: 
2.5:0.8:1. CReactant ratio: Ti(O-/-Pr)4:/-PrMgCl:acetylene:R3R4CO=1:2:1:0.7. dl'he major regioisomer 
was a 62:38 mixture of diastereoisomers, elhe reaction took place at the ketone moiety and the 
product isolated was the corresponding lactone, 5-hexyl-4-methyl-7-(trimothylsilyl)-5-hexen-4-olide. 

The presence of intermediate alkenyltitanium species 611 before the aqueous workup of the reaction 

mixture was confirmed by its interception with iodine at -70 °C to room temperature to give the alkenyl iodide 9 

and a small amount of its regioisomer (eq 3), the ratio of which was parallel to that of the protonated products as 

shown in entry 6, Table 2. Regio- and stereo-chemical assignments of 9 were unambiguously made by its 

conversion to 7e via iodine/lithium exchange with t-BuLi and subsequent protonation. This reaction clearly 

demonstrated that double functionalization and/or carbon-carbon bond formation at the acetylene moiety was, in 

fact, possible with two different electrophiles. 

c-C6 HI 1CHO 
4 f  " 

C6.H13 [ ~  
M e 3 S i ~  

(i-PrO)2Ti~O 

I2 D M % S i ~ @ ~  ( 3 ) 

I OH 

(6e) (9) 71% 

In summary, the new low-valent titanium alkoxide-acetylene complex reported herein has the following 
advantageous feature: i) the starting materials, Ti(O-i-Pr)4 and the Grignard reagent, are cheap and available in 

bulk, ii) the reaction shows good regio- stereo- and chemo-selectivities, and iii) a sequential reaction with two 

different eleca'ophiles is feasible. 
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