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The conformation of 1 ,3 -d ioxa-2-phosphor inane  der iva t ives  depends both on the nature  of the sub-  
s t i tuents  at tached to the phosphorus  a tom [1] and on the s t e r i c  effect  of the subst i tuents  found in the c a r -  
bon port ion of the r ing.  The 4 - m e t h y l - l , 3 - d i o x a - 2 - p h o s p h o r i n a n e  der iva t ives  a r e  in teres t ing  in this r e -  
spect ,  which exis t  as a pa i r  of g e o m e t r i c  i somer s  that  differ  in the mutual or ienta t ion of the exocycl ic  
bonds. The c i s -  and t r a n s - i s o m e r s  of the 2 - a l k o x y - 4 - m e t h y l - l , 3 - d i o x a - 2 - p h o s p h o r i n a n e  [2-7] or  of 1,3- 
butylene phosphite  [5-9] a r e  usual ly used as the s ta r t ing  products  in the p repa ra t ion  of the s t e r e o i s o m e r i c  
pa i r s .  In [10] we desc r ibed  the spec t r a l ly  pure  g e o m e t r i c  i somer s  of the 2 -methoxy-4-methy l -{ I ) ,  2,4- 
d ime thy l -2 -oxo- ( l I ) ,  and 2 - m e t h o x y - 2 - t h i o n o - 4 - m e t h y l - l , 3 - d i o x a - 2 - p h o s p h o r i n a n e s  (III). 

More comple te  data a r e  p resen ted  in the p re sen t  communicat ion on the synthes is  and study of the 
spat ia l  s t ruc tu re  of (I)-(III) and the i s o m e r s  of 2 - m e t h o x y - 2 - o x o - 4 - m e t h y l - l , 3 - d i o x a - 2 - p h o s p h o r i n a n e  
(IV) employing a complex of physical  methods (I_R, Raman,  1H, and 31p NMR spec t roscopy ,  dipole mo-  
ments  (DM), K e r r  effect).  

/ - - o \  /14 

C'H a 

(~)-(iv) 

X = OCHa,  Y = UEP* (I); X = C H ~ Y  = 0 (II); 

X = OCH3:,Y = S (III); X = 0CH3,Y = 0 (IV) 

Compound (19 was f i r s t  desc r ibed  in [111. Judging by the constants ,  apparent ly  the t r a n s - i s o m e r  is 
fo rmed  when 2 - c b l o r o - 4 - m e t h y l - l , 3 - d i o x a - 2 - p h o s p h o r i n a n e  is r eac ted  with methanol in the p r e sence  of 
pyr idine.  

Sta tements  exis t  in the l i t e r a t u r e  on the s t e reospec i f i e  course  of the oxidation [5, 12] and addition 
of sulfur  to t r ia lkyl  phosphites [3, 4, 13]. The low s t e reospec i f i c i ty  of the Arbuzov r e a r r a n g e m e n t  is e m -  
phas ized in [14]. Actually, this react ion  when run with cis-(D under the conditions given in [11] leads  to 
a mix tu re  of the g e o m e t r i c  i s o m e r s  of (II). However ,  the pure  s t e r e o i s o m e r s  of (II) a re  fo rmed  when the 
c i s -  and t rans - ( I )  a r e  t r ea ted  with catalyt ic  amounts of CH3I under mild conditions [10]. When cooled, 
t r ans - ( I I )  c rys t a l l i zes  easi ly.  Compounds (III) and (IV) were  obtained as pa i r s  of the geome t r i c  i s o m e r s  
by the r e spec t ive  addition of sulfur and the oxidation of (I) with N204 under conditions that excluded the 
p r e s e n c e  of t r a c e s  of mois ture .  The constants  of the invest igated compounds (It-(IV) a re  given in Table  1. 

* UEP = unshared e lec t ron pai r .  
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TABLE 

Compound 

6) 

(II) 

(llI) 

(iv) 

Configura- 
tion 

cis 

trans 

cis 
trans 

cis 
trans 

cis 
trans 

Bp, ~ (p, 
mm Hg) 

30--32 (10 -~) a 
52--54 (8) a, b 
48--50 (7) a. c 

98- -99  (10-4) "a 
58--59 (t0-4) a 

83--84 (10 -4) a 
74 (10 -4) a 

97--98 (I0 -') 
84--84,5 (10 -4 ) 

1,4515 
1,4420 
1,4420 

1,4575 
1,4520 

t,4958 
1,4920 

1,4375 
1,4390 

t,1205 
1,1085 
t,1060 

1,2200 
1,1998 

1,2460 
1,2403 

t,2530 
1,256t 

a See/10/. 
b Obtained from cis-(I). 
c Obtained by transesterifieation. 
d Relative to 85% HaPO 4. 

~,p, ppm 

-:-t33 
--t28 
--128 

--23 
--28 

--63 
--66 

-F7 
+5 

The i somers  of (III), which were obtained in [6] by the react ion of 2 -methoxy-2-an i l ino-4-methy l -  
1 ,3-dioxa-2-phosphorinanes  with CS2, differ in their  constants f rom the data given in [3, 10, 13]. The r e -  
action of methanol with c i s -2 - ch lo ro -2 -oxa -4 -me thy l - l , 3 -d ioxa -2 -phospho r inane  led to the isolation of 
the t rans  *-(IV) with a w ide boil ing range. 

In discussing the spatial s t ruc ture  of the s t e reo i somers  it is neces sa ry  to solve the problems:  1) 
conformation of the ring and a r rangement  of the 4-CH 3 group; 2) the presence  of eonformational equil ib-  
r ium,  which can appear both due to inversion of the ring and due to rotation of the CHaO group around the 
exocycl ic  P - O  bond in (I), (III), and (IV); and 3) orientation of the substituent at the phosphorus atom. 

Conformation of Ring. The spatial s t ruc ture  of the ring in (I) and (III) was studied by NMR spec t ro-  
scopy [3]. F r o m  an analysis of the vicinal s p i n - s p i n  coupling constants 3JHH and 3JHp and the chemical 
shifts of the protons it was concluded that the ring has the shape of an a rmchai r .  In all cases,  except c i s -  
(I), the 4-CH 3 group occupies an equatorial position, cis-(I) was depicted as the conformational equilib- 
r ium,  in which two forms of the a r m c h a i r  take part .  The NMR spect ra  obtained by us for the pure (II)$ 

(for t rans-(II)  aJHaCCHA 12 Hz; 3JHeCCHA 2.8; 3JPOCH A 2.8; a J P o c H  B 20.0 Hz) also indicate an a r m -  

chair conformation with the equatorial 4-CH 3 group. Consequently, we adopted this conformation when dis-  
cussing the IR spect ra ,  DM, and Kerr  constants.  Evidence in support of the fact that the orientation of the 
4-CH a group is retained when going f rom one i somer  to another is the large  difference in the DM of each 
s t e r e o i s o m e r i c  pair  of (II)-(IV) (Table 2). In such s t e r eo i somers  the conformation of the second subst i -  
tuent should change when the orientation of one of the substituents is retained. A change in the orientation 
of the 4-CH 3 group does not affect the DM value. An equalizing of the s p i n - s p i n  coupling constants of 
phosphorus with the protons (aJPocH A = 3JPOCH B = 6 Hz) is observed in the NMR spect rum of t rans-(IV),  

which can be explained by the equilibrium between the two conformations of the a rmchai r .  

Conformational Equilibrium. It is easy to establish the p resence  or  absence of conformational equi- 
l ibr ium by spectral  methods. Equil ibrium caused by inversion of the ring, as was shown by the NMR meth-  
od in the preceding section, is absent in most  of the discussed cases.  When the rotation of the CH30 group 
around the ordinary  P - O  bond is hindered it is possible to have three conformations appear, with a di-  
hedral  angle of 0.60 and 180 ~ relative to the unshared electron pair  o f  the phosphorus atom in (I) and to the 
P =Y-  bond in (III) and (IV), as is shown in Fig. 1,$ which should be manifested in the additional splitting 
of the bands in the vibrational spectra .  

*The c i s - i somer  when based on the nomenclature adopted in [7]. 
SThe recording and analysis of the NMR spect ra  of (I), (II), and (IV) were  done by Yu. Yu. Samitov. More 
complete data on the NMR spec t ra  will be given in a special communication. 
SThe oxygen of the CHaO group is not shown in Fig. 1. 
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T A B L E  2 

C o m -  
p o u n d  

(I) 

(ii) 

(in) 

(IV) 

Confirmation of P- OCH a 

Calculated 

Experimental 

syn 
anti 
gauche 

Calculated 
Experimental 

Calculated I syn 
anti 
gauche 

Experimental 

Experimental 

Calculated 

svn  
anti 
gauche 

t-t,D 

t ,57 
3,08 
2,04 
2,87 

6,06 * 
6,36 

5,09 
6,89 
5,58 
5,51 
5,50 [31 

inK. tOtz 

6,7 
21,0 
5,25 
t2,5 

10t6 
2t73 
848 
929 

~,D 

2,55 
4,25 
3,07 
3,40 

3,97 * 
3,81 

2,85 
4,94 
3,50 
3,93 
4,20 [3] 

5,41 
7,6 
5,91 
6,07 :I: 

cis 

390 
978 
354 
344 

3,t4 
5,22 
3,75 
4,46 $ 

trans 

mK.Io x~ 

22 
180 
6,5 

39,3 

177 
531 
t70 
298 

60 
i82 

1 
t65 

* In calculating the DM we took into account the coupling moment, determined for the 

P-O bond from the corresponding thiophosphonates [ 15], in which connection a value of 
0.58 D was adopted for the moment of the P-C bond, which was determined from the DM 
of trimethylphosphine [ 16]. 
11 We were unable to determine the value of K. 10 I2, 

m 
$ The DM of the stereoisomers of 2-methoxy-2-oxo-4, 6-dimethyl-1,3,2-dioxaphos- 

phorinane,equal to 6.11 and 4. 69 D [17], are good agreement with our data. 

C o r n  ~ 

pound 

T A B L E  3 

Configu- 
ration 

(II) 

(III) 

(IV) 

cis 
trans 

cis 
trans 
cis 
trans 

~p~O,  c m  -1 vp, c m  -I1 

1270 [10] 70t 
1245 [t0] 731 

- -  671 
- -  643, 653 

1288 $ 725 
1279 $ 705, 737 

Frequencies from the IR spectra. 
~" Frequencies from the Raman spectra. 
$ Differs somewhat from the frequency given 

in [7]. 

C~/5 
011S) (OH ~ 0r O(S) 

syn gauche OH3 
anti 

Fig. 1 

The spectra of the geometric isomers of (D-(IV), the same 

as the stereoisomers of the disubstituted cyclohexanes [18] and 

1,3-dioxanes [19], are especially different in the low-frequency 

region, which is sensitive to conformational changes. The pres- 
ence of an intense sharply polarized line in the 640-740 cm -i 

region is characteristic for the Raman spectra of (Ii)-(1%1, which 

belongs to the "pulsation" vibrations of the ring (Up) [21, 21]. As 
can be seen from Table 3, AVp of the ois- and trans-isomers of (II) and (III), which differ in the orienta- 

tion of the exoeyelic bonds, is 20-30 cm -l. A doublet of the Up at 643 and 653 cm -i is observed in the IR 

and Raman spectra of trans-(III). The splitting of i0 cm -~ can be associated with the rotational isomerism 

of the POCH 3 fragment. The data of studying the temperature dependence in the range from -170 to 50 ~ 

corroborate the presence of rotational isomers. In the Raman spectrum of trans-(III) a redistribution of 

the intensities occurs in some of the regions with decrease in the temperature, while a number of the lien 
lines disappears during crystallization (~-50~ including the line at 643 cm -I. 

At room temperature the ratio of the conformers is I : i. The difference in the energies of the con- 
formers, calculated as described in [22] from the lines at 643 and 653 em -I, is AE = 0.2 kcal/mole. 

Two lines, namely 705 and 737 cm -I, were assigned to the pulsation vibrations in the Raman spec- 
trum of trans-(IV). The large difference of AVp = 32 cm -I can apparently indicate the conformatlonal equi- 

librium that is associated with inversion of the ring, which is manifested in the NMR spectrum. Together 
withthis, a hindered rotation of the CH30 group also occurs. The contours of the bands at 705 and 737 cm -I 
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have an a s y m m e t r i c  shape,  with weakly exp re s sed  shoulders .  The shape of the contours changes with 
var ia t ion  in the t e m p e r a t u r e .  Bes ides  this ,  the re la t ive  intensi ty of the doublet at 592 and 607 cm -1 in 
the IR s p e c t r u m  of t rans- ( IV)  changes on heating.  

As a resu l t ,  the spec t ra l  s tudies indicate the p re sence  of i s o m e r i s m  due to rotat ion of the CH30 
group in the t r a n s - i s o m e r s  of  (III) and (IV). 

Orientat ion of Substituents Attached to Phosphorus  Atom. To es tab l i sh  the a r r a n g e m e n t  of the 
subst i tuents  at tached to the phosphorus  a tom tn space  we employed the DM method and the K e r r  effect. 
In the calculat ions we adopted the p rev ious ly  employed values of the axes  of the polar izabi l i ty  ell ipsoids 
and the bond moments  [15] for  the carbon bonds, and also for the o rd ina ry  P - O  bond. The anisot ropy of 
the po la r izab i l i t i es  of the P = O  and P =S groups  was calculated as the d i f ference  of the axes of the ell ipsoids 
of the group polar izab i l i t t es  of the t e t r a -  and t r i - coord ina ted  phosphorus a tom,  which were  de te rmined  in 
[23], taking into account the contribution of the polar izabi l i ty  of the unshared e lec t ron pa i r  of the t r tva lent  
phosphorus  atom. The folIowing values w e r e  obtained for the po la r izab i l i ty  el l ipsoids and the dipole mo-  

o 3 o 3 , 
ments :  for P = O b  l 2 . 1 9 A ,  b t l . 3 8  X3, 2 .95D;  f o r P = S b  l 6.72 A ,  b t 3.46 ~3 2 .62D.  

The exper imenta l  and calculated values of the DM and K e r r  constants  of (I)-(IV) a r e  given in Table  
2. In all c a ses ,  where  the absence  of conformat ional  equi l ibr ium was shown spec t roscop ica l ly ,  it is easy  
to make a conclusion rega rd ing  the rea l i zed  conformat ion,  and he re  trans-(I1) has an axial ,  while cis-(II)  
has  an equator ia l  phosphoryl  group.  In the IR spec t rum of t rans- ( I I )  the absorpt ion f requency of the P 
= O group has a lower  value than the cor responding  f requency of the c i s - i s o m e r  (see Table 3), which is 
also proof  of the r e s p e c t i v e  axial  and equator ia l  or ientat ion of the phosphoryl  group. 

F r o m  a compar i son  of the exper imenta l  and calculated DM and K e r r  constants  of the c i s - i s o m e r s  
of (III) and (IV), which, the s a m e  as in the case  of the phosphonates ,  exis ts  as one fastened c o n f o r m a -  
tion, it is poss ib le  to conclude that  they have a gauche-or ien ted  axial  CHaO group. Apparently,  such a 
s t ruc tu re  is a lso  cha r ac t e r i s t i c  for the s t a r t ing  t rans-(1) ,  which is in a g r e e m e n t  with the conformation 
of the unsubsti tuted 2 -e thoxy- l , 3 -d ioxa -2 -phosphor inane ,  the spat ia l  s t ruc tu re  of which was de te rmined  
by the g raphica l  p roces s ing  of the data on the DM [24]. As was shown above,  trans-(I1D exis ts  as an equi-  
l i b r ium mix ture  of two c o n f o r m e r s ,  which a r e  fo rmed  by the rotat ion of the CHaO group around the exo- 
cycl ic  P - O  bond. A compar i son  of the exper imenta l  and calculated DM and K e r r  constants indicates the 
p r e s e n c e  of the a n t i - c o n f o r m e r .  

As a resu l t ,  in the absence  of additional s t e r i c  in teract ions  (in the c i s - i s o m e r  this is 1 , 3 - i n t e r ac -  
tion with the syn-ax ia l  H a toms of the ring) the an t i -conformat ion  becomes  the p r e f e r r e d .  Based on the 
DM and the K e r r  constants  it is a lso poss ib le  to make s i m i l a r  conclusions for  the cor responding  t r a n s -  
(rv). 

When the IR s p e c t r a  of the g e o m e t r i c  pa i r s  of i s o m e r s  of (D, (III), and (IV), with a CH30 group a t -  
tached to the phosphorus  a tom,  a r e  compared  a dis t inct  d i f ference  is detected not only in the longwave 
region,  but also in the region of the complex P - O - C  vibrat ions .  If the CH30 group at the phosphorus  a tom 
is equatorial  [cis-(I) ,  t r ans - ( ID ,  and (IV)I, then a c h a r a c t e r i s t i c  intense band appea r s  in the spec t r a  at  
1120 cm -1. Knowing the spat ia l  s t ruc tu re  of the studied compounds,  it is poss ible  to make accura te  con- 
clusions r ega rd ing  the s t e r eospec i f i c i t y  of the invest igated chemica l  t r ans fo rma t ions .  As can be seen, all 
of the reac t ions  a re  s t e reospec i f i c  and p roceed  with a retention of the configuration at  the phosphorus  atom. 
The nomenc la tu re  changes for  (IV) and (IID: the g e o m e t r i c  i s o m e r i s m  of the 4-CH 3 group is d i scussed  with 
r e s p e c t  to the P =Y bond, and not with r e s p e c t  to the CH30 group,  as in the t r iva len t  phosphorus  de r i v a -  

t ives  (D. 

The direct ion of the studied reac t ions  is depicted by the following scheme" 
O C H  3 g a u c h e  

"' 0 

t r a n s  - (I) 

§ \ 
7cH3g uche . 

c i s  - ( I I l ) ,  ( IV)  �9 , t r a n s - ( l l )  t r a n s - ( ! ! ! ) ,  (IV) c i s  -(l.!) 
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TABLE 4 

Com- 

pound 

(I) 

(H) 

(m) 

(iv) 

Configu- 
ration 

irons 
cis 
trans 
cis 
trans 
cis 
trans 
cis 

6,3521 
4,6043 

18,8677 
52,4864 
16,55 
32,4256 
23~t333 
~2,8667 

--0,3349 
--0,3467 

0,3434 
0,3378 
0,3284 
0,3315 

--0,t88t 
--0,0313 
0,0902 
0,2473 
0,t252 
0,t476 

--0,0510 
--0,0308 

14,06 
8,29 

224,02 
693,92 
t41,00 
20,56 

~,D 

3,40 
2,87 
3,8t 
6,36 
3,93 
5,5t 
4,46 
6,07 

m K . i 0 1 ~  ' 

39,3 
I2,5 

298 
929 
i65 
344 

EXPERIMENTAL METHOD 

Special attention was given to the purity of the starting reactants and solvents in the preparation of (1)- 
(15-(IV). The distillation was run in a dry nitrogen atmosphere at the lowest possible temperatures. The 
purity of the geometric isomers was checked by IR and NMR spectroscopy. The constants of (15-(IV) are 
given in Table i. The DM and Kerr constants were determined as described in [15] at 25 ~ in cyclohexane 
solutions for (D and in CCI 4 solutions for (II)-(iV). The coefficients of the calculation equations are given 
in Table 4. The Raman spectra were obtained on a Coderg Model PHO laser spectrometer. 

cis-(D. With stirring and cooling (~0~ to a mixture of 8.28 g (0.26 mole) of methanol, 33 g (0.33 
mole5 of Et3N and 400 ml of benzene was added a solution of 40 g (0.26 mole) of 2-chloro-l,3-dloxa-2- 
phospharinane in 40 ml of benzene. On conclusion of addition the stirring was continued for another 30 rain 
at i0 ~ The precipitate was filtered. The benzene and excess Et3N were removed in vacuo at a temperature 
not exceeding 30 ~ Distillation of the residue gave 32.8 g (84.5%) of cis-(15. Found: P 20.52%; MR 36.07. 
C5HllO3P. Calculated: P 20.66%; MR 36.15. 

trans-(1),  a) To 20 g of cis-(D was added 10 drops of a saturated solution of CH3ONa in methanol. 
The mixture  was heated for  1 h at 100% The react ion mass became turbid. The mass was cooled and d is -  
t i l led to give 25 g (62.5%5 of t rans-(D.  

b) With s t i r r ing ,  9 g of 1,3-butylene glycol was added to 12.5 g of t r imethyl  phosphite. Then the 
mixture  was heated to 120 ~ and 6.35 g (99%) of methanol was dist i l led off. Distillation of the res idue gave 
6.8 g (54.8%) of trans-(D. Found: MR 35.85. CsHIIO3P. Calculated: MR 3615. 

eis-(ID. To 13 g (0.086 mole) of eis-(I) was added 1.5 g (0.01 mole) of CH31. The mixture was heated 
carefully up to 60 ~ . Subsequent heat evolution was removed by cooling. The reaction mixture was allowed 
to stand for a day at 20-25 ~ Then the CH31 was removed and the residue was distilled to give 10.9 g (83.8%) 
of eis-(ID. Found: MR 33.51. CsHIIO3P. Calculated: MR 3,3.54. 

Raman spectrum of cis-(II) (v, cm-t): 122 (0.83; 0.7*), 257 sh (dp; 0.6), 275 (0.85; 1.5), 295 (0.82; 
2), 376 (0.8; 0.35, 401 (0.66; 3), 429 (0.74; 1.5), 456 (0.9; 1.85, 483 (dp; 0.3), 495 (0.45; 1,7), 585 (0.05; 2.5), 
701 (0.05; i0), 725 (p; 0.85, 754 (0.2; 0.4), 781 (dp; 0.4), 801 (0.71; 1.3), 851 (0.63; 0.8), 880 (0.39; 0.3), 
898 sh (dp; 0.2), 909 (dp; 0.2), 950 (0.64; 0.2), 974 (dp; 0.1), 990 (0.79; 0.3), 1040 (0.8; 0.3), 1072 (0.67; 
0.85, 1135 (0.62; 0.75, 1159 (0.45; 0.5), 1226 (0.74; 0.4), 1257 (0.52; 2), 1315 (0.78; 0.5), 1355 (dp; 0.3), 
1378 (0.76; 0.3), 1390 (dp; 0.1), 1440 (0.83; 1.2), 1449 (0.85; 0.9), 1483 (0.8; 0.55, 2883 sh (p; 0.4); 2923 
(0.1; 2.2), 2988(0.68; 1.2). 

t rans-(II) .  Under conditions s imi la r  to those descr ibed  above, f rom 12.4 g (0.082 mole5 of trans-(I)  
and 1.4 g (~0.01 mole) of CH3I we obtained 11 g (88%) of t rans-(II) .  Found: MR 33.24. CsHttO3P. Cal-  
culated: MR 33.54. 

Raman spec t rum of trans-(II)  (v, cm-15:117 (0.85; 9.7), 234 (0.85; 1), 260 (dp; 0.4), 281 {0.78; 2.8), 
315 (dp; 0.2), 390 (0.63; 3.1), 434 (0.77; 0.8), 483 (0.69; 4), 496 (0.22; 3.2), 585 (0.05; 4.5), 678 (p; 0.8), 
731 (0.1; 10), 764 (dp; 0.4), 805 (0.79; 1), 849 (0.46; 1), 892 (0.33; 0.2), 900 (0.26; 0.25, 939 (0.53; 0.2), 
970 (dp; 0.1), 988 (0.8; 0.4), 1035 (0.8; 0.4), 1077 (0.66; 0.9), 1137 (0.5; 15, 1158 (0.4; 0.7), 1240 (0.33; 
2.25, 1251 (0.67; 1.9), 1317 (0.84; 0.5), 1344 (0.69; 0.5), 1377 (0.77; 0.4), 1390 (dp; 0.2), 1421 (0.85; 1.1), 
1449 (0.85; i.I), 1475 (0.82; 0.95, 2873 (p; 0.65, 2905 (0.19; 1.9), 2925 (0.I; 4), 2977 (0.7; 1.7). 

*In parentheses are, respectively, given the degree of depolarization and the relative intensity; dp = de- 
polarized; p = polarized. 
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cis-(Ili).  Using the method given in [3], the reaction of trans-(D with sulfur in CS 2 solution gave cis-  
(III). Found: P 17.10%. CsHIIO3SP. Calculated: P 17.03%. 

Raman spectrum of cis-(III) (v, em-1): 100 (dp; 0.4), 205 (0.85; 2.1), 258 (0.8; 0.2), 300 (0.4; 1.8), 
320 sh (0.46; 0.2), 374 (0.56; 0.7), 393 (0.67; 1.7), 431 (0.42; 3.2), 446 (0.39; 1.2), 468 (dp; 0.3), 500 (0.25; 
1.2), 565 (0.05; 6.8), 671 (0.06; 10), 766 {0.54; 1.6), 809 (0.62; 0.4), 828 (0.64; 0.3), 854 (0.74; 0.9), 895 
(0.27; 0.3), 942 (0.78; 0.1), 970 (0.38; 0.2), 988 (0.55; 0.4), 1030 (0.68; 0.7), 1045 sh (0.61; 0.4), 1070 (0.46; 
1.2), 1135 (0.59; 0.6), 1158 (0.58; 0.4), 1178 (dp; 0.1), 1225 (0.86; 0.3), 1250 (0.85; 0.8), 1315 (0.85; 0.4), 
1341 (0.82; 0.3), 1379 (0.73; 0.3), 1390 (0.77; 0.1), 1424 (0.82; 0.4), 1446 (0.83; 0.8), 1459 (dp; 0.6), 1470 
(0.81; 0.7), 2740 (0.18; 0.2), 2845 (0.07; 0.4), 2873 (p; 0.3), 2907 sh (0.17; 0.9), 2924 sh (0.19; 1.3), 2935 
(0.15; 1.5), 2949 (0.23; 1.2), 2984 (0.63; 0.8). 

trans-(III) .  The compound was obtained as described in [3] from cis-(D. 

Raman spectrum of trans-(IID (v, cm-1): 100 (dp; 2.4), 184 (0.72; 2), 208 sh (0.86; t) ,  247 (0.79; 
0.9), 265 sh (dp; 0.3), 300 (0.54; 1.5), 326 (0.46; 1), 348 (-;  0.1), 372 (0.73; 0.9), 397 (0.41; 3.5), 409 (0.5; 
5), 457 (0.6; 2.9), 497 (0.35; 1.8), 566 (0.04; 9.2), 619 (0.08; 2.3), 643 (0.05; 10), 653 (0.05; 10), 670 sh 
(p; 1.1), 752 (dp; 0.3), 791 (0.73; 0.9), 833 (0.79; 1.5), 854 (0.6; 1.7), 891 (0.33; 0.5), 939 (dp; 0.3), 964 
(0.6; 0.4), 986 (0.79; 0.7), 1035 (0.6; 0.8), 1076 (br) (0.49; 1.2), 116 (0.62; 0.2), 1135 (0.68; 1), 1157 (0.5; 
0.7), 1180 (dp; 0.1), 1227 (0.84; 0.7), 1249 (dp; 1.5), 1315 (dp; 0.7), 1339 (dp; 0.8), 1376 (dp; 0.7), 1387 
sh (dp; 0.2), 1429 sh (dp; 0.9), 1446 (dp; 1.7), 1466 (dp; 1.5), 2740 (0.27; 0.4), 2849 (p; 0.8), 2875 (p; 0.6), 
2905 sh (0.18; 1.7), 2934 (0.13; 2.9), 2955 (0.25; 2.6), 2985 (0.67; 1.7). trans-(IID undergoes th ione- th io l  
is~omerization at 120 ~ 

cis-(IV). As described in [12], to a solution of 10 g of N204 in 100 ml of CH2C12 at -50  ~ was slowly 
added 15.6 g of trans-(1). Vigorous reaction was observed, accompanied by the evolution of white fumes.  
The N204 solution assumed a green color.  After removal of the CH2C] 2 and nitrogen oxides the residue was 
disti l led in a high vacuum to give 12.75 g (75.8%) of cis-(IV). Found: P 18.52; MR 34.74. CsHllO4P. Cal- 
culated: P 18.67%; MR 35.08. 

Raman spectrum of cis-(IV) (v, cm-1): 220 (0.76; 0.4), 272 (0.8; 1.0), 332 (0,52; 2.1), 401 (0.67; 2.0), 
424 (0.7; 0.5), 446 (0.86; 0.1), 460 (0.86; 0.3), 481 (0.53; 0.3), 501 (0.56; 0.6), 519 (0.29; 1.0), 602 (0.06; 
1.62), 725 (0.07; 10.0), 810 (0.79; 0.4), 830 (0.81; 0.4), 860 (0.66; 1.0), 900 (0.82; 0.15), 955 (0.67; 0.2), 
975 (0.86; 0.12), 993 (0.85; 0.4), 1035 (0.84; 0.5), 1045 sh (0.84; 0.5), 1075 (0.67; 0.7), 1138 (0.66; 0.7), 
1163 (0.47; 0.6), 1186 (0.67; 0.1), 1227 (0.86; 0.3), 1251 (0.86; 0.9), 1228 (0.19; 1.3), 1315 (0.78; 0.4), 
1344 (0.73; 0.4), 1378 sh (0.8; 0.3), 1428 (0.86; 0.45), 1.453 (0.85; 1.1), 1476 (0.86; 0.8), 2853 (0.06; 0.6), 
2880 (0.1; 0.4), 2915 (0.2; 1.4), 2935 (0.15; 2.0), 2955 (0.22; 1.4), 2984 (0.6; 1.0). 

trans-(IV). Using a s imi lar  procedure [see cis-(IV)], f rom cis-(I) we obtained trans-(IV) in 86.1% 
yield. Found: P 18.60%; MR 34.76. C5HllO4P. Calculated: P 18.67%; MR 3508. The compound turns to a 
glass when cooled (-150~ 

Raman spectrum of trans-(IV) (v, cm-1): 218 (0.52; 1.3), 265 (0.71; 1.0), 295 (0.74; 0.4), 331 (0.64; 
1.7), 351 (0.75; 1.8), 370 (0.68; 0.5), 393 (0.58; 2.5), 434 (0.56; 1.6), 470 (0.59; 2.0), 503 sh (0.57; 1.5), 
513 (0.41; 3.0), 530 sh (0.71; 0.6), 590 (0.04; 3.1), 604 (0.06; 1.0), 705 (0.07; 10.0), 738 (0.07; 8.6), 808 
(0.46; 1.2), 839 (0.7; 1.4), 858 (0.53; 2.0), 900 (0.7; 0.5), 961 (br) (0.59; 0.66), 994 (0.8; 1.0), 1008 (0.33; 
0.54), 1037 (0.79; 0.9), 1051 (0.78; 0.92), 1085 (0.63; 1.35), 1121 (0.67; 0.9),  1135 (0.52; 1.4), 1160 (0.43; 
1.1), 1185 (0.6; 0.2), 1235 (0.7; 1.0), 1252 (0.72; 2.4); 1279 (0.26; 2.6), 1316 (0.76; 0.72), 1343 (0.71; 0.9), 
1378 (0.67; 0.84), 1391 sh (0.71; 0.4), 1433 (0.82; 1.4), 1452 (0.78; 2.7), 1476 (0.78; 1.92), 2855 (0.07; 
1.4), 2880 sh (0.1; 1.0), 2910 sh (0.19; 2.8), 2934 (0.15; 4.4), 2959 (0.3; 3.7), 2981 (0.53; 2.8). 

The authors express their  g ra t i t ude to  A. N. Vereshchagin and R. R. Shagidullin for valuable ad- 
vice when discuss ing the resul ts ,  and to E. I. Gol 'dfarb for taking the 31p NMR spectra.  

C O N C L U S I O N S  

1. The geometr ic  i somers  of the corresponding te t ra-coordinated phosphorus derivatives were ob- 
tained from the s te reo isomer ic  c is-  and t rans-2-methoxy-4-methyl - l ,3-d ioxa-2-phosphor inanes  by re -  
action with methyl iodide, the addition of sulfur,  and oxidation. It was shown that the indicated reactions 
are stereospecif ic .  

2. Conclusions regarding the spatial s t ructure  of the obtained compounds were  made on the basis 
of determining the dipole moments,  Kerr  constants,  and the IR and Raman spectra.  
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