NEW SYNTHESIS OF ARYLCYCLOPROPANES

(UDC 542.91)

L. I. Zakharkin and A. A. Savina

Institute of Heteroorganic Compounds, Academy of Sciences of the USSR Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1508-1509, August, 1965 Original article submitted June 2, 1965

It is known that the reduction of cinnamaldehyde [1], and also of the other ary α , β - unsaturated aldehydes, ketones, alcohols and esters with lithium aluminum hydride in ether solution at room temperature gives lithium aluminates A as the intermediate products. We found that arylcyclopropane hydrocarbons are formed in 50-70% yield when A is heated at 170-240°, for example

$$\mathbf{C}_{6}\mathbf{H}_{5}-\mathbf{C}=\mathbf{C}-\mathbf{C}\mathbf{O}\mathbf{R}''+\mathbf{L}\mathbf{i}\mathbf{A}\mathbf{H}_{4}\longrightarrow\begin{bmatrix}\mathbf{R}&\mathbf{R}'\\\mathbf{C}_{6}\mathbf{H}_{5}-\mathbf{C}-\mathbf{C}\mathbf{H}\\-\mathbf{A}\mathbf{I}-\mathbf{O}\end{bmatrix}\mathbf{L}\mathbf{i}^{+}\underbrace{t}_{\mathbf{C}_{6}\mathbf{H}}\mathbf{C}_{6}\mathbf{H}_{\mathbf{R}}\mathbf{R}''$$

Thus, a mixture of 0.09 mole of cinnamaldehyde and 0.1 mole of LiAlH₄ in 100 ml of ether was heated at 35° for 3-4 h. The residue from distilling off the ether was heated in a vacuum of 8-10 mm up to 200°. The obtained phenylcyclopropane (0.055 mole, 60%) was distilled off, b. p. 172-173°; n_D^{23} 1.5310; d_4^{20} 0.9385. In a similar manner were obtained: 1-methyl-2-phenylcyclopropane from benzalacetone, 1-ethyl-2-phenylcyclo-propane from ethylstyrylcarbinol, 1-methyl-1-phenylcyclopropane from ethyl β -methylcinnamate, 1-tert-butyl-2-phenylcyclopropane from benzalacetophenone, 1-ethyl-2, 3-di-phenylcyclopropane from benzaldesoxybenzoin, and 1-phenyl-2-anisylcyclopropane from anisalacetophenone. The structure of the obtained cyclopropane hydrocarbons was confirmed by chromatographic analysis and the infrared and NMR spectra. The presence of olefins as impurities was detected in a number of cases.

LITERATURE CITED

1. F. A. Hochstein and W. G. Brown, J. Am. Chem. Soc. 70, 3484 (1948).