A NEW DIAMINO-DERIVATIVE OF AN INORGANIC HETEROCYCLE CONTAINING SILICON, NITROGEN, PHOSPHORUS AND OXYGEN

UDO ENGELHARDT and THOMAS BUNGER

Institut für Anorganische Chemie

Freie Universität Berlin

D-1000 Berlin 33, Germany

(Received 18 October 1977; received for publication 28 October 1977)

A few years ago WANNAGAT, GIESEN and RABET (1) reported the synthesis of some inorganic heterocycles containing the elements silicon, nitrogen, phosphorus and oxygen

e.g. type 1:

We now report the synthesis of another heterocycle of this type:

$$\begin{array}{c} NH_2 & (CH_3)_2 \\ S & N - Si \\ O & (II) \\ C_6H_5 - O & N - Si \\ NH_2 & (CH_3)_2 \end{array}$$

3,5-Diamino-2,2,6,6-tetramethyl-4-phenoxy-4-thioxo-1-oxa-3,5-diaza-4-phospha(λ -5)

-2, 6-disila-cyclohexane

Il is formed by hydrolysis during the reaction of phenoxy-thiophosphoryl-dihydrazide in tetrahydrofurane with dichloro-dimethyl-silane in the presence of triethylamine:

$$C_6H_5O-(S)P(NH-NH_2)_2 + 2 Si(CH_3)_2Cl_2 + H_2O - \frac{(C_2H_5)_3N}{-4 HCI}$$

Il is obtained in small amounts by destillation of the reaction mixture at 110° C/ 10^{-4} mmHg. The pure, colourless, wax-like crystals melt at $100 - 101^{\circ}$ C.

The constitution of II was confirmed by analysis, ¹H-NMR-, Mass- as well as IR- and RAMAN-spectra.

Analysis (theory in parenthesis) : C: 34.69 (34.46)%, N: 15.55(16.07)%, H: 6.38 (6.07)%.

The 1 H-NMR-spectrum (solvens CDCl₃) indicates the phenyl group $\delta = 7.22$ (multiplett), NH₂-groups $\delta = 3.55$ (singlett) and two different methyl groups (none-equivalent positions below and above flexible ring) $\delta = 0.26$ and $\delta = 0.16$ (singletts). The ratio of intensities corresponds very nearly to the theoretical of 5:4:6:6.

TABLE 1

	Some Fragments of	II in the	Mass-spectrum
m/e		m/e	
348	M^{+}	149	O-P(N-Si) ₂ OH ₂ +
255	$SP(N(NH_2)Si(CH_3)_2)O^+$	132	$(CH_3)_2Si-OSi(CH_3)_2^+$
225	$SP(N(NH_2)Si(CH_3))_2O^+$	131	P(N-Si) ₂ O ⁺
209	$O-P(N(NH_2)Si(CH_3))_2O^+$	77	C ₆ H ₅ ⁺

TABLE 2

	Mo	Main Peaks in the IR- and RAMAN-spectra of II					
IR	RAMAN	Assignement	IR	RAMAN	Assignement		
3335 s	3329 w	ν_{as} (NH ₂)	1597 s	1595 m	u (CC) Ar.		
3265 m	3255 m	$v_{\rm s}$ (NH ₂)	1497 s		ν (CC) Ar.		
2970 s	2965 m	$ u_{as}$ (CH $_{3}$)	11 <i>9</i> 8 s	1195 w	ν (P-O-Ar)		
	2909 vs	$\nu_{_{ m S}}$ (CH ₃)	1173 m	1165 m	ν (P-O-Ar)		
1630 w	sh	δ (NH ₂)	1045 vs		$ u_{as}$ (Si-O-Si)		

Reference

^{1.} U. WANNAGAT, K.GIESEN and F.RABET, Z.anorg.allg.Chem.382(1971) 195