Phytochemistry, 1970, Vol. 9, pp. 1359 to 1361. Pergamon Press. Printed in England.

SHORT COMMUNICATION

DITERPENES OF SPIKENARD ROOT (ARALIA RACEMOSA)

J. R. HANSON and A. F. WHITE

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ

(Received 16 October 1969)

Abstract—The occurrence of (-)-pimara-8(14), 15-diene, (-)-kaurene, (-)-pimara-8(14)-15-dien-19-oic acid and sucrose in Aralia racemosa is described.

(-)-PIMARANE diterpenes were required for our biosynthetic studies.¹ Extraction of Spikenard root (Aralia racemosa—Araliaceae) with light petroleum and chromatography of the acidic fraction yielded (-)-pimara-8(14),15-dien-19-oic acid* (I). This had previously been isolated² from a Japanese species, A. cordata, whilst chromatographic evidence suggested its presence in A. racemosa. This acid was readily characterized by conversion to its methyl ester and reduction with LiAlH₄. The resultant mono-ol, $C_{20}H_{32}O$ (II), contained two double bonds whilst its spectral properties characterized it as a pimaradiene. This was substantiated by oxidation of the alcohol with CrO_3 to form (-)-pimara-8(14),15-dien-19-al (III). Conversion of the aldehyde to its semicarbazone followed by Wolff-Kishner reduction gave (-)-pimaradiene (IV) identical in all respects except rotation with a sample prepared from pimaric acid. The position of the oxygen function at the axial C-19 followed from the position of the CH₂OH resonances in the NMR at τ 6.47 and 6.12 as opposed to τ 6.6-6.7 for equatorial hydroxymethyl protons.³

With a view to introducing a label [14C or 3H] at position 16, the 19-alcohol was treated with osmium tetroxide to afford the 15,16-glycol (V). This glycol was cleaved with periodate to form the 16-nor-15-aldehyde (VI). The vinyl function was readily regenerated from this using a Wittig reaction.

Chromatography of the neutral fraction from the light petroleum extract afforded a hydrocarbon mixture from which (-)-pimara-8,(14),15-diene (IV) and (-)-kaurene (VII). could be separated by preparative TLC using 10 per cent AgNO₃ on silica gel. Extraction of the plant material with not ethanol afforded sucrose in 1 per cent yield.

EXPERIMENTAL

M.ps. were determined on a Kofler block and are corrected. NMR spectra were in CDCl₃. I.r. spectra were determined as nujol mulls. Light petroleum refers to the fraction, b.p. 60-80°.

Isolation of the Constituents from Aralia racemosa

Dried ground root of Aralia racemosa (2 kg) (S. B. Penick & Co.) were extracted with light petroleum

- * Professor Shibata was unable to supply us with a comparison sample.
- ¹ J. R. HANSON and A. F. WHITE, J. Chem. Soc. (C), 891 (1969).
- ² S. SHIBATA, S. MIHASHI and O. TANAKA, Tetrahedron Letters 5241 (1967).
- ³ A. GAUDEMER, J. POLONSKY and E. WENKERT, Bull. Soc. Chim. (France) 407 (1964). 86 1359

(51.) for 32 hr. Evaporation of the solvent *in vacuo* yielded a dark-yellow gum (120 g) which was dissolved in ether and separated into acidic and neutral fractions using 2% aqu. NaOH. A portion (44 g) of the acidic fraction was chromatographed on silica:celite (1:2) (9 × 90 cm). Elution with 5% EtOAc:light petroleum gave crude (-)-pimara-8(14),15-dien-19-oic acid (28 g) $[\alpha]_D^{22} - 111^\circ$ (c. 0.5) [lit.,² $[\alpha]_D^{16} - 120^\circ$]. This was purified and characterized through its alcohol.

A portion (500 mg) of the neutral fraction was chromatographed on neutral alumina grade I (1 × 16 cm). Elution with light petroleum gave a hydrocarbon mixture (77 mg) which was purified by preparative TLC using silica: 10% AgNO₃ with benzene-light petroleum (7:3) as the mobile phase. This gave (–)-pimara-8(14),15-diene (15 mg) (" R_f " 0.25) as an oil [α] p-90°. (Found: C, 88.7; H, 11.4. Calc. for C₂₀H₃₂: C, 88.2; H, 11.8%,) ν_{max} 3090, 1007, 917, 831 cm⁻¹, τ 9.18, 9.15, 9.07, 8.98 (C--CH₃) 5.23; 5.00, 4.68, 4.13 (multiplets) (H / H

C=C and C=C
$$(-)$$
-Kaurene (6 mg) was isolated from a band (" R_f " 0.35). It had m.p. 50°

 $[\alpha]_{D} - 78^{\circ}$ (lit., 4 m.p. 51, $[\alpha]_{L}^{11} - 72^{\circ}$). (Found: C, 88.1; H, 11.65. Calc. for C₂H₃₂, C, 88.2; H, 11.8%.) ν_{max} 1660, 885 cm⁻¹, τ 9.22, 9.18, 9.01 (C—CH₃) 5.31 (C—CH₂).

The plant material remaining after light petroleum extraction was extracted with hot ethanol for 32 hr. A solid (20 g) crystallized from the extract on concentration. Recrystallization of the solid from methanol gave sucrose, as prisms, m.p. 186–188°, $[\alpha]_{\alpha}^{24} + 74^{\circ}$ (c. 1.5 in water). (Found: C, 42·25; H, 6·6. Calc. for C₁₂H₂₂O₁₁; C, 42·1; H, 6·5%.) This showed an identical i.r. spectrum to authentic sucrose. The mixed m.p. was undepressed.

(-)-Pimara-8(14),15-dien-19-ol (II). (-)-Pimaric acid (2 g) was methylated to give the methyl ester (2·1 g) as a gum, ν_{max} (film) 1720, 1658, 1640, 1004, 920, 884, 830 cm.⁻¹. Without further purification the ester in dry ether was refluxed with LiAlH₄ for 2 hr. EtOAc and dil. HCl were added and the product recovered in EtOAc as a semi-crystalline solid (2·0 g). This residue was chromatographed on alumina (1·5 × 25 cm). Elution with 5% EtOAc in light petroleum afforded (-)-pimara-8(14),15-dien-19-ol (II) (1·9 g), as needles from aqueous methanol, m.p. 105-108° (lit.,² 109-110°). (Found: C, 83·45; H, 11·0. Calc. for C₂₀H₃₂O: C, 83·3; H, 11·2%.) ν_{max} 3360, 1637, 1035, 1007, 917, 880, and 821 cm⁻¹, τ 9·01 (two 3H singlets; methyl). 8·94 (3H singlet; C-CH₃), 6·47, 6·12 (two 1H doublets; J 11Hz; CH₂.OH), 5.22, 4·98, 4·66, 4·12 (multiplets)

$$\begin{pmatrix} H \\ C = C \\ H \\ H \end{pmatrix}$$
 and $C = C \\ H \end{pmatrix}$

Oxidation of (-)-pimara-8(14),15-dien-19-ol. The alcohol (940 mg) in acetone (20 ml) was treated with 8 N chromium trioxide reagent (1.5 ml) for 1 hr at room temperature. Methanol was added and the organic

- 4 L. H. BRIGGS and J. CAWLEY, J. Chem. Soc. 1888 (1948).
- ⁴ R. E. IRELAND and P. W. SCHIESS, J. Org. Chem. 28, 6 (1963).

solvents removed *in vacuo*. Water was added and the product (930 mg) recovered in EtOAc and chromatographed on silica gel (1.5 × 25 cm). Elution with 2.5% ether in light petroleum yielded (-)-pimara-8(14),15diene-19-al (III) (304 mg) as a gum, v_{max} 2730, 1730 (C=O), 1640 and 920 cm⁻¹.

The semicarbazone, prepared by reaction with semicarbazide hydrochloride, had m.p. 187-188° from ethanol. (Found: C, 73.6; H, 9.95. C₂₁H₃₃N₃O required: C, 73.4; H, 9.7%). ν_{max} 3500 (NH₂), 1693 (C=O), 1585 (C=N), and 920 cm⁻¹.

Wolff-Kishner reduction of the semicarbazone of (-)-pimara-8(14),15-dien-19-ol. The semicarbazone (60 mg) in ethylene glycol (3 ml) was slowly heated with NaOH pellets (100 mg) to 210° over 3 hr, and then refluxed for a further 3 hr at 210-220°. Recovery in ether gave a gum (19 mg) which was purified by preparative TLC giving (-)-pimara-8(14),15-diene $([\alpha]_D - 89^\circ)$ (" R_f ", 0.8) with light petroleum as solvent. The hydro-carbon showed identical i.r. and NMR spectra to a specimen $([\alpha]_D + 95^\circ)$ prepared⁵ from pimaric acid.

Hydroxylation of (-)-*pimara*-8(14),15-*dien*-19-*ol*. The alcohol (1·13 g) in ether (20 ml) was treated for 24 hr with O₃O₄ (1 g) in pyridine (10 ml). Water (20 ml),NaHSO₃ (4 g) were added and the solution left for 1 hr. Dil. HCl was added and the solution extracted with ether. The extracts were washed with dil. HCl and water. Recovery gave a gum (1·1 g) which was chromatographed on silica gel (1·5 × 27 cm). Elution with 50% EtOAc in light petroleum gave (-)-*pimara*-8(14)*ene*-15,16,19-*triol* (V) as plates from EtOAc, m.p. 180-183°. (Found: C, 74·1; H, 10·3. C₂₀OH₃₄O₃ required: C, 74·5; H, 10·6%). ν_{max} 3360 br and 820 cm⁻¹.

Periodate oxidation of the glycol (V). The glycol (360 mg) in methanol (50 ml) was treated with NaIO₄ (1.8 g) in water (10 ml) at room temp. for 20 hr. The solution was concentrated *in vacuo*, dil. HCl added and the product recovered in EtOAc. The residue (363 mg) was chromatographed on silica gel (1.5 × 24 cm). Elution with 15% EtOAc gave 19-hydroxy (-)-16-norpimara-8(14)ene-15-al (VI) as a gum (139 mg), ν_{max} (film) 3440 br, 2710, 1743, and 820 cm⁻¹, τ 9.0 (3H singlet; methyl), 8.91 (6H singlet, methyl), 6.3 (2H quartet; CH₂.OH), 4.59 (1H multiplet; 14-H), 0.53 (1H singlet; CHO).

The aldehyde (VI) was converted to (-)-pimara-8(14), 15-dien-19-ol by a Wittig reaction as described previously.¹

Acknowledgement-We thank S. B. Penick & Co. for the supply of Spikenard root.