Tetrahedron Letters No. 27, pp 2375 - 2378, 1978. ©Pergamon Press Ltd. Printed in Great Britain.

004-4039/78/0701-2375**5**02.00/0

SYNTHESIS OF PROSTAGLANDIN I₃ (PGI₃)

Eldon G. Nidy and Roy A. Johnson* Experimental Chemistry Research The Upjohn Company Kalamazoo, Michigan 49001

(Received in USA 9 March 1978; received in UK for publication 4 May 1978)

Prostacyclin (PGI₂) is a potent, naturally occurring inhibitor of platelet aggregation¹ that is generated enzymatically from arachidonic acid <u>via</u> the intermediate prostaglandin endoperoxide, PGH₂.^{1,2} The existence of the analogous endoperoxide, PGH₃, is implied by the presence of prostaglandins of the "3-series" (e.g., PGE₃³ and PGF₃ α^4) in mammalian tissues. In fact, crude enzyme preparations capable of the biosynthesis of PGG₂ and PGH₂ can also produce PGH₃.⁵ One may reasonably expect, therefore, that the enzymes producing PGI₂ from PGH₂ might also produce PGI₃ (prostaglandin I₃) from PGH₃. In anticipation of this possibility, we have prepared PGI₃ and its hydrolysis product, 17,18-didehydro-6-oxo-PGF₁ α , by chemical synthesis and report their properties here.

Reaction of PGF₃ α , methyl ester⁶ (<u>1</u>, 3.40 mmol) with iodine (3.74 mmol) in methylene chloride in the presence of aqueous sodium bicarbonate gave two cyclic iodo-ethers, for which structures <u>2</u> and <u>3</u> were based upon the data given here and by analogy to results reported previously for the reaction of iodine with PGF₂ α methyl ester.⁷ The minor iodo-ether <u>2</u> (2%, less polar on silica gel tlc) was assigned the structure (5<u>S</u>,6<u>S</u>,17<u>Z</u>)-17,18-didehydro-5-iodo-PGI₁, methyl ester; ¹H nmr (δ , CDCl₃) 5.49 (m, 4H, two -CH=CH-), 4.49-3.33 (m, 5H, protons at C₅, C₆, C₉, C₁₁ and C₁₅), 3.67 (s, 3H, -OCH₃), and 0.97 (5, 3H, J = 7 Hz, -CH₂<u>CH₃</u>); mass spectrum (bis TMS ether), calcd for C_{2.6}H_{4.6}Si₂O₅I (<u>M</u>⁺-CH₃): 621.1930, found: 621.1938. The major iodo-ether <u>3</u> (57%) was assigned the structure (5<u>R</u>,6<u>R</u>,17<u>Z</u>)-17,18-didehydro-5-iodo-PGI₁ methyl ester and was a viscous oil; ¹H nmr (δ , CDCl₃) 5.50 (m, 4H, two -CH=CH-), 4.54 (q, 1H, J = 5.5 Hz, C₉H), 4.25-3.47 (m, 4H, protons at C₅, C₆, C₁₁ and C₁₅), 3.67 (s, 3H, -OCH₃), 3.67 (s, 3H, -OCH₃), 0.97 (5, 3H, J = 7 Hz, -CH₂<u>CH₃</u>); ¹³C nmr (CDCl₃, δ from TMS) 173.4, 135.1, 134.0, 132.4, 124.1, 80.9, 75.9, 72.4, 55.8, 51.5, 47.2, 41.0, 40.3, 35.8, 35.4, 35.0, 33.0, 25.1, 20.7 and 14.2; mass spectrum (bis TMS ether), found: 621.1907.

Dehydrohalogenation of the major iodo-ether (<u>3</u>) with 1,5-diazabicyclo[4.3.0]non-5-ene in benzene,⁷ followed by chromatographic purification of the crude product over Florisil, gave PGI₃ methyl ester (<u>4</u>, 62%) as a viscous oil; infrared, v_{OH} 3390, $v_{C=0}$ 1740, $v_{=C-0}$ 1695 cm⁻¹ (liquid film); ¹H nmr (δ , benzene-d₆, 100 MHz), 5.61 (m, 4H, olefinic protons), 4.22 (m, 3H), 3.75 (q, 1H, J = 7 Hz), 3.43 (s, 3H, -OCH₃), 0.99 (t, 3H, J = 7 Hz, -CH₂CH₃); mass spectrum (bis TMS ether), calcd. for C_{2.7}H_{4.8}Si₂O₃: 508.3040, found: 508.3025. Although the exact position of the C-5 vinyl ether proton in the nmr spectrum of <u>4</u> could not be determined because of other overlapping signals, this signal clearly was not between 4.5-5.0 δ , where it would be expected if the vinyl ether had the E-configuration.⁷

Prostaglandin I₃ sodium salt (<u>5</u>) was prepared by saponification of <u>4</u> with an equivalent of sodium hydroxide in methanol. Following lyophilization of the reaction solution, <u>5</u> was obtained as a white powder; infrared, $v_{=C-O-}$ 1690 cm⁻¹ (nujol mull).

Detection of the hydrolysis product, 6-keto-PGF₁ α , in biological systems may be regarded as evidence that the unstable (at physiological pH) prostacyclin (PGI₂) molecule was present in that system.⁶ Prostaglandin I₃ (<u>5</u>) is equally as sensitive to hydrolysis as is PGI₂, so we have characterized the hydrolysis product, (17<u>7</u>)-17,18-didehydro-6-oxo-PGF₁ α (<u>6</u>), in order that it may serve a similar role in the detection of PGI₃ in natural systems.

Hydrolysis of sodium salt 5 in 1:1 tetrahydrofuran - pH 1.5 buffer (3 hr) and isolation of the product⁷ resulted in the formation of $(17\underline{Z})$ -17,18-didehydro-6-oxo-PGF₁ α (6) as a viscous oil; infrared, ν_{OH} 3375, $\nu_{C=0}$ 1710 cm⁻¹ on a liquid film; ¹H nmr (δ , acetone-d₆) 5.48 (m, 4H, olefinic protons), 4.80-3.50 (m, 3H, C₉H, C₁₁H, C₁₅H), 0.95 (t, 3H, J = 7 Hz, -CH₃); mass spectrum (tetra TMS ether, methoxime) calcd for C₃₂H₆₄Si₄NO₆ (M⁺ - CH₃): 670.3810, found: 670.3796. Hydrolysis of methyl ester <u>4</u> in the same way gave (17<u>Z</u>)-17,18-didehydro-6-oxo-PGF₁ α , methyl ester (<u>7</u>), also a viscous oil. Methyl ester <u>7</u>, either neat or in solution, was subject to a mobile equilibrium that gave many spots on tlc. One of the new compounds undoubtedly is the hemi-ketal,

Figure 1. Mass spectrum of (17Z)-17,18-didehydro-6-oxo-PGF₁α methoxime methyl ester tris TMS ether.

<u>7a</u>. Exposure of such an equilibrium mixture to the preceding hydrolysis conditions forces the equilibrium to favor essentially pure <u>7</u>. Because of this equilibrium, <u>7</u> was characterized as the methoxime derivative <u>8</u> (syn and anti forms are detected by tlc on silica gel with 1:1 acetone-hexane); infrared v_{OH} 3320, $v_{C=0}$ 1730 cm⁻¹ in CHCl₃ solution; ¹H nmr (δ , CDCl₃), 5.54 (4H, m, olefinic protons), 4.37-3.62 (m, 3H, C₉H, C₁₁H, C₁₅H), 3.85 and 3.79 (two s, <u>syn</u> and <u>anti</u> -NOCH₃), 3.67 (s, 3H, -OCH₃), 0.97 (5, 3H, J = 7 Hz, -CH₂CH₃); mass spectrum (tris TMS ether) calcd for C₃₀H₅₈Si₃NO₆ (M⁺ - CH₃): 612.3541, found: 612.3572. A mass spectrum obtained when compound <u>8</u> (as the tris TMS ether) was analyzed by gas chromatography - mass spectrometry is shown in Figure 1.

PGI₃, sodium salt (<u>5</u>), is equal to prostacyclin, sodium salt, in its ability to inhibit either PGH_2-^9 or ADP-induced¹⁰ platelet aggregation.

REFERENCES AND NOTES

- (a) S. Moncada, R. Gryglewski, S. Bunting, and J. R. Vane, Nature, <u>263</u>, 663 (1976); (b)
 R. J. Gryglewski, S. Bunting, S. Moncada, R. J. Flower, and J. R. Vane, Prostaglandins, <u>12</u>, 685 (1976); (c)
 S. Bunting, R. Gryglewski, S. Moncada, and J. R. Vane, Prostaglandins, <u>12</u>, 897 (1976).
- R. A. Johnson, D. R. Morton, J. H. Kinner, R. R. Gorman, J. C. McGuire, F. F. Sun, N. Whittaker, S. Bunting, J. Salmon, S. Moncada, and J. R. Vane, Prostaglandins, 12, 915 (1976).
- (a) S. Bergstrom, F. Dressler, R. Rymage, B. Samuelsson, and J. Sjovall, Arkiv Kemi, <u>19</u>, 563 (1962);
 (b) B. Samuelsson, J. Am. Chem. Soc., 85, 1878 (1963).
- 4. B. Samuelsson, Biochim. Biophys. Acta, 84, 707 (1964).

- (a) P. Needleman, M. Minkes, and A. Raz, Science, <u>193</u>, 163 (1976); (b) A. Raz, M. Minkes, and P. Needleman, Biochim. Biophys. Acta, <u>488</u>, 305 (1977).
- 6. We thank R. C. Kelly and I. Schletter for providing us with $PGF_{3\alpha}$ methyl ester prepared by total synthesis (unpublished results, The Upjohn Company).
- R. A. Johnson, F. H. Lincoln, J. L. Thompson, E. G. Nidy, S. A. Mizsak, and U. Axen, J. Am. Chem. Soc., <u>99</u>, 4182 (1977).
- <u>Cf</u>., F. Cottee, R. J. Flower, S. Moncada, J. A. Salmon, and J. R. Vane, Prostaglandins, <u>14</u>, 413 (1977).
- 9. We thank Robert R. Gorman for measuring the ability of 5 to inhibit the PGH₂-induced aggregation of human platelet-rich plasma.
- 10. We thank E. E. Nishizawa and Thomas Honohan for measuring the ability of 5 to inhibit the ADP-induced aggregation of human platelet-rich plasma.