NEW INDANONE COMPOUNDS FROM ONYCHIUM JAPONICUM

MASAO HASEGAWA and YOKO AKABORI

Department of Biology, Faculty of Science, Tokyo Metropolitan University, Setagaya-ku, Tokyo, Japan

and

SADATOSHI AKABORI

Department of Chemistry, Faculty of Science, Toho University, Narashino, Chiba Prefecture, Japan

(Received 5 July 1973. Accepted 20 July 1973)

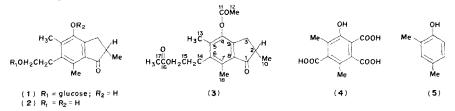
Key Word Index—Onychium japonicum: Pteridaceae: 4-hydroxy-1-indanone derivatives: pteroside M: pterosin M. M; pterosin M.

Abstract—A new indanone glucoside pteroside M has been isolated from fronds of Onychium japonicum (Pteridaceae). The structure of its aglycone pterosin M has been established by 13 C NMR, PMR spectra and degradation with nitric acid.

DURING the studies of chemotaxonomy of Pteridaceae,¹⁻³ we isolated a colourless crystalline compound (ca 0.01°,) from the ethyl acetate extract of the fronds of Onychium japonicum. The compound was purified by recrystallization from EtOAc, m.p. 192°, λ_{max} 272 and 322 nm, which has the molecular formula of C₂₀H₂₈O₈. It gives monomethyl ether with diazomethane, this suggests the existence of a free phenolic hydroxyl group in the molecule. An aglycone and glucose are produced by acid or enzymatic hydrolysis. The aglycone, m.p. 187°, m/e 234, λ_{max} 271 and 322 nm, has the empirical formula C₁₄H₁₈O₃. In the presence of ethanolic sodium hydroxide the λ_{max} of the aglycone undergoes a pronounced bathochromic shift to 288 and 365 nm, indicating the presence of a phenolic hydroxyl group. The aglycone gives monomethyl ether, m.p. 114°, m/e 248, and diacetate, m.p. 77–79°, m/e 318. The presence of carbonyl group is indicated with 2,4-dinitrophenylhydrazine solution and IR spectrum. The absorption band 1675 cm⁻¹ suggests that a carbonyl group exists in 5-membered ring.

The name of pteroside M (1) is proposed for the new glucoside, and pterosin M (2) for the aglycone due to their 1-indanone structure as indicated in further data of ${}^{13}C$ NMR and PMR spectra. We use the trivial names as the proposed system by Natori *et al.*⁴

The ¹³C NMR spectrum of (3) (in CDCl₃, chemical shifts are relative to TMS) showed resonances at δ 209.00 (C-1 carbon). 170.78 (C-16). 168.42 (C-11). 144.63 (C-4). 144.21 (C-6). 135.77(C-7, C-8). 135.599 (C-9). 132.92 (C-5). 62.42 (C-15). 42.17 (C-2). 30.46 (C-3). 28.28 (C-14). 20.75 (C-17). 20.33 (C-12). 16.26 (C-10) and 13.29 (C-13 and C-18).


¹ HASEGAWA, M. and AKABORI, Y. (1968) Bot. Mag. Tokyo 81, 469.

² AKABORI, Y. and HASEGAWA, M. (1969) Bot. Mag. Tokyo 82, 294.

³ AKABORI, Y. and HASEGAWA, M. (1970) Bot. Mag. Tokyo 83, 263.

⁴ YOSHIHIRA, K., FUKUOKA, M., KUROYANAGI, M. and NATORI, S. (1972) Chem. Pharm. Bull. 20, 426, footnote.

The PMR spectrum of (3) in CDCl₃ (reference, TMS) showed resonance absorptions at δ 1·26 ppm (*d*, *J* 8 Hz, 3H, C-10 methyl protons), 2·05 (*s*, 3H, acetyl protons), 2·43 (*s*, 3H, acetyl protons), 2·40 (*s*, 3H. C-5 methyl protons), 2·70 (*s*. C-7 methyl protons), 3·08 (*t*, *J* 8 Hz, 2H, C-14 methylene protons and C-2 methin protons overlapped). The C-7 methyl protons appeared at 2·70, whereas C-5 methyl protons appeared at 2·40. This shows that C-7 methyl group is deshielded by the next carbonyl group forming 5-membered ring, accordance with the result of 6-hydroxyethyl-2.5,7-trimethyl-1-indanone (pterosin B). The location of the secondary methylat C-2 was confirmed by the fact that the doublet methyl signal of (3) changed into singlet after 1 hr of standing at room temperature in CF₃COOD due to deuteration of the methin proton in coupling with the methyl protons through enolization.

The aglycone was oxidized with dilute nitric acid⁵ giving an oxidation product (4), which, without purification, was decarboxylated with copper in quinoline affording 2,4-xylenol (5). The phenolic compounds of the reaction mixture were checked by GLC and a peak showing the same retention time with an authentic sample was observed. Therefore the oxidation product must be 3,5-dimethyl-6-hydroxybenzene-1,2,4-tricarboxylic acid (4) and the structure of pterosin M is established as 4-hydroxy-6-hydroxyethyl-2,5,7-trimethyl-1-indanone (2). The structure of pteroside M is (1).

Many 1-indanone derivatives have been detected in *Pteridium aquilinum*^{4–8} and *Histiopteris incisa*,⁹ which have no hydroxyl group at 4 position. The compounds having 4hydroxy-1-indanone structure have been reported first in ferns.

EXPERIMENTAL

Isolation. The fronds of Onychium japonicum (1-8 kg) collected at Yamakita (Kanagawa Prefecture) on 19 September 1971 were extracted with hot MeOH. After evaporation of MeOH, the residue was dissolved in hot H_2O (300 ml), from which EtOAc soluble fraction prepared by the ordinary method.¹ The combined ethyl acetate extracts were concentrated under reduced pressure. The residue dissolved in 30 ml EtOH was added 30 g polyamide powder (Woelm), which was dried at 100°. The dried powder added to polyamide column (3 × 40 cm) was eluted with H_2O 300 ml each eluate was collected and examined by PC (6% HOAc). The 3rd and 4th fractions contained pteroside M, which were concentrated to syrup and extracted with EtOAc. After evaporation of the EtOAc, a crystalline mass appeared, yield 1/5 g, which was recrystallized from EtOAc to give pure 1.

Pteroside M. From EtOH, m.p. 192⁵; $[\alpha]_D^{1.8} + 129^{\circ}$ (Me₂CO + H₂O, c 1·2) (Found: C, 60·49 and H, 7·38. C₂₀H₂₈O₈ requires: C, 60·59 and H, 7·12%) λ_{max} : (EtOH) 233, 277, 322 nm (ϵ 4·31, 4·05, 3·51). This compound gave one spot on TLC (Wakogel B-5UA, EtOAc-CHCl₃-HCOOH-H₂O, 19:1:1:1. R_f 0·28) and PC (6%) HOAc, R_f 0·76; BAW, 0·73). Pteroside M monomethyl ether was prepared with CH₂N₂. m.p. 68°, λ_{max} : 265, 312 nm (EtOH). v_{kBt}^{RBt} : 3400, 2900, 1685, 1640, 1588. The hydrolysis product with β-glucosidase was identified with pterosin M monomethyl ether by a m.m.p. test and IR.

⁸ HIKINO, H., TAKAHASHI, T. and TAKEMOTO, T. (1972) Chem. Pharm. Bull. 20, 210.

⁵ YOSHIHIRA, K., FUKUOKA, M., KUROYANAGI, M. and NATORI, S. (1971) Chem. Pharm. Bull. 19, 1491.

⁶ HIKINO, H., TAKAHASHI, T., ARIHARA, S. and TAKEMOTO, T. (1970) Chem. Pharm. Bull. 18, 1488.

⁷ HIKINO, H., TAKAHASHI, T. and TAKEMOTO, T. (1971) Chem. Pharm. Bull. 19, 2424.

⁹ RONALDSON, J. W. (1972) Chem. Ind. (London) 72, 764.

Hydrolysis of pteroside M. Pteroside M (0·6 g) was hydrolyzed with β-glucosidase (0·4 g), or with hot 5% H₂SO₄. Pterosin M was recrystallized from hot H₂O or from EtOAc, m.p. 187°. λ_{max} : 271, 323 nm (EtOH) (Found: C, 71·62 and H, 7·94. C₁₄H₁₈O₃ requires: C, 71·77 and H, 7·74%). $\nu_{max}^{\text{KB}x}$: 3390, 2950, 2900, 1675, 1600, 1590. Diacetate was prepared with pyridine and acetic anhydride, recrystallized from EtOH, m.p. 77–79°. $\nu_{max}^{\text{KB}r}$: 2975, 2940, 1750, 1700, 1604; *m/e* 318.

Pterosin M monomethyl ether. Pterosin M was methylated with diazomethane, recrystallized from H₂O and then from dil. MeOH, m.p. 114°; λ_{max} 255, 311 nm (EtOH); *m/e* 248.

Acknowledgement—The authors thank Dr. Shinsaku Natori of the National Institute of Hygienic Science for his valuable help during this study.