THE VIBRATIONAL SPECTRA OF 1,1,4,4-TETRAFLUORO- AND 1,1,4,4-TETRACHLOROBUTADIENE*

FOIL A. MILLER, WILLIAM F. ELBERT and WILLIAM PINGITORE

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (U.S.A.)

(Received 14 March 1977)

ABSTRACT

Raman data are reported for gas, liquid and solid 1,1,4,4-tetrafluorobutadiene, $F_2C=CHCH=CF_2$, and IR data for gas and solid. The molecule has a planar *trans* conformation of C_{2b} symmetry. With the aid of Raman depolarization ratios and IR band contours, twenty of the twenty-four spectroscopically-active fundamentals can be assigned with assurance. Frequencies are suggested for the remaining four modes.

Raman and IR data are reported for the liquid and solid 1,1,4,4-tetrachlorobutadiene. Mid-IR gas phase data are also reported. Again the data can be satisfactorily explained under C_{2b} symmetry. Fourteen fundamentals can be assigned with confidence. Suggestions have been made for the frequencies of nine other fundamentals.

INTRODUCTION

For many years chemists have been interested in the conformation of the carbon skeleton in 1,3-butadienes. The three possible conformations include the two planar forms, *s*-trans and *s*-cis, which can be interconnected by a rotation of 180° about the single bond. Rotation by some angle less than 180° produces the non-planar gauche form. For the planar forms the "s-" indicates the configuration about the single bond. Since no confusion will result from dropping the "s-", it will not be used hereafter. While all three configurations have been experimentally observed in one or another butadiene, the trans and gauche conformers are most common.

It has been well established that in butadiene itself the lowest energy form is the planar *trans* conformer [1, 2]. Recently Carreira has experimentally determined that the less stable species is the *cis* conformer [3]. Unlike the parent compound the most stable conformer for perfluoro- or perchlorobutadiene is the *gauche* form [4-6].

Steric effects have been used to rationalize the observed configurations of

^{*}The work on the fluoro compound is from a thesis submitted by William Pingitore for the degree of Master of Science at the University of Pittsburgh (1975). That on the chloro compound is part of the thesis submitted by William F. Elbert for the degree of Doctor of Philosophy (1975).

halogenated butadienes [4]. The *trans* conformer will be expected unless there are steric interactions between substituents on carbons 1 and 3 or 2 and 4. If these hindrances are present, the *cis* form will be favored. The *gauche* form will have the lowest energy only in molecules which have steric interactions between substituents on carbons 1 and 3 or 2 and 4 and 1 and 4; as in the perhalogenated derivatives. If this reasoning is correct a 1,1,4,4tetrahalobutadiene should have the planar *trans* conformation.

The vibrational spectrum of tetrafluorobutadiene has previously been examined by Conrad and Dows [7]. Since we had to prepare this material en route to perfluorobutatriene we decided to reexamine this compound. Our results are more extensive including far-IR data, gas phase and depolarization Raman data not previously reported.

No vibrational study of the tetrachlorobutadiene has been previously reported.

1,1,4,4-TETRAFLUOROBUTADIENE

Experimental section

Preparation of the sample

The following reaction sequence used to prepare tetrafluorobutadiene was described by Coffman et al. [8]

 $H_2C=CHOAc + F_2C=CF_2 \xrightarrow{150 \text{ atm}} H_2C=CF_2-CF_2-CH=OAc$

 $\xrightarrow{10 \text{ torr}} F_2C=CH-CH=CF_2$

The required high pressure bomb reaction was carried out by Pressure Chemical Co., Pittsburgh, Pennsylvania. The final product was purified by repeated trap to trap vacuum transfers until the IR spectrum agreed with that reported by Conrad and Dows [7]. Tetrafluorobutadiene is a colorless gas with a boiling point of 269 K and a melting point of 188 K.

Raman spectra

Raman spectra were obtained using a Spex Ramalog instrument which has been described elsewhere [9]. Excitation was with the 488.0 nm line from an Ar^+ laser, using 30-300 mW of power at the sample. Spectra were measured for the solid at 123 K, the liquid at 298 K and the gas at 298 K. The solid sample was obtained by condensing a jet of the gas on a liquidnitrogen cooled stainless steel wedge which was angled 15° relative to the incident laser beam. The wedge was suspended in an evacuated cold cell of conventional design [10]. For liquid phase measurements the sample was sealed in a thin-walled capillary. The gas was contained in a cylindrical Pyrex cell with optically flat end windows. It was equipped with a side arm which was cooled to 268 K to keep the sample pressure at approximately one atmosphere.

Infrared spectra

Infrared spectra were measured from 33–4000 cm⁻¹ with Beckman IR-11 and IR-12 spectrophotometers. The solid was examined as a deposit on a liquid-nitrogen cooled plate in a conventional cold cell [10]. The cooled plate and windows were polyethylene for the region 33–350 cm⁻¹, and KBr for 350–4000 cm⁻¹. Gas phase data were obtained above 200 cm⁻¹ using a 10 cm gas cell having CsI windows. Sample pressures between 5 and 50 torr were adequate. The gas phase spectrum between 50 and 250 cm⁻¹ was also examined using a Digilab FTS-14 Fourier transform interferometer.

Results

The results for 1,1,4,4-tetrafluorobutadiene are given in Table 1 and Fig. 1. The frequencies are believed to be accurate to $\pm 1 \text{ cm}^{-1}$ for the IR and $\pm 2 \text{ cm}^{-1}$ for the Raman, unless a band is marked broad, shoulder or approximate.

Assignments

Effective symmetry

The three most probable structures of 1,1,4,4-tetrafluorobutadiene are the *trans* planar form (C_{2h}) , the *gauche* conformation (C_2) or the planar *cis* conformation (C_{2v}) . The former has a center of symmetry, so there should be no coincidences between IR and Raman bands except accidental ones. The latter two permit coincidences for many modes, so it should be easy to decide whether the sample is all *trans* or includes *gauche* or *cis*. The earlier vibrational and microwave work indicated only the *trans* form.

We believe that our Raman frequencies are accurate to $\pm 2 \text{ cm}^{-1}$ and IR frequencies to $\pm 1 \text{ cm}^{-1}$. Therefore any pair of bands within 4 cm^{-1} of one another will be considered as potential coincidences. Examination of the gas phase data in Table 1 shows the following five coincident Raman–IR pairs: ~690–696, 940–940, ~1170–1173, ~1390–1386 and ~2960–2964. In every case at least one member of the pair is weak, and all the values can be explained under C_{2h} symmetry except the 690 cm⁻¹ Raman band. There are not enough coincidences to indicate the presence of any significant amount of gauche conformer.

In the solid phase there are 10—12 additional pairs of coincidences, but again nearly all have at least one member which is weak. In some cases a strong band in one spectrum appears very weakly in the solid phase of the other spectrum, as though the selection rules had been relaxed by solid state effects. In other cases a coincident pair appears only in the solid phase in each spectrum.

Certainly C_{2h} symmetry controls the main features of the spectra, and

Raman	• • • •					IR		• . 	<i>.</i>	
Solid (123 K)	Liquid (298 K)	-	Gas (29	18 K)		Gas (298 K)	-	Solid (123 K)	Ā	ssignment
cm ⁻¹ // int.	cm ⁻¹ int. ^a	a `	cm -	int. ^a	ا	cm ⁻¹ int.	type	cm ⁻¹ int.	- ;	
			• •				G	overlapped cell windows	a	
~ 95			110	6,sh		•			- Fei	ttice mode
				-		114	٤	113 W		ttice mode
				• • • •	•		5	8 02T	a	,
~140 ~195 282 180	~150 <1,1 200 20 236 160	0.24	128	60,b 60 170	dp dp	-	•	142 w	สระ	× 69 = 138 (p)
				· · ·	ک	230) vvw	. . .	239 W	5 a	
10.000 10.000 10.000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10	150 150	00 0	200	U I I		247 ¹ sh 298 vvw		•		84 + 69 m 303
	~ 430			2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	J , '	481 vvw			5 2	195 + 232 = 427 188 + 240 = 428
			~ 445			490 vw		480) vvv	~ >	
	~ 500 2		~ 500	9		-	<i>.</i> -	5001		
~ 550 1			- * *	·. 		646 (650) 553	т са ни С	647	- A - A	. ***
+660 578 578 750	576 S80	0.71	580	150	dþ	•12 ⁻¹ 		567 m	~ : A	
teres and the set	• • •	-	•		,	583 W		582 s		

TABLE 1

v_7 v_6 r_7	? 2 × 387 = 774. ^v 14 608 + 239 = 847	386 + 490 = 876 ? ? *11	386 + 550 = 936, in F.R. with 923 ? 386 + 583 = 969 ? ? 940 + 69 = 1009
A E	8	8 VW VB	MAA 8 8 8 8 8
~ 605 696	829 837	865 891 908 912	934 951 966 988 994 1001
C P	HB. Q	4 B	A
~689 sh 696 w 704 vvw	822 824] s 827] s	869 m 875 m 919 (923) vs	926) 937 943 } w 962 vvw,sh 1010 vvw
а с. ^р ~	dp ^2		<u>م</u>
195 110 15	15 60	Q	225
582 609 ~ 690 ~ 2690	~745 812	~880	940
0.0 0.04 0.52	0.19 0.72		0.04
130 2 18	9 100	ص	280
593 610 695 695	741 816	~870	6
140 170 30 1 30	240 240	വ	310
 400 400	~ 760 ~ 770 815	~ 860	946

If a manual solution is a more in the second of th		(manin						•				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reman	-	•				IR			· · · · ·		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Solid (128 K)	Liquid (298 K)		Gas (29	8 K)	·	Gas (29)	8 K)		Solid (12	3 K)	Assignment
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	om ! int.	cm ⁻¹ int. ^a	d	cm ⁻¹	int. ^a	đ	cm ⁻¹	int.	type	cm"	int.	
1055 1 vw_{ah} A 1052 1052 1053 vw_{ah} B 40 + 121 = 1661 (C) -1064 10 vw_{ah} 1110 1139 vw_{ah} 1186 $923 = 1111$ -1148 200 1148 210 0.87 1150 250 p 1148 200 1148 210 0.87 1150 250 p 1169 ah 1177 1150 250 p 1169 ah 1177 1139 m_{b} 606 + 52 = 1190 1177 1139 m_{b} 606 + 52 = 1190 -1170 ah 1177 1139 m_{b} 608 + 52 = 1190 -1284 1177 vw_{ah} 7 -1284 1177 vw_{ah} 7 -1284 1177 vw_{ah} 7 -1286 $1 - 1280 2.4 \text{ m}_{b}$ 7 -1390 $1 - 1280 2.4 \text{ m}_{b}$ 7 -1390 $1 - 1280 2.4 \text{ m}_{b}$ 7 -1390 $1 - 1280 2.4 \text{ m}_{b}$ 7 -1386 $1 - 1290 3 0 4 130 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $		~1040 1	• .			-	1035	. MAA				928 + 121 = 1044
1120 50 1135 50 1136 90 1141 ah -1110 ww,ah 1139 s $334 + 923 = 1111$ 1144 200 1143 200 1143 20 0.87 1150 250 p $560 \times 2 = 1160$ 1150 340 1150 180 1156 250 p $560 \times 2 = 1160$ 1160 $340 = 1150$ 180 -1177 b 1189 m $606 + 582 = 1180$ 1177 1 1189 m $606 + 582 = 1180$ 1200 1 -1280 2 ah 0.47 1265 30 1256 w v 1225 m r 1298 w r 1298 w r 1298 w r 1298 w r 1170 $+ 130 = 1300$ -1380 2 a $1200 3 a$ $v1170 + 130 = 13001170 + 188 = 1300$							1058 1058	MAA	A7	~1052)	MAA	(234 + 827 = 1061 (C) 940 + 121 = 1061 (C)
1146 200 1148 210 0.87 1150 110 110 110 11170 11189 000 + 300 + 1170 000 + 300 + 1170 111777 11177 11177 11177 11177 11177 11177 11177 111777 111777		200 F F -				••	~1110	vvw,sh vvw,sh	•	~1110	vvw,sh	188 + 923 = 1111 $234 + 923 = 1157$
1200 117 0 117 0 vs ν_{1173} 117 1177) vs μ_{1173} 1177 1177) vs μ_{1177} 1177 1177) vs μ_{1177} 1177 1189 m 608 + 582 = 1190 1200 1 1205 ν_{1205} ν_{12	1146 200	1148 210 1150 180	0.87	1150 1159	8h 8h	Q ,	• •				-	580 X 2 1160
11177 11177 11189 m $608 + 582 = 1190$ 12000 w 2 12000 w 2 12000 120000 12000 12000 12	00T. S.	1174 1174 119 119 119 119 119 119 119 119 119 11		0/11~	en j		1169 (1173)	Vs	. 🛱 -	1170	AS A	.940 + 234 - 1174 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5.5.10 2.1.5.10 2.1.5.10									1189	£ >	608 + 582 = 1190 ?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	and the second					*.	~1284	vvw,sh vvw,sh		1205J 1217 1225	ww.sh m	
1252 50 1258 2 ^{<i>n</i>} 0.47 1265 30 1296 1 \sim 1280 2 ^{<i>n</i>} 1 170+ 130 = 1300 1318 (1322) vs B 1320 s v ₁ 1326 vs B 1320 s v ₁ 1326 2 ^{<i>n</i>} 1330 3 1326 3		م ب ب		-			1243 1266		U	1247	E	
1318 (1322) vs B 1320 s vie	-1252 50 -1295 1	~1268 ~1280 2,sh	0.47	1265	30	· / · · ·	:	• · ·		1298	.	2170 +, 180 = 1800
							1322)	8	Â	1320	50	
		~1330						-				1150 + 188 = 1338

² 1262 + 130 = 1382 1160 + 240 = 1390	$\begin{cases} 812 + 580 = 1382 \\ 1322 + 69 = 1391 \end{cases}$		609 + 827 = 1436	580 + 923 = 1503 940 + 583 = 1523	387 + 1170 = 1557	4701 - 7 Y 710	812 + 827 = 1639	6 . 6	1146 + 547 = 1693	8 A	? 812 + 923 = 1735	V ₂	609 + 1173 = 1782	1266 + 550 - 1815	$\begin{pmatrix} 1717 + 121 = 1838 \\ 923 \times 2 = 1846 \end{pmatrix}$
(373 vvw (386 vvw,sh (390 w		1406) w 1415) vvw	l430 w	1485 vvw 1518 w	1560 vvw,b	•	1646 m	1659 w,b	1686 } ⁸	1705 vvs	1728 w 1744 vs		1777 m		
e e e			2	5	ž		e~-			8			в	В	
1382 (1386)) 1390	-		1430 vvw	1496 vvw 1519 vvw			1633 m 1639 sh			1713 (1717) 1719	~1737 w.b		(1782) w (1782) w	1811 (1815) 1818	
												d			
	9	-			, 1	10						1000			9
	~1390					~1620						1765			~1830
												0.15			
12	3,sh	2	C	4		13		d	N			1000			
~1370	~1380	~1420	-1460	0041		~1620		000 -	~1680			1769			
	50	2010	- - -	4		L	5		-		ю	1000			1
	1383	1406	G	00#T~		~1620	Oport.				~ 1725	1760			~ 1840

Kaman							IR				
Solid (123 K)	Liquid (298 K)	I	Gas (29	8 K)	1	Gas (298 K)		Solid (123 K)	Asignment
cm ⁻¹ int. ⁴	cm ⁻¹	int. ^a	٩	cm ⁻¹	int. ^a	٩	cm ⁻¹ int.	type	cm ⁻¹	int.	
~1880 1	~1860	1,vb					1850	*-			945 × 2 = 1890
							1867 vw	A	1860	E	940 + 923 = 1863
	~1890	1					. 010T			•	1320 + 582 = 1902
	- -	•					1959 vw		~1926 ~1945	vw,b vw,b	? 234 + 1717 = 1951
							2097	V	2094 2106	ha,ww.	386 + 1717 = 2108
		C					2117 VW				940 + 1173 = 2113
T 0572	0412	0					2187 vw		2162	MA	367 + 1760 = 2147 1266 + 923 = 2188
							2267) (2260)}vw	£	2245	MA	940 + 1322 = 2262
							2263		- - -		
							(2301) vw	B	2289	Å	592 + 1717 = 2309
	- oson	÷œ					2305 7				
		Ĵ					23191	-		-	r1150 + 1173 = 2823
							2324 W		9797	M M	(609 + 1717 = 2326)
							1010		2340	M	1760 + 582 = 2342
							2454 VVW.	ha	01#J	1	1766 + 580 + 121 = 2466
2480	~2480	in in									1247 × 2 = 2494 1266 × 2 = 2530
							2548 vvw.	ha,	2545	vw,b	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2620		~ 2620	. 7-1					2584	æ				1266 + 1322 = 2587 (1717 + 923 = 2640 (1320 × 2 = 2640
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28690 1 ~ 2810 2 ~ 2890 2 ~ 2890 2 ~ 2890 vw, vb ~ 2800 vvv $\frac{7}{2}$ ~ 2800 vvv $\frac{1146}{1717}$ ~ 2800 vvv 2900 $\approx 940 + 6$ ~ 2800 vvv 200 ~ 2900 0.0 2904 0.0 ~ 2906 0.0 2904 0.0 ~ 2906 0.0 2904 0.0 ~ 2906 0.0 0.0 2904 0.0 ~ 2906 0.0 0.0 0.0 0.0 ~ 2900 0.0		•							2651 (2654) 2656	MA	æ	2644	Ê	940 + 1717 = 2657
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2866 1 ~2810 2 ~2830 vvv vb ~2825 vvv 7 ~2800 vvv 1146 + 28905 40 20 ~2840 2 ~2896 3,sh ~2904 vvv 2920 v 1146 + 28905 40 2906 60 0.0 2912 60 p 2964 vv 2920 v 1765 + 2905 40 2968 30,sh 0.90 ~2960 10,b dp 2964 vv 2956 m 1265 + 2972 vv 3076 vv 3076 vv 7 65 + 2972 vv 3078 vv 7 765 + 3070 vv 3078 vv 7 765 + 3121 v 3124 s ~3130 12 ~3121 v 3124 s ~ 3121 v 3123 b ~3056 vv 7 765 + 3161 8 ~3160 12 ~3153 6 3121 v 3124 s ~ 3161 8 ~3160 12 ~3153 6 3121 v 3124 s ~ 3161 8 ~3160 12 ~3153 6 3121 v 3124 s ~ 3161 8 ~3160 12 ~3153 6 3161 vvv 7 765 + ~3656 vvv 7 765 + 3161 8 ~3160 12 ~3153 6 2000 vvv 7 765 + 3161 8 ~3160 12 ~3153 8 0 3064 vvv 7 765 + 3161 8 ~3160 12 ~3153 8 0 3064 vvv 7 765 + 3161 8 ~3160 12 ~3153 8 0 3064 vvv 7 765 + 3161 8 ~3160 12 ~3164 vvv 7 765 + 3161 8 ~3166 vvv 7 8 0006 0 0.0 0 0.0 10 0.0 10 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0.0 10 0 0 0			-						2684 ~2690	8	A	2672	£	1765 + 923 = 2688
2890 20 20 2906 60 0.0 2912 60 p 2966 3, sh 2904 vvv b 2826 vvv 940 + 580 + 1322 = 2842 2966 290 v 1765 + 1173 = 2890 1717 + 1173 = 2890 1717 + 1173 = 2890 206 40 + 1717 = 2866 2972 2966 μ 2966 μ 2966 μ 2966 μ 2966 μ 2956 μ 2966 μ 2966 $10, b$ dp 2966 μ 2956 μ 2950 μ 2956 μ 2956 μ 2956 μ 2950 μ 2956 μ 2950 μ 2956 μ 2950 μ 2956 μ 2956 μ 2956 μ 2956 μ 2950 μ 2956 μ 2956 μ 2950 μ 2000 μ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~ 2605		~ 2680 ~ 2810	01 61								~ 2800	MAA	1760 + 945 = 2705 ?
2900 20 20 20 20 20 2912 60 p 2904 vvv 2920 v 1146 + 1717 = 2863 2890 20 177 + 1173 = 2806 3ah 2904 vvv 2920 v 2926 1717 + 1173 = 2806 2915 2915 2915 2915 2915 2915 2915 2915	2905 20 20 20 292 60 p 2904 vvv 2920 w 1146 + 1717 + 1717 + 2904 vvv 2920 w 5804 61 1765 + 1765 + 2905 40 '2906 60 0.0 2912 60 p 2956 w 2.926 m 1265 + 2972 w 3.0 a 2956 m 2956 w 3.0 a 2956 w 3.0 a 2956 m 2956 w 3.0 a 2956 w 3.0 a 2956 m 2956 w 3.0 a 2960 10, b dp 2960 10, b dp 2972 w 3.0 a 2956 w 3.0 a 29565 w 3.0 a 295656 w 3.0 a 29565 w 3.0 a		•	~ 2840	10					~2836	dv, wvv		~ 2825	MAA	940 + 580 + 1322 = 2842 ?
3006402906600.0291260p2956m1765 + 1150 = 29152964 10^{11} 2964 10^{11} 2956 m1265 + 1171 = 29822963 30_{4} 0.90 2960 $10, b$ dp 2966 m1265 + 1717 = 29822963 30_{4} 0.90 ~ 2960 $10, b$ dp 2966 m1265 + 1717 = 29822015 3 ~ 3020 3 ~ -3030 3 3070 vw 3076 vw 3016 100 3084 110 0.0 3091 110 p 3121 w 3161 8 ~ 3160 12 ~ 3163 6 3466 vw 3122 s 3161 8 ~ 3160 12 ~ 3166 vw 3164 vw $1765 + 1322 = 3087$ 3161 8 ~ 3160 12 ~ 3163 9 vw $1765 + 1322 = 3087$ 3070 vw 3121 w 3124 v_1 v_1 3161 8 ~ 3160 12 ~ 3168 vw $1765 + 812 + 580 = 3167$ 2510 2 ~ 3160 2 2 vw $1765 + 812 + 580 = 3167$ 2000 2 2 2 2 2 2 2 3001 10 10 10 10 10 10 10 2002 2 2 2 2 2 2 2 2002 2	2905 40 2906 60 0.0 2912 60 p 2964 vw 2920 w 580 6 4 1765 + 2963 30,sh 0.90 2960 10,b dp 2972 vw 3076 m 1265 + 2972 2963 30,sh 0.90 2960 10,b dp 2972 $3070 vw 3078 vw 1765 + 1777 + 2020 a 3 0.30 3 a 3070 vw 3078 vw 1765 + 3073 vw 3078 vw 1765 + 3161 8 23130 12 3121 w 3122 8 v 2 - 3161 8 - 3160 12 - 3163 6 - 3166 vvw 3122 vw 3122 8 v 1765 + 3161 8 - 3160 12 - 3163 6 - 3166 vvw 2000 vv 0 - 1766 vvw 1766 vvw 0 - 3066 vvw 0 - 3161 8 - 3160 12 - 3163 6 vvw - 3161 v 0.0 - 2000 vv 0 - 3166 vvw - 1766 vvw - 3066 vvw - 1766 vvw - 1766 vvw - 3066 vvw - 3166 vvw - 1766 vvw - 1766 vvw - 3066 vvw - 1766 vvw - 1766 vvw - 3066 vvw - 1766 vvw - 1766 vvw - 1766 vvw - 1766 vvw - 3066 vvw - 1766 vvw - 1760 vvw - 1000 vvw $	2890	20	-			2896	3.sh					~ 2860	MAA	1146 + 1717 = 2863 1717 + 1173 = 2890
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2956 W A 2956 m 1265 + 2963 30,sh 0.90 ~2960 10,b dp 2972 S A 2956 m 1265 + 1777 + 1777 + 1765 + 1765 + 3020 3 -3030 3 -3070 vw 3076 vw 7 -765 + 1765 + 3038 100 3084 110 0.0 3091 110 p 3121 w 3104 B V V T T + 1765 + 3180 12 -3130 12 -3153 B -3121 w 3104 B V $1765 + -3161$ B -3160 12 -3153 B -3166 vvw 3164 V V -3665 vw 7 -3665 vv 7	2905	4 0	2906	09	0.0	2912	60	ם	2904	WW		2920	¥	580 + 609 + 1717 = 2906 1765 + 1150 = 2915
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		•	-			- "		2956 2964 2972	в	A	2956	Ē	1266 + 1717 = 2982
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2963	30,sh	0.90	~ 2960	10,b	dþ						(1765 + 812 + 386 = 2963 (1717 + 1266 = 2973
3088 100 3084 110 0.0 3091 110 p 3070 vw 3078 vvw $1765 + 1322 = 3087$ $104 \ 8 \ 23130 \ 12 \ 23153 \ 6 \ 3121 \ w \ 3122 \ 8 \ 2122 \ 580 = 3157$ 3161 8 $\sim 3130 \ 12 \ 23153 \ 6 \ 3466 \ vvw \ 3454 \ vw \ 1765 + 1717 = 3482$ $\sim 3510 \ 2 \ -3665 \ vvw \ 7 \ -3666 \ vvw \ 7 \ -36665 \ vvw \ 7 \ -366656 \ vvw \ 7 \ -36665666666666666666666666666666666666$	3088 100 3084 110 0.0 3091 110 p 3121 w 3104 8 vu 1765 + ~ 3121 v 3122 8 vu 1765 + ~ 1765 + ~ 3161 8 ~3160 12 ~ 3153 6 3466 vvv 3454 vv 1765 + ~ 3665 vvv 7 ~ 3666 vvvv 7 ~ 3666 vvvv 7 ~ 36665 vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	~3015	ဓာ	~3020	co.		~ 3030	en					2200		1765 + 1265 = 3030
3121 w 3104 s v_{11} ~3121 w 3124 s v_{11} ~3122 s v_{11} ~3153 6 3166 vw 3152 s v_{17} ~3166 vw 3454 vw $1765 + 812 + 580 = 3157$ ~3510 2 ~3510 2 ~3520 ~3665 vv ?	3121 w 3104 s v, 3122 s v, 1765 + 1765 + 1765 + 1765 + 1765 + 1765 + 1766 v, 3456 vvv 3454 vv 1766 + 1760 × 3510 2 ~ 3665 vvv ?	3088	100	3084	110	0.0	3091	110	<u>م</u>	3070	۸M		3078 3078	M ^ /	ני 1765 + 1322 = 3087 ע,
3161 8 \sim 3160 12 \sim 3153 6 3167 3466 vvw 3454 vw 1765 + 812 + 580 = 3157 \sim 3151 0 2 \sim 3520 \sim 3466 vvw 3454 vw 1765 + 1717 = 3482 \sim 3510 2 \sim 3665 vvw ?	3161 8 ~3160 12 ~3153 6 3466 vvw 3454 vw 1765 + 1 ~3510 2 ~3565 vvw 7 ~3665 vvw 7	•		0616.4	C T					3121	æ		3104	8	د ₁ ۲
~3510 2 3400 VVW 3404 VW 1/00 + 1/1/ 3402 VVW 3404 VW 1/60 × 2 = 3520 - 3665 VVW ?	 ~3510 2 ~35665 vw 2.000 + 1760 ×	3161	8	~3160	12		~3153	9		0010			1910	l	1765 + 812 + 580 = 3157
~3665 VVW ?	~3665 vvw ? w. m. s = weak, medium, strong; v = very; ~ = approximate; F.R. = Fermi resonance; b = broad; sh = shoulder; NE. = nc			~3510	8					0070	***		3404	MA	1760 + 1/1/ = 3482 1760 × 2 = 3520
	w, m, s = weak, medium, strong; v = very; ~ = approximate; F.R. = Fermi resonance; b = broad; sh = shoulder; NE. = nc	-	-										~ 3665	WVW	2

Fig. 1. IR and Raman spectra of 1,1,4,4-tetrafluorobutadiene.

most of the coincidences can be reasonably explained as accidental. Under C_{2h} symmetry the twenty-four fundamentals of 1,1,4,4-tetrafluorobutadiendivide into the following symmetry species: $9a_g + 4a_u + 3b_g + 8b_u$. They are summarized in Table 2. The descriptive names of the vibrations are used for convenience and may not be accurate descriptions of the actual modes. Some useful molecules for comparison are: $F_2C=CF_2$ [11], $F_2C=CH_2$ [12] and $F_2C=CD_2$ and $F_2C=CDH$ [13].

Raman-active fundamentals

 a_g species. All nine fundamental frequencies belonging to this species were identified from their polarizations and intensities. The two candidates for the symmetric C-H stretch (ν_1) are 2912 and 3091 cm⁻¹. This mode is expected to occur above 3000 cm⁻¹. On this basis and its greater intensity the 3091 cm⁻¹ is chosen as ν_1 . The strongest Raman band, at 1765 cm⁻¹; is assigned to the symmetric C=C stretch (ν_2).

The C-C stretch, symmetric C-H in-plane bend and the out-of-phase Cstretch are expected to have similar frequencies. The band at 1265 cm⁻¹ is attributed to the C-H bend since this mode is expected to be the highest frequency of the three [13]. By comparison with the hydrogen [1] and chlorine (Table 2) analogs of 1,1,4,4-tetrafluorobutadiene, ν_4 , the C-C stretch is assigned to 1150 cm⁻¹. This leaves the band at 940 cm⁻¹ to the

TABLE 2

Species	Activity	No.	Description	C ₄ H ₂ F ₄	C ₄ H ₂ Cl ₄
a _g	R(p),—	1	C—H sym. stretch	3091	3051
	•	2	C=C sym. stretch	1765	1609
		3	C-H I.P. bend	1265	1292
		4	CC stretch	1150	1152
		5	CX, antisym. stretch	940	855 or 955
		6	CX, sym. stretch	609	691
	-	· 7	CX, sym. scissor	592	185
		8	CX, rock	386	374
		9	CCC deformation	234	462
a.,	—,IR(C)	10	C-H O.P. bend	827	88 9
u		11	CX, wag	583	320
		12	CX, twist	121	96
		13	CC torsion	69	
b _a	R(dp),—	14	C-H O.P. bend	812	933 or 855
g		15	CX, wag	580	477
		16	CX, twist	188	239
b.,	—,IR(AB)	17	C—H antisym. stretch	3121	3061
u .		18	C=C antisym. stretch	1717	1550
		19	C—H I.P. bend	1322	1242
		20	CX, antisym. stretch	1173	~866ª
		21	CX, sym. stretch	923	609
		22	CX. scissor	550	306
		23	CX, rock	490	197
		24	CCC deformation	240	220

Fundamental vibrations of $X_2C=CH-CH=CX_2$ (X = F,Cl)

LP. = in-plane; O.P. = out-of-plane.

^aFermi Resonance.

out-of-phase C—F stretch (ν_5) . The four remaining strong polarized bands in the Raman spectrum are 609, 592, 386 and 234 cm⁻¹. We have chosen 609 cm⁻¹ as the symmetric C—F stretch because it is slightly more intense than the band at 592 cm⁻¹. This band is then assigned to the CF₂ scissor (ν_7) . These two assignments could easily be reversed. The remaining two bands 386 and 234 cm⁻¹ are assigned to the CF₂ rock and C—C—C deformation respectively.

 b_g species. The three vibrational fundamentals that belong to the b_g symmetry species are the out-of-plane C—H bend, the CF₂ wag and the CF₂ twist. Four depolarized bands of moderate intensities are observed at 812, 580, 188 and 128 cm⁻¹. The 812 and 580 cm⁻¹ bands are assigned to the C—H out-of-plane bend (ν_{14}) and CF₂ wag (ν_{15}) respectively. Because the intensity of the 188 cm⁻¹ does not fluctuate as much as that of the 128 cm⁻¹ band we favor the 188 cm⁻¹ band as ν_{16} . We then assign 128 cm⁻¹ to the overtone of the torsion.

Infrared-active fundamentals: band contours

As an aid in assigning the IR fundamentals the expected band contours were estimated. The moments of inertia were calculated after assuming a geometry by analogy with similar compounds. The assumed parameters were: F-C bond 1.32 Å; C=C bond 1.35 Å; C--C bond 1.47 Å; C--H bond 1.06 Å; F-C-F angle 110°, C=C-C angle 124°, C=C-H angle 122°. The following moments of inertia were calculated: $I_A = 140$ amu Å², $I_b = 562$ amu Å² and $I_c = 702$ amu Å². From these values the P--R separations were calculated [14] and the intensity pattern estimated [15]. The calculated and observed P--R separation and band type are as follows

Species	b _u	b	a _u
Band type	Α	В	С
$\Delta \hat{v}(P-R)$ calculated	8.0 cm^{-1}	6.7 cm^{-1}	12.0 cm^{-1}
$\Delta \vec{v} (P-R)$ observed	$10-17 \text{ cm}^{-1}$	$6-8 \text{ cm}^{-1}$	23 cm^{-1}

 $b_{\rm u}$ species. In view of the expected contours, the following strong bands were chosen as candidates for $b_{\rm u}$ fundamentals: 1717, 1322, 1173 and 923 cm⁻¹. The band at 1717 is readily assigned to the C=C antisymmetric stretch (v_{18}). By analogy with fluorinated ethylenes and the Raman-active fundamentals the C—H in-plane bend is expected at a higher frequency than the C—F stretches [13]. Therefore, v_{19} is assigned to 1322 cm⁻¹. The C—F out-of-phase stretch and the C—F in-phase stretch are at 1173 and 923 cm⁻¹ respectively.

Two additional bands of moderate intensity which belong to this symmetry species are 550 and 869 cm⁻¹. The former is chosen for the anti-symmetric scissors (v_{22}) while the latter is a combination band (490 + 386 = 876).

The antisymmetric C—H stretch is assigned to a weak band at 3121 cm⁻¹. Of the two candidates (3070 and 3121 cm⁻¹) only the 3121 cm⁻¹ band had an intense counterpart in the solid phase. The 3070 cm⁻¹ band is explained as a combination band (1765 + 1322 = 3087 cm⁻¹). The remaining two b_u fundamentals the CF₂ rock and the C—C deformation are assigned to 490 and 240 cm⁻¹ respectively.

 a_u species. There are four vibrational fundamentals which belong to the a_u symmetry species: the out-of-plane C—H bend, the antisymmetric CF₂ wag, the CF₂ twist, and the C—C torsion. The three C-type bands observed are either too high in frequency or too weak to be assigned to an a_u fundamental. Of the remaining bands the best candidates for these fundamentals are 827, 583, 121 and 69 cm⁻¹. The 827 cm⁻¹ band is assigned to the out-of-plane C—H bend (v_{10}) and the 583 band is assigned to the CF₂ wag. Since the torsion is expected to be at a lower frequency than the twist, the band at 121 cm⁻¹ is attributed to the CF₂ twist, while the torsion is observed at 69 cm⁻¹.

Remaining bands. Most of the remaining bands are assigned to combination bands as shown in Table 1.

1,1,4,4-TETRACHLOROBUTADIENE

Experimental section

Preparation of the sample

The following reaction, first described by Roedig and Kloss [16], was used to prepare 1,1,4,4-tetrachlorobutadiene

Cl₂HC--ClHC--CHCl--CHCl₂ KOH Cl₂C=CH--CH=CCl₂

Our sample was purified via preparative gas chromatography using a $10' \times 1/4''$ 3% carbowax column operated at 110° C.

Spectroscopic procedure

The instruments and some of the procedures used were described earlier. The sample was contained in a 1 mm O.D. capillary for the Raman experiments. The spectrum of the liquid was obtained at room temperature. For the solid phase data the sample was cooled to 213 K in a conventional variable temperature cell [17]. The liquid phase infrared spectrum was obtained from a thin film between KBr plates or using a 1 mm sealed polyethylene cell. The gas phase was examined using a variable multi-pass cell [10] with a path length of 8.6m.

Results

The spectral results are listed in Table 3 and shown in Fig. 2.

Assignments

While several coincidences occur in the solid or liquid phases, only two pairs of bands are coincident in both phases. The other coincident pairs are certainly accidental or they would be coincident in both phases. These two coincidences are far less than should be observed for C_{2v} or C_2 symmetry. Clearly the selection rules for C_{2h} symmetry are followed and the molecule will be assigned under this symmetry. These assignments are summarized in Table 2. The numbering of the vibrations is for the fluoro compound and is not correct for the chloro compound.

Raman-active fundamentals

 $a_{\rm g}$ species. The $a_{\rm g}$ bands are easily identified in the Raman spectrum by their polarized character. The band at 3051 cm⁻¹ must be the C—H symmetric stretch. The symmetric C=C stretch certainly is the very strong band at 1609 cm⁻¹. The lowest $a_{\rm g}$ vibration, the CCl₂ scissors, is assigned to the band at 185 cm⁻¹. The C-C stretch is assigned to the band at 1152 cm⁻¹. A number of butadienes including C₄Cl₆ and C₄H₆ have a band between 1150 and

Fig. 2. IR and Raman spectra of 1,1,4,4-tetrachlorobutadiene.

 1200 cm^{-1} . The only vibration common to all these molecules which would be expected in this region is the C–C stretch. If 1152 cm^{-1} is assigned to the C-C stretch, then the C-H in-plane bend must be at 1292 cm^{-1} . The only remaining a_r , fundamental expected above 750 cm⁻¹ is v_5 , the CCl₂ antisymmetric stretch. This vibration would be expected to occur between 800 and 1000 cm⁻¹. The only polarized Raman band in this region is at 955 cm⁻¹. However, this band is very weak and may arise from the combination $2 \times 477 = 954$ cm⁻¹. The next highest polarized band is at 691 cm⁻¹. If the antisymmetric stretch is assigned to this band the CCl₂ symmetric stretch would have to be assigned to the weak band at 564 $\rm cm^{-1}$. The symmetric stretch is expected to be an intense band. Since the antisymmetric stretch (v_5) would be expected at a much higher frequency than 691 cm⁻¹, we have assigned the 691 cm^{-1} band to the CCl₂ symmetric stretch. The depolarized band at 855 cm^{-1} is a candidate for the CCl₂ antisymmetric stretch. The fact that it is depolarized does not forbid this assignment. There are no definite arguments for choosing which band is due to v_s . We have chosen v_s as 855 cm⁻¹ because of its intensity. Its frequency is close to the frequency observed for the IR active CCl₂ antisymmetric stretch, as expected.

The remaining two a_g fundamentals, the skeletal in-plane bend and the CCl₂ rock, are assigned to 462 and 374 cm⁻¹ respectively; they could well be reversed.

TABLE 3

Raman and IR spectra of 1,1,4,4-tetrachlorobutadiene

Solid				Liquid					Gas		Assignment
Raman 213 K		IR 77 K		Raman 296 K			IR 296 K		IR v.p. a 296 R meter	t (8.3	
cm ⁻¹	Inta	cm ⁻¹	Int.	cm ⁻¹	Int. ^a	P	cm ⁻¹	Int.	cm ⁻¹	Int.	
		102	m		-		96	m			ν ₁₂
~100	46										lattice
		185	11/				138	w			$462 - 320 \approx 142$
185	262	100	**	185	126	0.35	100	w			τ υ_
		204	vw			0.00	197	vw			vn
		220	W				220	W			V _M
238	48			239	45	0.77	_				ν _M
		251	vw				252	vw			?
202	10	306	m	917	-		306	m			v_{22}
323	12	323		317	'		320				220 + 96 = 316
		020		330	10		520				2
376	165			374	142	0.14					ν.
				462	10	~.5					ν
		464	m				462	m	464	m	239 + 220 = 459
		472	m				474	m	474	m	374 + 96 = 470
482 5 <i>64</i>	101			477 564	58	0.75					v_{15}
004	5,0	614		004	0,0		609		614	-	3(4 + 180 = 308)
		014	3	~610	1		005	3	014	3	$^{P_{21}}$ 2 X 306 = 612
641	17			642	6						$2 \times 320 = 640$
695	71			691	60	0.32					Ve
	-	784	w								320 + 462 = 782
		787	w				786	m	773	m	691 + 96 = 787
199	11			855	1 55	~.8					?
000	10	880	-	800	00	V.10	856		851	- 1	FR 12 and
		905	vs				898	vs	911	vs	691 + 197 = 888
		897	vs				889	sh	907	vs	ν ₁₉
931	5			933	8.	~.8					v14
		943	111		-	-	941	w	944	m	?
961	16	0.95	-	955	. 6	~.2	0.05				2 X 477 = 954
1194	10	300	vw				965	vw			009 + 3/4 = 983
1155	233	· .		1152	380	0.38					τ. ν.
						0.00	1165	vw			855 + 306 = 116
		1189	vw				1185	vw			?
		1245	S				1242	\$	1249	m	<i>v</i> ₁₉
1302	155	1000	· .	1292	333	0.32	~1000				V_3
~1990	. 5 h	1300	vw	1911	17	0 50	~1300	vw			2 031 + 003 = 130
~1345	3.b			1355	8	~.4					?
~1543	5,b		•	1542	10	~.2		-			1242 + 306 = 15
-	• -	1542	W	•			1543	m			856 + 691 = 154
		1562	s				1550	vs	1564	VS	^V 18
		1590	sh								?
1611	1000	1694	T1	1600	1000	0.76	1592	m	1603	m	898 + 691 = 158
1011	1000			TOAS	.1000	0.20	1695	V-107			2
				1715		: •	1040				2 X 856 = 1712
~1790	6,b		•	1793	18	~.3					1609 + 185 = 179
		~1835	vw	S. * . *			1829	VW			1609 + 220 = 182

Solid				Liquid			·		Gas		Assignment
Raman 213 K		IR 77 K	<u> </u>	Raman 296 K			IR 296 K		IR v.p. at 296 B meter	8.3 5	
cm ⁻¹	Int. ^a	cm ⁻¹	Int.	cm ⁻¹	Inta	ρ	cm ⁻¹	Int.	cm^{-1}	Int.	1
				1985	. 5	~.2		_			1609 + 374 = 19
				1000	•		~2215	vw			1609 + 609 = 22
~2305	З.Ь		-	2299	7	~.2					1609 + 691 = 28
~2766	2	-	• *	2759	6	~.5					1609 + 1152 = 🕱
		2845	vw	-			2838	w			1292 + 1550 = 2
				2895	2						1609 + 1292 = 2
3050	66			3051	44	0.09					ν ₁
		3057	m				3061	m	3071	m	V17 3
		3155	w	•			3157	vw			1609 + 1550 = 3
~3218	З,Ь			3212	3	~.2					2 X 1609 = 3218

TABLE 3 (continued)

w, m, s, = weak, medium, strong; v = very; b = broad; sh = shoulder; \sim = approximate; F.R. = Fermi Resonance; ρ = depolarization ratio. For depolarized lines we obtain ρ = 0.75 ± 0.05.

^aPeak intensity on scale of 1–1000, uncorrected for instrument response.

 b_g species. The highest frequency b_g vibration, the C—H out-of-plane bend, is assigned to the band at 933 cm⁻¹. It is not surprising that a mode involving primarily the bending of two C—H bonds is weak in the Raman. The remaining two b_g fundamentals were assigned to bands at least three times more intense than the strongest combination band. The CCl₂ twist should be the lowest b_g fundamental, and is assigned to the band at 239 cm⁻¹. The remaining fundamental, the CCl₂ wag, is assigned to the band at 477 cm⁻¹.

Infrared-active fundamentals

In an attempt to distinguish between the IR-active species, a_u and b_u , a gas phase spectrum was obtained. Unfortunately the band contours could not be resolved; therefore we have no experimental method of distinguishing between the two species, and they will be discussed together.

 a_u and b_u species. The C—H antisymmetric stretch (b_u) is observed at 3061 cm^{-1} . The very strong band at 1550 cm^{-1} is assigned to the C=O stretch (b_u) . The only remaining fundamental expected above 1000 cm^{-1} is the C—H in-plane bend (b_u) , assigned to the band at 1242 cm^{-1} . The lowest observed fundamental, at 96 cm⁻¹, is assigned to the CCl₂ twist. This value is too high to be reasonably assigned to the torsion, which should be the lowest IR-active fundamental. The intensity of this band also supports this assignment. Torsions are generally weak but this band is the strongest band below 400 cm^{-1} .

Between 850 and 920 cm⁻¹ in the IR there are three bands of appreciable intensity. Two of these are surely due to the CCl_2 antisymmetric stretch and the C—H out-of-plane bend. We assign the C—H out-of-plane bend to 889 cm⁻¹. We believe the bands at 856 and 898 cm⁻¹ to be members of a Fermi doublet

involving the CCl₂ antisymmetric stretch and the combination band $691 + 197 = 888 \text{ cm}^{-1}$. The CCl₂ symmetric stretch is assigned to the band at 609 cm^{-1} .

The band at 306 cm⁻¹ is assigned to the CCl₂ scissors (b_u). The combination band at 1542 cm⁻¹ in the Raman spectrum is polarized, implying that the two bands from which it arises belong to the same species. The only reasonable explanation for this combination band is 1242 (b_u) + 306 = 1547. Therefore, the 306 cm⁻¹ band must belong to the b_u species. The corresponding CCl₂ scissors is at 310 cm⁻¹ in tetrachloroethylene and at 299 cm⁻¹ in 1,1-dichlorethylene [18].

Excluding the torsion, this leaves three more low frequency fundamentals to be assigned. The bands observed at 197 and 220 cm⁻¹ are useful in explaining combination bands. They are assigned to the CCl₂ rock and the C—C deformation respectively. The remaining fundamental the CCl₂ wag is assigned to the band at 320 cm⁻¹.

Most of the other bands tabulated in Table 3 are explained as combination bands. Only binary combinations were tried, since it was felt that due to the large number of fundamentals almost any number between 400 and 3000 cm^{-1} could be explained by a tertiary combination.

CONCLUSIONS

The vibrational spectra of both 1,1,4,4-tetrafluoro- and tetrachlorobutadiene can be satisfactorily explained under C_{2h} symmetry. We saw no evidence of a second conformer for either compound.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation under Grant GP40836. The assistance of Dr. Ernesto Tuazon for the use of his Digilab FTS-14 Fourier transform interferometer is gratefully acknowledged.

REFERENCES

- 1 D. J. Marais, N. Sheppard and B. P. Stoicheff, Tetrahedron, 17 (1962) 163.
- 2 A. Almenningen et al., Acta Chem. Scand., 12 (1958) 1221.
- 3 L. A. Carreira, J. Chem. Phys., 62 (1975) 3851.
- 4 C. H. Chang, A. L. Andreassen and S. H. Bauer, J. Org. Chem., 36 (1971) 920.
- 5 J. C. Albright and J. Rud Nielsen, J. Chem. Phys., 26 (1957) 370.
- 6 G. J. Szaz and N. Sheppard, Trans. Faraday Soc., 49 (1953) 358.
- 7 R. M. Conrad and D. A. Dows, Spectrochim. Acta, 21 (1965) 1039.
- 8 D. D. Coffman, P. L. Barrick, R. D. Cramer and M. S. Raasch, J. Am. Chem. Soc., 71 (1949) 490.
- 9 F. A. Miller, B. M. Harney and J. Tyrrell, Spectrochim. Acta Part A, 27 (1971) 1003.
- 10 R. C. Lord, R. S. McDonald and F. A. Miller, J. Opt. Soc. Am., 42 (1952) 149.

- 11 T. Shimanouchi, Tables of Molecular Vibrational Frequencies. Consolidated Vol. I. National Bureau of Standards, 1972. U.S. Government Printing Office, Washington,
- D.C., S.D. Catalog No. C13.48:39, p. 75. 12 D. C. Smith, J. Rud Nielsen and H. H. Claasen, J. Chem. Phys., 18 (1950) 326.
- 13 W. F. Edgell and C. J. Ultee, J. Chem. Phys., 22 (1954) 1983.
- 14 W. A. Seth-Paul and G. Dijkstra, Spectrochim. Acta Part A, 23 (1967) 2861.
- 15 T. Ueda and T. Shimmouchi, J. Mol. Spectrosc., 28 (1968) 350.
- 16 A. Roedig and R. Kk ss, Justus Liebigs Ann. Chem., 612 (1958) 1.
- 17 F. A. Miller and B. M. Harney, Appl. Spectrosc., 24 (1970) 291.
- 18 T. Shimanouchi, Tables of Molecular Vibrational Frequencies. Consolidated Vol. I. National Bureau of Standards, 1972. U.S. Government Printing Office, Washington, D. C., S.D. Catalog No. C13.48:39, pp. 76, 83.