STRUCTURES AND PESTICIDAL ACTIVITIES OF DERIVATIVES OF DINITROPHENOLS VIII.*—Effects of substitution with C5 to C13-s-alkyl groups and of esterification on the acaricidal activity of dinitrophenols

By M. PIANKA and J. D. EDWARDS

38 methyl-, 37 ethyl- and 19 other alkyl-carbonates, 37 crotonates, 10 acrylates and 17 other esters, and 15 methyl ethers of 2-(C_5 to C_{13} -s-alkyl)-4,6-dinitro- and 4-(C_4 to C_{13} -s-alkyl)-2,6-dinitrophenols were synthesised, and their activities against *Tetranychus telarius* (greenhouse red spider mite) were investigated. 2-s-Alkyl-4,6-dinitrophenols and esters were more active than their 4-s-alkyl-2,6dinitro- analogues, acaricidal activity remaining high with the 4,6-dinitrophenols up to 2-(C_{11} -s-alkyl). Generally compactness of the 2-s-alkyl group aided activity. Methyl ethers had very low activity. Esters of 2-(C_3 to C_7 -s-alkyl)-4,6-dinitrophenols were more acaricidal than the parent phenols, but the reverse was the case with C_8 to C_{13} -s-alkyl compounds. Crotonates and other esters were generally less active than methyl carbonates. The methyl carbonates of 2-(1-ethylhexyl)- and 2-(1-propylpentyl)-4,6dinitrophenols were found to be of particular economic interest as acaricides.

Introduction

In Part I¹ the acaricidal activity of dinitrophenols and their carbonates was examined and in Part III² that of dinitro-*m*cresols and their carbonates with nuclear normal and *a*-methyl alkyl groups containing up to five carbon atoms was examined. High activity was given by phenols and *m*-cresols containing nitro-groups in the 4- and 6-positions and an alkyl group with an *a*-methyl substituent in the 2-position.

In a series of ethyl carbonates of 2-alkyl-4,6-dinitrophenols, the C₃-alkyl (isopropyl) compounds showed moderate activity, the C₄-alkyl (s-butyl and t-butyl) and C₅-alkyl (1-methylbutyl) compounds high activity, and the C₈-alkyl (1-methylheptyl) ones lower activity.^{3,4}

4-s-Butyl- and 4-t-butyl-2,6-dinitrophenols¹ and their carbonates¹ and 4-s-butyl-5-methyl-2,6-dinitrophenyl carbonates² had low to moderate activity.

The effects on acaricidal activity of size, shape and position of the alkyl groups containing 5 to 13 carbon atoms in 2-alkyl-4,6-dinitro- and 4-alkyl-2,6-dinitrophenols and the effect of their esterification and etherification have been examined.

Experimental

Derivation of compounds

Chloroformates

All the chloroformates used here have been described in the literature. Methyl-, ethyl- and isopropyl-chloroformates were obtained commercially. Methyl thiolo-, propyl-, butyl-, s-butyl-, isobutyl-, hexyl-, octyl-, 1-methylheptyl- and decyl-chloroformates were prepared by the method described in Part I.¹

Acid chlorides

These were prepared by methods described in the literature.

Phenols

2-Isopropyl-4,6-dinitrophenol (Compound No. 220), 2-sbutyl-4,6-dinitrophenol (No. 1), 4-s-butyl-2,6-dinitrophenol (No. 108) and 2-(1-methylbutyl)-4,6-dinitrophenol (No. 4) have been described in the literature. The compounds shown in Table I were prepared as described in Part IV.⁵

TABLE I Compounds prepared as described in Part IV⁵

2-(1-R)-4,6-	dinitrophenols	4-(1-R)-2,6-d	linitrophenols
2-(1-R)-4,6- Compound no. 7 10 13 16 19 22 25 30 37 40 43 46 49 52 55 58 61 64 67 70 73	dinitrophenols R ethylpropyl methylpentyl ethylbutyl methylhexyl ethylpentyl ethylhexyl propylbutyl methylheptyl ethylheytyl propylhexyl butylpentyl ethyloctyl butylpentyl butylpentyl propylheytyl butylhexyl propylheytyl butylhexyl propyloctyl butylhexyl propyloctyl butylheytyl pentylhexyl pentylheytyl hexylheptyl	4-(1-R)-2,6-0 Compound no. 111 112 115 116 119 122 125 126 131 144 149 152 155 158 160 163 166 169 170 171 172 175 176 177	R methylbutyl ethylpropyl methylpentyl ethylpentyl ethylbutyl methylhexyl ethylhexyl propylbutyl methylheptyl ethylheptyl propylpentyl ethylheptyl propylhexyl butylpentyl ethyloctyl propylheptyl butylpentyl ethyloctyl propylheptyl butylhexyl methyldecyl ethylnonyl propyloctyl butylheptyl porylheptyl porylheptyl propyloctyl butylheptyl pentylhexyl ethyldecyl ethyldecyl ethyldecyl ethyldecyl ethyldecyl propylnonyl
67 70 73	pentylhexyl pentylheptyl hexylheptyl	109 170 171 172 175 176 177 178 170	ethylnonyl propyloctyl butylheptyl pentylhexyl ethyldecyl propylnonyl butyloctyl
		177 178 179 180 181	propylnonyl butyloctyl pentylheptyl propyldecyl butylnonyl
		182 183	pentyloctyl hexylheptyl

J. Sci. Fd Agric., 1968, Vol. 19, February

^{*}Part VII, J. chem. Soc., (c), 1967, 2618.

ABLE	1
------	---

2-Alkyl-4,6-dinitrophenyl carbonates

No. of compound	Alkyl	Carbonate	M.p.	Appearance and n_D^{20} of oil or appearance of solid	Formula	Found: N, %	Required: N, %
8	1-Ethylpropyl	Methyl	66-69°	Orange pink crystals	C13H16N2O7	9.3	9.0
9	1-Ethylpropyl	Ethyl	43–46°	Orange pink crystals	$C_{14}H_{18}N_2O_7$	8.9	8.6
11	I-Methylpentyl	Methyl		Yellow, 1.5222	$C_{14}H_{18}N_2O_7$	8.6	8.6
12	I-Methylpentyl	Ethyl		Yellow, 1.51/0	$C_{15}H_{20}N_2O_7$	8.4	8.2
14	1-Ethylbutyl	Methyla	52·5-54°	Off-white prisms	$C_{14}H_{18}N_2O_7$	8.8	8.6
15	I-Ethylbutyl	Ethyl		Yellow, 1.5177	$C_{15}H_{20}N_{2}O_{7}$	8.0	8.2
17	I-Methylnexyl	Methyl		Yellow, 1.5197	$C_{15}H_{20}N_2O_7$	8.6	8.2
18	I-Methylnexyl	Etnyl		Yellow, 1.5145	$C_{16}H_{22}N_2O_7$	8.2	7.9
20	I-Ethylpentyl	Methyl		Yellow, 1.5210	$C_{15}H_{20}N_2O_7$	7.9	8.2
21	I-Ethylpentyl	Ethyl	57 5 00	Yellow, 1.5151	$C_{16}H_{22}N_2O_7$	7.9	7.9
23	I-Propylbutyl	Methyl	57-58°	Brown crystals	$C_{15}H_{20}N_2O_7$	8.6	8.2
24	1-Propylbutyl	Ethyl		Pale brown, 1.5137	$C_{16}H_{22}N_{2}O_{7}$	7.8	7.9
26	I-Methylheptyl	Methyl		Yellow, 1.5159	$C_{16}H_{22}N_2O_7$	7.9	7.9
27	1-Methylheptyl	Ethyl		Yellow, $1 \cdot 5120$	$C_{17}H_{24}N_{2}O_{7}$	7.5	7.6
28	I-Methylheptyl	Isopropyl		Yellow, 1 5075	$C_{18}H_{26}N_2O_7$	7.3	7.3
29	I-Methylheptyl	Methyl thiolo-		Yellow, 1 · 5404	$C_{16}H_{22}N_2O_6S$	7.6	7.6
31	1-Ethylhexyl	Methyl		Yellow, 1.5170	$C_{16}H_{22}N_2O_7$	7.8	7.9
32	1-Ethylhexyl	Ethyl		Yellow, 1.5133	$C_{17}H_{24}N_{2}O_{7}$	7.6	7.6
33	I-Ethylhexyl	Propyl		Orange, 1.5100	$C_{18}H_{26}N_2O_7$	7.2	7.3
34	I-Ethylhexyl	Isopropyi		Orange, 1 · 5088	$C_{18}H_{26}N_2O_7$	6.7	7.3
35	I-Ethylhexyl	Hexyl		Orange, 1.5041	$C_{21}H_{32}N_2O_7$	6.9	6.6
36	I-Ethylhexyl	Decyl	(((0))	Orange, 1 4951	$C_{25}H_{40}N_2O_7$	5.8	5.8
38	1-Propylpentyl	Methyl	66-68°	Fine white needles	$C_{16}H_{22}N_2O_7$	8.2	7.9
39	1-Propylpentyl	Ethyl		Red-brown, 1 514	$C_{17}H_{24}N_{2}O_{7}$	7.5	7.6
41	1-Methyloctyl	Metnyi		Light red, 1.5139	$C_{17}H_{24}N_2O_7$	8.0	7.6
42	1-Methyloctyl	Etnyi		Light red, 1.5100	$C_{18}H_{26}N_2O_7$	7.6	7.3
44	1-Ethylneptyl	Nietnyi Fabul		Light red, 1.5159	$C_{17}H_{24}N_{2}O_{7}$	1.9	7.6
45	1-Ethylneptyl	Etnyi		Yellow, 1.5112	$C_{18}H_{26}N_2O_7$	0.2	7.3
47	1-Propyinexyi	Metnyl Ethad		Orange, 1:5142	$C_{17}H_{24}N_2O_7$	7.5	7.6
40	1-Propylnexyl	Ethyl	17 190	Grange, 17 5098	$C_{18}H_{26}N_2O_7$	7.2	7.3
50	1-Butylpentyl	Methyl Televi	4/-40	Light and 1, 6112	$C_{17}H_{24}N_{2}O_{7}$	7.8	7.6
51	1 Ethylo ethyl	Etnyi Mathul		Light red, 1.5112	$C_{18}H_{26}N_{2}O_{7}$	7.3	7.3
53	1 Ethyloctyl	Ethyl		Yellow, 1, 5002	$C_{18}H_{26}N_{2}O_{7}$	7.4	7.3
56	1-Ethyloctyl	Mothul		Yellow, 1, 5124	$C_{19}F_{28}N_{2}O_{7}$	7.5	7.1
50	1-Propyineptyi	Ethyl		Vellow, 1, 5004	$C_{18}H_{26}N_2O_7$	7.5	7.3
50	1 Protection	Mothul		Dala brown 1 \$102	$C_{19}H_{28}N_{2}O_{7}$	7.3	7.1
59	1-Dutymexyi	Ethyl		Pale brown, 1, 5022	C18F126IN2U7	[·3	7.3
60	1 Bronulostul	Mothul		Vallow 1.5102	$C_{19}\Gamma_{28}N_{2}O_{7}$	6.9	7.1
62	1 Propulatul	Etherl		Vallow, 1, 5071	$C_{19} \Gamma_{128} N_2 O_7$	6.7	()
03 45	1 Putulhentul	Etiiyi Mathul		Prouve 1.5112	$C_{20}H_{30}N_{2}O_{7}$	6.9	0.8
66	1 Dutylhentyl	Ethul		Brown 1,5072	$C_{19} r_{128} N_2 O_7$	7.2	6.0
68	1 Dentylhevyl	Methyl		Vellow 1.5100	C. H. N-O-	1.5	0°8 7.1
00 60	1 Pentylnexyl	Ethyl		Vallow, 1, 5062	$C_{19}H_{28}N_{2}O_{7}$	0.0	6.0
71	1 Pontulhontul	Mothyl		Vallow 1.5003	C201301207	7.7	0.0
71	1-remyineptyi	Ethul		Yellow, 1,5051	C20F130IN2U?	6.9	0.8
74	1 Howelboots?	Eullyi Mothul		Orange vellow 1.5050	C_{21} H_{32} N_2 U_7	0.9	0.0
75	1-Hexylheptyl	Ethyl		Orange-yellow, 1.5009 Orange-yellow, 1.5048	C21H32N2O7 C22H34N2O7	6.6	6.4

4-(1,1,3,3-Tetramethylbutyl)-2,6-dinitrophenol (Compound No. 147). A mixture of commercial p-t-octylphenol [described as containing 94% 4-(1,1,3,3-tetramethylbutyl)phenol] (20.6 g; 0.1 mole), ethylene dichloride (37 ml) and nitric acid (36%; 48 ml) was heated under reflux for 1.5 h. The organic layer was separated and washed thoroughly with 3 % aqueous sodium sulphate. The yellow solid, m.p. 112-113°, that separated out after each washing was filtered off. Ethylene dichloride was then removed from the organic layer leaving a dark oil which was dissolved in light petroleum, b.p. 60-80°, then shaken with 20% aqueous sodium carbonate. The red solid that separated was filtered off, dissolved in hot water and acidified. The oil that separated was extracted with light petroleum, b.p. 40-60°, treated with charcoal and anhydrous sodium sulphate and filtered. The solid that was obtained on adding cyclohexylamine was filtered off. The

J. Sci. Fd Agric., 1968, Vol. 19, February

cyclohexylamine salt of the phenol melts at 215° (from aqueous propan-2-ol). When a solution of the salt in methanol was acidified with conc. hydrochloric acid the *phenol* was obtained as light brown prisms, m.p. 50–51° (from methanol) (Found: N, 9.5. $C_{14}H_{20}N_{2}O_{5}$ requires N, 9.4%.)

Dinitrophenyl carbonates

The general method of preparation was essentially as described in Part I.¹ Alkyl dinitrophenol, in acetone, and potassium carbonate (1·1 equivalent), were heated under reflux for 1 h. The chloroformate (1·1 equivalent) was then added and the mixture was heated under reflux for 3 h. The solid was filtered off and washed with acetone. The volatile matter was then removed from the combined filtrate and washings on a steam-bath at 10–20 mm pressure. The residue was dissolved in benzene or light petroleum, washed

with 1% aqueous sodium carbonate and then with water. The organic layer was separated, dried (sodium sulphate) and the solvent was removed on the steam-bath at 1-2 mm pressure. When appropriate the residue was crystallised from a suitable solvent. The oils were not distilled. Yields ranged from 80 to 100%. The physical data of the carbonates are shown in Tables II and III.

2-s-Butyl-4,6-dinitrophenyl methyl and ethyl carbonates (Compounds Nos. 2 & 3), 2-(1-methylbutyl)-4,6-dinitrophenyl methyl and ethyl carbonates (Nos. 5 & 6) and 2-isopropyl-4,6-dinitrophenyl ethyl carbonate (No. 221) were prepared as described in Part I.¹

Dinitrophenyl esters

The general method of preparation was essentially as described in Part VI.⁶ Alkyldinitrophenol, in acetone, and

potassium carbonate $(1 \cdot 1 \text{ equivalent})$ were heated under reflux for 1 h. To the stirred ice salt-cooled mixture the acid chloride (1.1 equivalent) was slowly added. The mixture was kept stirred at 0-5° for a further hour, allowed to stand for 16 h at room temp., then heated under reflux for 3 h. The solid was then filtered off and washed with acetone, and the combined filtrate and washings were worked up in the same way as the carbonates. When appropriate the residue was crystallised from a suitable solvent. The oils were not distilled. Yields ranged from 80 to 100% and were generally higher for the compounds with unsaturated ester chains. Yields of compounds with saturated ester chains could be improved by adding, after one hour's heating, a further 0.1equivalent of potassium carbonate, then 0.1 equivalent of the acid chloride and proceeding as described above. The physical data of the esters are shown in Tables IV and V.

TABLE II

4-	Alky	v1-2.	.6-di	nitro	phenvl	carbonates

No. of compound	Alkyl	Carbonate	M.p.	Appearance and n_D^{so} of oil or appearance of solid	Formula	Found: N, %	Required: N, %
109	s-Butyl	Methyl ^{c,d}	59 · 5-60°	Off-white prisms	C12H14N2O7	9.1	9.4
110	s-Butyl	Ethyl	3334°	Brown crystals	C13H16N2O7	9.1	9·0
113	1-Ethylpropyl	Methyle	66°	Cream coloured prisms	C13H16N2O7	9.4	9.0
114	1-Ethylpropyl	Ethyl		Yellow, 1.5183	C14H18N2O7	8.8	8.6
117	1-Ethylbutyl	Methyl		Red-brown, 1.5210	$C_{14}H_{18}N_2O_7$	8.3	8.6
118	1-Ethylbutyl	Ethyl		Red-brown, 1.5155	C15H20N2O7	8.2	8.2
120	1-Methylhexyl	Methyl		Brown, 1 · 5172	$C_{15}H_{20}N_2O_7$	8.0	8.2
121	1-Methylhexyl	Ethyl		Red-brown, 1 • 5131	$C_{16}H_{22}N_2O_7$	7.8	7.9
123	1-Ethylpentyl	Methyl		Gold coloured, 1.5188	C15H20N2O7	8 ·1	8.2
124	1-Ethylpentyl	Ethyl		Orange, 1.5148	C16H22N2O7	8.2	7.9
127	1-Methylheptyl	Methyl		Pale brown, 1.5129	C16H22N2O7	8.0	7.9
128	1-Methylheptyl	Ethyl		Pale brown, 1.5070	$C_{17}H_{24}N_2O_7$	7.7	7.6
129	1-Methylheptyl	Isopropyl		Yellow, 1 · 5040	C18H22N2O7	7.3	7.3
130	1-Methylheptyl	Methyl thiolo-		Pale brown, $1.5360 (n_{D}^{*})$	C16H22N2O6S	7.6	7.6
132	1-Ethylhexyl	Methyl		Yellow, $1.5133 (n_{0}^{*})$	C16H22N2O7	7.4	7.9
133	1-Ethylhexyl	Ethyl		Orange, $1 \cdot 5084 (n_{\rm D}^{24})$	C17H24N2O7	7.8	7.6
134	1-Ethylhexyl	Propyl		Orange-brown, 1.5068	C18H26N2O7	7.3	7.3
135	1-Ethylhexyl	Isopropyl		Dark brown, 1.5062 (n ³)	C18H26N2O7	7.4	7.3
136	1-Ethylhexyl	Butyl		Brown, 1 · 5049	C19H28N2O7	7.1	7.1
137	1-Ethylhexyl	s-Butvl		Orange, 1.5030	C19H28N2O7	7.0	7.1
138	1-Ethylhexyl	Isobutyl		Orange-brown, 1.5035	C19H28N2O7	6.9	7.1
139	1-Ethylhexyl	Hexvl		Orange-red 1.5012	C21H32N2O7	6.9	6.6
140	1-Ethylhexyl	Octvl		Orange, 1.4930	C23H36N2O7	6.2	6.2
141	1-Ethylhexyl	1-Methylheptyl		Orange, 1.4927	C23H36N2O7	6.7	6.2
142	1-Ethylhexyl	Decvl		Orange, 1.4926	C25H40N2O7	5.8	5.8
143	1-Ethylhexyl	Methyl thiolo-d	56–58°	Pale green prisms	C16H22N2O6S	7.6	7.6
145	1-Propylpentyl	Methyl		Orange, 1.5131	C16H22N2O7	7.9	7.9
146	1-Propylpentyl	Ethyl		Orange, 1.4995	C17H24N2O7	7.8	7.6
148	't-Octyl'*	Isopropyld	57–58°	Cream prisms	C18H26N2O7	$7 \cdot 2$	$7\cdot\overline{3}$
150	1-Methyloctyl	Methyl		Yellow, 1.5108	C12H24N2O7	7.9	$7 \cdot 6$
151	1-Methyloctyl	Ethyl		Yellow, 1.5050	C18H26N2O7	6.9	7.3
153	1-Ethylheptyl	Methyl		Red-brown, 1.5136	C17H24N2O7	7.3	7.6
154	1-Ethylheptyl	Ethyl		Red-brown, 1.5091	C18H26N2O7	7.0	7.3
156	1-Propylhexyl	Methyl		Orange-red, 1.5126	C17H24N2O7	7.8	7.6
157	1-Propylhexyl	Ethyl		Orange-red, 1.5085	C18H26N2O7	7.4	7.3
159	1-Butylpentyl	Methyl	40-42°	Brown crystals	$C_{17}H_{24}N_2O_7$	8.1	7.6
161	1-Ethyloctyl	Methyl		Yellow, 1.5094	C18H26N2O7	6.7	$7 \cdot 3$
162	1-Ethyloctyl	Ethyl		Yellow, 1.5054	C19H98N2O7	6.7	7.1
164	1-Propylheptyl	Methyl		Yellow, 1 · 5088	C18H26N2O7	7.5	7.3
165	1-Propylheptyl	Ethyl		Yellow, 1 · 5050	$C_{19}H_{28}N_2O_7$	7.1	7.1
167	1-Butylhexyl	Methyl		Yellow, 1.5102	$C_{18}H_{26}N_2O_7$	7.3	7.3
168	1-Butylhexyl	Ethyl		Yellow, 1.5063	$C_{19}H_{28}N_2O_7$	7.0	7.1
173	1-Butylheptyl	Methyl		Yellow, 1.5078	$C_{19}H_{28}N_{2}O_{7}$	7.5	7.1
174	1-Butylheptyl	Ethyl		Yellow, 1.5038	C20H30N2O7	6.8	6.8
184	1-Hexylheptyl	Methyl		Yellow, 1.5040	C21H32N2O7	6.6	6.6
185	1-Hexylheptyl	Ethyl		Yellow, 1.5009	$C_{22}H_{34}N_2O_7$	5.8	6.4

*Substantially 1,1,3,3-tetramethylbutyl

2-s-Butyl-4,6-dinitrophenyl crotonate (No. 76) and 2-(1methylbutyl)-4,6-dinitrophenyl crotonate (No. 77) were prepared as described in Part VI.⁶

Dinitrophenyl methyl ethers

The method of preparation was essentially as described in Part I.¹ The potassium dinitrophenoxide (0.01 mole) was dehydrated by addition of toluene (20 ml) and then removal of toluene (10 ml) and any water present by distillation. Dimethyl sulphate (0.011 mole) was then added and the mixture was heated under reflux (oil-bath) for 6 h and occasionally shaken. It was cooled to room temp. and shaken with 10% aqueous sodium hydroxide (4×10 ml), then with water (2 \times 10 ml). The organic layer was separated and treated with sodium sulphate and charcoal. The solvent was then removed (steam-bath) at 0.2 mm. The alkyldinitroanisoles were obtained as orange-brown or reddish brown oils in 82-93 % yields. Lower yields were obtained when the reaction mixtures were heated under reflux for shorter times. No apparent methylation occurred when the potassium dinitrophenoxide was heated with methyl iodide in acetone under reflux for 1 h. The physical data of the anisoles are shown in Table VI.

Formulation of compounds

The compounds were formulated as 10-25% w/v emulsifiable concentrates in a suitable non-phytotoxic solvent (such as heavy naphtha) and emulsifier. The solutions were then diluted with water to the required concentrations.

Biological Results

The tests were carried out as described in Part I.1

Results from the different biological tests would be expected to be comparable and valid, since the tests were carried out over a short period of time.

The results are presented in Tables VII–XI. For completeness, the activity of the crotonates of 2-alkyl-4,6-dinitroand 4-alkyl-2,6-dinitro-phenols is included in Table IX. The results obtained with carbonates other than methyl- and ethyl-carbonates are presented in Table X.

2-(1-Ethylhexyl)- and 2-(1-propylpentyl)-4,6-dinitrophenyl methyl carbonates

The differences in acaricidal activity of the three isomeric phenols of the C₈-alkyl series (Nos. 25, 30, 37) were not significant. Esterification of 2-(1-methylheptyl)-4,6-dinitrophenol to the methyl- (No. 26) or ethyl- (No. 27) carbonates, acrylate (No. 89) or crotonate (No. 90) (Tables VII & IX. Fig. 2), of 2-(1-ethylhexyl)-4,6-dinitrophenol (No. 30) to the ethyl carbonate (No. 32), butyrate (No. 92), acrylate (No. 93) or crotonate (No. 94) (Tables VII & IX, Fig. 3), and of 2-(1-propylpentyl)-4,6-dinitrophenol (No. 37) to the crotonate (No. 95) (Table VII) reduced the acaricidal activity of the phenols. However, esterification of 2-(1-ethylhexyl)- and 2-(1-propylpentyl)4,6-dinitrophenols to the methyl carbonates (No. 38) either had little effect on activity (No. 31) or brought about an increase in acaricidal activity (Table VII). 2-Alkyl-4,6-dinitrophenyl methyl carbonates were generally less phytotoxic than the parent phenols. 2-(1-Ethylhexyl)- and 2-(1-propylpentyl)-4,6-dinitrophenyl methyl carbonates thus combine high acaricidal activity with low phytotoxicity.8 In extensive laboratory testing a mixture consisting substantially of the two methyl carbonates gave rapid kills of the motile stages of Tetranychus telarius, specially selected for its resistance to organophosphate insecticides. In field

TABLE IV 2-Alkyl-4,6-dinitrophenyl esters

No. of compound	Alkyl	Ester	Appearance and $n_{D}^{2^{\circ}}$ of oil	Formula	Found: N, %	Required: N, %
78	1-Ethylpropyl	Crotonate	Orange, 1 · 5432	C15H18N2O6	8.8	8.7
79	1-Methylpentyl	Acetate	Pale green, 1.5261	$C_{14}H_{18}N_2O_6$	9.3	9.0
80	1-Methylpentyl	Acrylate	Pale green, 1.5362	$C_{15}H_{18}N_2O_6$	9.0	8.7
81	1-Methylpentyl	Crotonate	Yellow, 1.5352	$C_{16}H_{20}N_2O_6$	8.0	8.3
82	1-Ethylbutyl	Crotonate	Orange-yellow, 1.5386	$C_{16}H_{20}N_2O_6$	7.9	8.3
83	1-Methylhexyl	Acetate	Pale green, 1.5211	$C_{15}H_{20}N_2O_6$	8.4	8.6
84	1-Methylhexyl	Acrylate	Pale yellow, 1.5332	$C_{16}H_{20}N_2O_6$	8.4	8.3
85	1-Methylhexyl	Crotonate	Yellow, 1 · 5328	$C_{17}H_{22}N_2O_6$	7.6	8.0
86	1-Ethylpentyl	Crotonate	Yellow, 1.5350	$C_{17}H_{22}N_2O_6$	8.1	8.0
87	1-Propylbutyl	Crotonate	Yellow, 1 · 5304	$C_{17}H_{22}N_2O_6$	7.6	8.0
88	1-Methylheptyl	Acetate	Yellow, 1.5195	$C_{16}H_{22}N_2O_6$	8.5	8.3
89	1-Methylheptyl	Acrylate	Yellow, 1 · 5278	$C_{17}H_{22}N_2O_6$	8.2	8.0
90	1-Methylheptyl	Crotonate	Yellow, 1.5306	$C_{18}H_{24}N_2O_6$	7.5	7.7
91	1-Ethylhexyl	Acetate	Orange, 1 · 5216	$C_{16}H_{22}N_2O_6$	8.3	8.3
92	1-Ethylhexyl	Butvrate	Orange, 1.5160	C18H26N2O6	7.7	7.6
93	1-Ethylhexyl	Acrylate	Pale brown, 1.5295	$C_{17}H_{22}N_2O_6$	7.6	8.0
94	1-Ethylhexyl	Crotonate	Yellow, 1 · 5282	$C_{18}H_{24}N_2O_6$	7.7	7.7
95	1-Propylpentyl	Crotonate	Red-brown, 1.5330	C18H24N2O6	7.7	7.7
96	1-Methyloctyl	Crotonate	Pale brown, 1.5249	C19H26N2O6	7.3	7.4
97	1-Ethylheptyl	Crotonate	Pale red. 1.5283	C19H26N2O6	6.9	7.4
98	1-Propylhexyl	Crotonate	Orange, 1 · 5241	C19H26N2O6	6.9	7.4
99	1-Butylpentyl	Crotonate	Pale red. 1 · 5278	C19H26N2O6	7.5	7.4
100	1-Ethyloctyl	Crotonate	Yellow, 1.5234	C20H28N2O6	6.6	7.1
101	1-Propylheptyl	Crotonate	Yellow, 1 · 5253	C20H28N2O6	$7 \cdot 1$	7.1
102	1-Butylhexyl	Crotonate	Yellow, 1.5260	C20H28N2O6	6.9	7.1
103	1-Propyloctyl	Crotonate	Yellow, 1 · 5220	C21H30N2O6	$7 \cdot 1$	6.9
104	1-Butylheptyl	Crotonate	Pale brown, 1.5236	C21H30N2O6	7.4	6.9
105	1-Pentvlhexvl	Crotonate	Yellow, 1.5214	C21H30N2O6	6.9	6.9
106	1-Pentylheptyl	Crotonate	Dark vellow, 1.5181	C22H32N2O6	6.7	6.7
107	1-Hexylheptyl	Crotonate	Orange-yellow, 1.5162	$C_{23}H_{34}N_2O_6$	6.6	6.5

J. Sci. Fd Agric., 1968, Vol. 19, February

TABLE V

4-Alkyl-2,6-dinitrophenyl esters

No. of compound	Alkyl	Ester	M.p.	Appearance and n_D^{20} of oil or appearance of solid	Formula	Found: N, %	Required : N, %
186	s-Butvl	Crotonate ^{c,d}	65°	Cream prisms	C14H16N2O6	8.7	9.1
187	1-Ethylpropyl	Crotonate		Yellow, 1.5394	C15H18N2O6	8.8	8.7
188	1-Ethylbutyl	Crotonate		Red-brown, 1.5370	C16H20N2O6	7.7	8.3
189	1-Methylhexyl	Crotonate		Yellow, 1.5257	C17H22N2O6	8.3	8.4
190	1-Ethylpentyl	Crotonate		Orange, 1.5236	C17H22N2O6	7.7	8.0
191	1-Propylbutyl	Acetatee	6061°	White needles	C15H20N2O6	8.6	8.6
192	1-Propylbutyl	Acrylate		Yellow, 1.5284	$C_{16}H_{20}N_{2}O_{6}$	8.2	8.3
193	1-Methylheptyl	Acrylate		Yellow, 1.5255	$C_{17}H_{22}N_2O_6$	8.1	8.0
194	1-Methylheptyl	Crotonate		Pale brown, 1.5236	C18H24N2O6	7.7	7.7
195	1-Ethvlhexvl	Acetatee	51·5–53°	Yellow prisms	C16H22N2O6	8.5	8.3
196	1-Ethylhexyl	Butyrate		Yellow, 1.5110	C18H26N2O6	7.5	7.6
197	1-Ethylhexyl	Isobutvrate		Red-brown, 1.5100	C18H26N2O6	7.7	7.6
198	I-Ethylhexyl	Octanoate		Red-brown, 1.5040	C22H34N2O6	6.4	6.6
199	1-Ethylhexyl	Chloroacetate		Pale brown, 1.5278	$C_{16}H_{27}ClN_2O_6$	7.5	7.5
200	1 Ethylbayyl	2 Chloropropiona	te	Orange-brown 1.5202	Cu-HasCINsOs	∫ Cl, 9·7	Cl, 9 · 2
200	1-Eurymexyr	2-Споторгорны		Orange-brown, 1 5262	01711230111206	∖N, 7·0	N, 7·2
201	1-Ethylhexyl	3-Chloropropiona	ıte	Orange-brown, 1.5243	C17H23CIN2O6	$\int Cl, 9 \cdot 6$	$Cl, 9 \cdot 2$
202	1 Est. 1	A		Onen 1 6220	CUNO	(N, 0.9	N, 7.2
202	1-Ethylnexyl	Acrylate		Valley 1 5250	$C_{17}H_{22}N_2O_6$	0.0	<u>8</u> .0
203	I-Ethylnexyl	Crotonate	44 459	Yellow, 1.5250	$C_{18}H_{24}N_2O_6$	7.0	<u>,,,</u>
204	1-Ethylnexyl		44~43	Cream coloured crystals	$C_{18}H_{24}N_{2}U_{6}$	7.5	7.1
205	1-Ethylnexyl	3-Methylcrotonat	e	Orange-brown, 1.5297	$C_{19}H_{26}N_2U_6$	7.4	7.4
206	1-Ethylnexyl	Benzoate		Brown, 1.3385	$C_{21}H_{24}N_{2}U_{6}$	(C 9 1)	C1 0 1
207	1-Ethylhexyl	p-Chlorobenzoate		Orange, 1 · 5604	$C_{21}H_{23}ClN_2O_6$	$\int CI, \delta^{1}$	$CI, \delta \cdot Z$
200	1. Du a mula anticil	Castonata		Donk onen 70, 1, 5272	CUNO	(N, 0.3)	1N, 0.4
208	1-Propyipentyi	Crotonate		Vallow 1,5220	$C_{18}H_{24}N_{2}O_{6}$	7.3	7.7
209	1 Ethylbortyl	Crotonate		Ded brown 1, 5255	$C_{19}\Pi_{26}\Pi_{2}U_{6}$	7.2	7.4
210	1-Ethymeptyl	Crotonate		Orange red 1.5233	$C_{19}H_{26}N_2O_6$	7.3	7.4
211	1 Ethylactyl	Appulate		Orange 1.5107	$C_{19}H_{26}N_2O_6$	7.3	7.4
212	1 Ethyloctyl	Crotopata		Vallow 1.5210	$C_{19}F_{26}N_{2}O_{6}$	6.9	7.4
215	1 Propulhentul	Acrulate		$O_{range} = 1.5200$	$C_{20}H_{28}N_2O_6$	7.5	7.1
214	1 Propulbantul	Crotonata		Vallow 1.5216	$C_{19} H_{26} N_{2} O_{6}$	7.4	7.1
215	1 Putulboxul	Acrulate		Vellow, 1, 5202	C20H28N2O6	7.5	7.1
210	1 DutyllicXyl	Crotopate		$\begin{array}{c} 1 \text{ only, } 1 \text{ of } 3202 \\ \hline \text{Pale vellow, } 1 \text{ of } 5211 \\ \end{array}$	$C_{191126}N_2O_6$	7.2	7.4
217	1 Dutylhontyl	Crotopate		Vellow 1.5201	C20112813206	7.1	6.0
210	1 Uavylhentyl	Crotopate		Vellow 1.5152	CapHarNaO -	6.6	6.1
217	1-mexymeptyl	Civillate		1010w, 1-5152	C231124112U6	0.0	U 4

Solvents for crystallisation used for certain compounds in Tables II-V: ^a light petroleum, b.p. 40-60°; ^b propan-2-ol; ^c ethanol; ^d methanol; ^e light petroleum, b.p. 60-80°

TABLE VI

2-Alkyl-4,6-dinitrophenyl methyl ethers

No. of compound	Alkyl	n _D ²⁰	Formula	Found: N, %	Required: N, %
222 223 224 225 226 227 228	1-Methylheptyl* 1-Ethylhexyl* 1-Propylpentyl* 1-Ethylheptyl 1-Propylhexyl 1-Butylpentyl 1-Hexylheptyl	1 · 5303 1 · 5298 1 · 5324 1 · 5273 1 · 5282 1 · 5798 1 · 516	$\begin{array}{c} C_{15}H_{22}N_2O_5\\ C_{15}H_{22}N_2O_5\\ C_{15}H_{22}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{20}H_{32}N_2O_5\\ \end{array}$	9·2 8·9 9·1 8·8 8·8 8·7 7·3	9.0 9.0 9.0 8.6 8.6 8.6 7.4
	4- A	lkyl-2,6-dinitroph	enyl methyl ethers		
229 230 231 232 233 234 235 236	1-Ethylpentyl 1-Methylheptyl* 1-Ethylhexyl* 1-Propylpentyl* 1-Methyloctyl 1-Propylhexyl 1-Butylpentyl 1-Butylpentyl 1-Butyloctyl	1 · 5246 1 · 5206 1 · 5225 1 · 5222 1 · 5184 1 · 5190 1 · 515 1 · 5215	$\begin{array}{c} C_{14}H_{20}N_2O_5\\ C_{15}H_{22}N_2O_5\\ C_{15}H_{22}N_2O_5\\ C_{15}H_{22}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{16}H_{24}N_2O_5\\ C_{19}H_{30}N_2O_5\\ \end{array}$	9.6 9.3 9.1 8.9 9.0 9.0 9.2 7.9	9·5 9·0 9·0 8·6 8·6 8·6 7·7

*Clifford, Watkins and Woodcock⁹ referred to the compound, but did not report its preparation, physical data or analysis

TABLE V	VII
---------	-----

Contact acaricidal activity of 2-alkyl-4,6-dinitrophenols, their methyl- and ethyl-carbonates and their crotonates

	No. of		Ph	enols			Me	thyl c	arbc	nates	5	Eth	ıyl ca	arbor	nates			Crot	onate	es	
Alkyl	atoms in alkyl group	No. of com- pound	Kill (100	l of <i>T</i> %) at 30	<i>tela</i> ppn 10	rius 1 3	No. of com- pound	Kill (100	of <i>T</i> %) at 30	<i>. tela</i> ppn 10	rius 1 3	No. of com- pound	Kill () 100	of <i>T</i> %) at 30	<i>tela</i> ppn 10	rius n 3	No. of com- pound	Kill () 100	of <i>T</i> %) at 30	<i>tela</i> ppm 10	rius 1 3
Isopropyl	3	220	99	34	30	_				_		221	98	80	75	-	-	-	-		
s-Butyl	4	1	100	50	35		2	100	100	98	56	3	100	100	99	96	76	100	100	97	-95
1-Methylbutyl	5	4	100	70	65		5	100	100	100	91	6	100	100	99	99	77	100	100	100	91
1-Ethylpropyl	5	7	100	100	92	65	8	100	100	96	37	9	100	100	100	95	78	100	100	100	- 99
1-Methylpentyl	6	10	100	96	59		11	100	98	80	61	12	100	89	83	-	81	100	81	61	-
1-Ethylbutyl	6	13	100	100	73		14	100	100	98	69	15	100	99	99	79	82	100	100	100	98
1-Methylhexyl	7	16	99	75	47		17	99	95	78		18	- 99	75	58	-	85	94	65	70	
1-Ethylpentyl	7	19	65	53	36		20	92	84	81		21	- 98	83	57	-	86	99	74	70	
1-Propylbutyl	7	22	100	100	91	53	23	100	100	98	81	24	100	100	92	56	87	100	95	85	_
1-Methylheptyl	. 8	25	99	99	87	33	26	81	78	61		27	96	57	38	-	90	73	59	23	-
1-Ethylhexyl	8	30	100	100	88	58	31	100	94	73	61	32	96	80	60	-	94	85	74	38	9
1-Propylpentyl	8	37	100	100	61		38	- 99	100	98	57	39	100	95	83		95	92	79	69	-
1-Methyloctyl	9	40	100	100	90	38	41	100	71	52	-	42	78	55	47	-	96	80	64	35	-
1-Ethylheptyl	9	43	100	83	61	_	44	72	32	38		45	47	38	39		97	40	29	20	-
1-Propylhexyl	9	46	100	100	99	52	47	100	97	92	84	48	100	90	58		98	84	49	47	-
1-Butylpentyl	9	49	100	100	92	77	50	100	86	84	60	51	100	92	29	-	99	64	40	51	-
1-Ethyloctyl	10	52	100	56	48	-	53	57	0	0		54	40	40	38	-	100	44	0	0	-
1-Propylheptyl	10	55	100	100	85	74	56	87	70	40	_	57	87	75	40		101	45	24	24	
1-Butylhexyl	10	58	100	100	96	87	59	87	80	45	-	60	77	56	38	41	102	59	40	36	-
1-Propyloctyl	11	61	100	100	86		62	80	60	54	-	63	77	46	24	-	103	60	39	21	-
1-Butylheptyl	11	64	100	90	61		65	67	70	49	_	66	- 33	17	12		104	66	39	37	-
1-Pentylhexyl	11	67	100	100	84	77	68	88	66	35	_	69	74	73	67		105	- 39	40	36	-
1-Pentylheptyl	12	70	90	77	57	-	71	52	0	0	-	72	44	29	24	_	106	61	49	34	_
1-Hexylheptyl	13	73	100	84	55	-	74	26	32	16		75	24	13	-	-	107	16	12	3	-

TABLE VIII

Contact acaricidal activity of 4-alkyl-2,6-dinitrophenols, their methyl- and ethyl-carbonates and their crotonates

No. of		Phenols					Met	Methyl carbonates				Eth	Crotonates								
Alkyl	atoms in alkyl group	No. of com- pound	Kill () 300	of <i>T</i> %) at 100	tela ppn 30	<i>rius</i> 1 10	No. of com- pound	Kill () 300	of <i>T</i> %) at 100	. <i>tela</i> ppn 30	rius 1 10	No. of com- pound	Kill (° 300	of <i>T</i> (3) at 100	<i>tela</i> ppn 30	n 1 10	No. of com- pound	Kill () 300	of <i>T</i> . %) at 100	<i>tela</i> ppn 30	<i>rius</i> 1
s-Butyl	4	108		55	43	39	109	57	58	42	43	110	44	40	32	23	186	89	64	29	
1-Methylbutyl	2	111	12	30	25		112			40	45	114	_	40			107	-	07	71	
1-Ethylpropyl	5	112	-	14	3	-	113	-	22	48	45	114	-	49	29		187	-	82	/1	00
1-Methylpentyl	6	115	76	43	39	29			-	2		110			20	-	100		~	<u>_</u>	10
I-Ethylbutyl	6	116	65	28	20	41	117	52	42	36	27	118	4/	30	28	-	100	70	00	20	10
I-Methylhexyl	7	119	92	54	39	-	120	63	22			121	65	31		-	189	19	0/	42	
I-Ethylpentyl	2	122	95	86	71		123	65	43	51	-	124	54	33	4/	_	190	01	50	45	-
1-Propylbutyl	7	125	90	33	28	28	107			~		120			10	_	104	20	20	1.5	-
1-Methylheptyl	8	126	57	46	44		127	6/	32	34	_	128	45	23	18	-	194	28	29	13	-
I-Ethylhexyl	8	131	92	43	30	26	132	42	30	18	_	133	32	18	42	22	203	0/	26	30	24
I-Propylpentyl	8	144	62	33	38	36	145	26	31	33	-	146	48	49	42	33	208	41	30	30	34
't-Octyl	8	14/	ū	66	44	25	150	-		-		151	Ā	-	-		200	07	-	-	-
1-Metnyloctyl	9	149	00	39	38	20	150	30	ā		_	151	40	ū	42		209	54	27	20	
I-Ethylheptyl	9	152	96	19	51	20	155	43	00	40	~	157	60	00	42	11	210	34	16	11	-
1-Propyinexyi	9	155	98	0/	22	29	150	23	77	26	20	157	. 00	05	23	11	211	44	10	11	2
1-Butylpentyl	9	158	89	/1	34	33	159	45	31	30	20	167	» <u>-</u>	_	-	-	212	60		-	
I-Ethyloctyl	10	160	07	46	45	45	101	81	-		-	162	02	-	_	-	215	54	-	-	
1-Propyineptyi	10	103	97	50	1.4	-	164	14	10	20	14	105	40	10	10	15	213	30	26	26	15
I-Butylnexyl	10	100	83	50	14	2	10/	40	19	20	14	108	30	10	10	15	217	45	30	20	13
1-Methyldecyl	11	169	6/	22	44	40	-		-			_		-	-		-	-		-	-
1-Ethylnonyl	11	170	75	57	40	40 20	-			-	-	-			-	-	-	-	-	-	-
1-Propyloctyl	11	1/1	15	57	52	30	172	27	-	-	_	174	56	-		-	210	50	-	-	
1-Butyineptyi	11	175	84	22	27	20	175	31	_		-	1/4	30	_	-		210	50	-	-	_
1-Pentyinexyi	11	175	10	33	37	50	-	-			-		_	_	-	-		-	-	_	
1 Dramula and	12	170	91	20	47	24 61	_	-	_		_	-	-	_	_			_		_	_
1-Propymonyl	12	170	01 54	64	10	51	_		-	-		_		-	_	_			_		_
1-Butyloctyl	12	170	54	00	40	21		-		-	_	_	_	-	-	_		_		_	_
1 Propuldary	12	19	09	56	50	20		-			_		_		_			_	_	_	_
1 Durtulmonul	13	100	79	51	JJ 11	20	_		_			_	_	_			_		_		
1 Doptylootyl	13	101	70	56	51	18	. –	_	_		_	_	_	_	_	_	_			_	_
1-Hexylheptyl	13	182	/4	52	38	35	184	_	45	37	ō	185	-	24	13	_	219	-	38	27	-

TABLE]	\mathbf{X}
---------	--------------

Contact acaricidal activity of certain 2-alkyl-4,6-dinitrophenyl esters (I) and 4-alkyl-2,6-dinitrophenyl esters (II)

	No. of carbon	No. of carbon			ill of (T. tela	rius (%)	No. of	Kill of T. telarius (%)			(%)
Aikyi	alkyl group	Ester	(I)	300	100	11 ppn 30	n 10	3	(II)	300	at pj 100	30	10
s-Butyl	4	Crotonate	76	~	100	100	97	95	186	89	64	29	_
1-Ethylpropyl	5	Crotonate	78	-	100	100	100	99	187	-	82	71	66
1-Methylpentyl	6	Acetate	79	100	100	100	100	86	-			-	-
1-Methylpentyl		Acrylate	80	100	100	100	100	84			-	-	-
1-Methylpentyl		Crotonate	81		100	81	61	_	-	-	-		_
1-Ethylbutyl	6	Crotonate	82	-	100	100	100	98	188	77	60	50	18
1-Methylhexyl	7	Acetate	83	100	100	100	98	73	-		-		-
1-Methylhexyl		Acrylate	84	100	100	96	97	_	-	-		-	-
1-Methylhexyl		Crotonate	85	·	94	65	70	-	189	79	67	42	
1-Ethylpentyl	7	Crotonate	86	_	99	74	70		190	61	50	45	
1-Propylbutyl	7	Acetate	-	_			_	-	191	80	40	32	_
1-Propylbutyl		Acrylate		-				-	192	88	-	58	56
1-Propylbutyl		Crotonate	87		100	95	85	-		-		-	-
1-Methylheptyl	8	Acetate	88	100	100	94	88	_	-		_	_	
1-Methylheptyl		Acrylate	89	96	40			_	193	61	58	32	8
1-Methylheptyl		Crotonate	90		73	59	23		194	28	29	15	
1-Ethylhexyl	8	Acetate	91	-	100	96	95	-	195	13	10	3	0
1-Ethylhexyl		Butyrate	92	-	88	87	44	-	196	51	35	24	24
1-Ethylhexyl		Isobutyrate		-	-		_	-	197	42	27	27	0
1-Ethylhexyl		Octanoate	_		-		_		198	60	45	40	- 30
1-Ethylhexyl		Chloroacetate	-	-				_	199	59	32	21	_
1-Ethylhexyl		2-Chloropropionate		_	-			-	200	82	53	36	_
1-Ethylhexyl		3-Chloropropionate	-	-	-		_		201	21		11	_
1-Ethylhexyl		Acrylate	93	100	95	51	38	_	202	36	24	15	7
1-Ethylhexyl		Crotonate	94	_	85	74	38	9	203	67	61	36	
1-Ethylhexyl		Methacrylate			_		_		204	40	32	32	31
1-Ethylhexyl		3-Methyl crotonate	-	_	-		_	-	205	71	62	55	_
1-Ethylhexyl		Benzoate	-	_				_	206	32	32	30	29
1-Ethylhexyl		p-Chlorobenzoate	_		_		_		207	36	29	7	
1-Propylpentyl	8	Crotonate	95		92	79	69	_	208	41	36	36	34
1-Methyloctyl	9	Crotonate	96	_	80	64	35	_	209	87	_	_	
1-Ethylheptyl	9	Crotonate	97	_	40	29	20	_	210	54	37	29	_
1-Propylhexyl	9	Crotonate	98	_	84	49	47	_	211	44	16	11	2
1-Ethyloctyl	10	Acrylate		-	_		_	_	212	65	35	21	_
1-Ethyloctyl		Crotonate	100		44	0	0	_	213	69			-
1-Propylheptyl	10	Acrylate	_	_			_	_	214	39	36	32	_
1-Propylheptyl		Crotonate	101		45	24	24		215	56	_	_	_
1-Butvlhexvl	10	Acrylate		_				_	216	22	34	18	
1-Butvlhexvl	••	Crotonate	102	_	59	40	36	_	217	45	36	26	15
1-Butylheptyl	11	Crotonate	104		66	38	37	_	218	50	-		
1-Hexylheptyl	13	Crotonate	107		16	ĭ2	3	-	219		38	27	_

TABLE X

Contact acaricidal activity of certain carbonates of 2-alkyl-4,6-dinitrophenols (III) and carbonates of 4-alkyl-2,6-dinitrophenols (IV)

Alkyl	No. of carbon atoms in	Carbonate	No. of compound	Kill of <i>T. telarius</i> (%)					No. of compound	Kill of <i>T. telarius</i> (%)			
	alkyl group		(III)	300	100	100 30		3	(IV)	300	100	30	10
1-Methylheptyl	8	Isopropyl	28	49	38	21	24		129	33	34	16	11
1-Methylheptyl		Methyl thiolo-	29	93	63	46	33	_	130	47	38	36	_
1-Ethylhexyl	8	Propyl	33		95	61	45		134	66	30	10	
1-Ethylhexyl		Isopropyl	34		100	87	57		135	29	Õ	- 9	
1-Ethylhexyl		Butyl	_		_		_	_	136	38	39	33	25
1-Ethylhexyl		s-Butvl	-		_	_		_	137	34	33	34	16
1-Ethvlhexyl		Isobutyl			-	_	_	_	138	37	8	14	_
1-Ethylhexyl		Hexvl	35		100	99	26		139	29	22		_
1-Ethylhexyl		Octvl	_						140	22	$\bar{26}$		_
1-Ethylhexyl		1-Methylheptyl	_		_	_	_		141	88	52	51	33
1-Ethylhexyl		Decvl	36		96	92	15	_	142	37	37	39	29
1-Ethylhexyl		Methyl thiolo-	-	_	-	_		_	143	38	23	23	
't-Octyl'	8	Isopropyl	-		-	-		_	148	13 ((59% a	it 1000) ppm)

J. Sci. Fd Agric., 1968, Vol. 19, February

Contact acaricidal activity of certain 2-alkyl-4,6-dinitrophenols and 4-alkyl-2,6-dinitrophenols and their methyl ethers

	No. of carbon atoms in alkyl group		Phenols		Methyl ethers				
Alkyl		No. of compound	Kill of 7	<i>telarius</i> at ppm	No. of compound	Kill of <i>T. telarius</i> (%) at ppm			
			300	100		300	100		
2-Alkvl-4,6-dinitrop	henols and their n	nethyl ethers							
1-Methylheptyl	8	25	100	99	222	30	15		
1-Ethvlhexvl	8	30	100	100	223	45	34		
1-Propylpentyl	8	37	100	100	224	57	34		
1-Ethylheptyl	9	43	100	100	225	32	32		
1-Propylhexyl	9	46	100	100	226	44	20		
1-Butylpentyl	9	49	100	100	227	30	33		
1-Hexylheptyl	13	73	100	100	228	20	17		
4-Alkyl-2,6-dinitrop	henols and their n	nethyl ethers							
1-Ethylpentyl	7	122	95	86	229	16	18		
1-Methylhentyl	8	126	57	46	230	31	26		
1-Ethylhexyl	8	131	92	43	231	42	26		
1-Propylpentyl	8	144	62	35	232	37	17		
1-Methyloctyl	9	149	66	59	233	35	29		
1-Propylhexyl	9	155	98	67	234	41	27		
1-Butylpentyl	9	158	89	71	235	42	31		
1-Butyloctyl	12	178	54	66	236	52	26		

trials the mixture at 250-500 ppm gave rapid kills of active stages of red spider mites: *Panonychus ulmi* on apples, pears, and peaches; *Tetranychus telarius* on beans; and *Tetranychus urticae* on beans, egg plants, vines, and chrysanthemums.

Mammalian toxicity

The acute oral toxicity to rats was determined as follows. The compounds were suspended in distilled water with 25% propylene glycol and 0.5% Tween 80 to give a 300 mg/ml concentration. Thirty female Wistar rats (bodyweight 140–170 g) were used per determination. The doses were administered by stomach tube. Mortalities were observed after 7 days. Median lethal doses are presented in Table XII.

TABLE XII Toxicity to rats of certain alkyldinitrophenyl esters 2,4,6-RR'.C₆H₂(NO₂).O.CO.R''

No. of com- pound	R	R'	R″	Acute oral LD ₅₀ mg/kg
26	1-Methylheptyl	NO ₂	OCH ₃	1400
31	1-Ethvlhexvl	NO ₂	OCH ₃	> 3000
38	1-Propylpentyl	NO ₂	OCH ₃	> 3000
127	NO ₂	1-Methvlheptvl	OCH ₃	> 3000
132	NO ₂	1-Ethylhexyl	OCH ₃	1750
202	NO ₂	1-Ethylhexyl	CH:CH ₂	1075
145	NO ₂	1-Propylpentyl	OCH ₃	1800

Discussion

Nuclear substitution in phenols

In Part $I^{1,3}$ it was reported that 2-s-butyl- and 2-t-butyl-4,6-dinitrophenols and their aliphatic carbonates had much higher acaricidal activity than 4-s-butyl- and 4-t-butyl-2,6dinitrophenols and corresponding carbonates. For maximum acaricidal activity phenols required nitro-groups in the 4- and 6-positions and an s-alkyl group in the 2-position. The present investigation using s-alkyldinitrophenols with C_5 to C_{13} -s-alkyl groups confirms this postulate since these 2-s-alkyl-4,6-dinitrophenols and their esters were much more active against *Tetranychus telarius* adults than the corresponding 4-s-alkyl-2,6-dinitrophenols and their esters (Tables VII-X), with the notable exception of the 1-ethylpentyl-dinitrophenols (Nos. 19, 122).

An examination of the activity of the 2-s-alkyl-4,6-dinitrophenols (Table VII) shows that in the C₅-, C₆-, C₇- (except for the ethylpentyl-isomer, No. 19) and C₁₀-alkyl series the more compact the s-alkyl group the higher the activity (Nos. 4 & 7; 10 & 13; 16 & 22; 52, 55 & 58). In the C₈-alkyl series the ethylhexyl- (No. 30) was only marginally more active than the methylheptyl-isomer (No. 25) (cf. Kirby *et al.*⁷). In the C₈-alkyl series the more compact propylhexyl-(No. 46) and butylpentyl- (No. 49) isomers were more active than were the methyloctyl- (No. 40) and ethylheptyl- (No. 43) isomers. Activity was still high at C₁₁-alkyl (Nos. 61, 64, 67), and dropped at C₁₂- (No. 70) and C₁₃- (No. 73) alkyl.

Except for 2-(1-methylalkyl)- the plots of the activity of 2-(1-ethylalkyl)-, 2-(1-propylalkyl)- and 2-(1-butylalkyl)-4,6dinitrophenols at 10 ppm against T. *telarius* adults show a maximum when the alkyl was a hexyl group (Fig. 1).

The ester chain

In Part I¹ it was reported that the toxicity to spider mites of alkyl carbonates of 2-s-butyl- and 2-(1-methylbutyl)-4,6dinitrophenols was higher than that of the parent phenols. It was assumed that the un-ionised carbonates penetrated more readily to the vital sites of action, thus yielding a greater concentration of the toxicants in the organism. Activity was considered to be due to the hydrolytic products, i.e. the alkyldinitrophenols. Figs. 2–5 show comparisons of percentage mortalities of *T. telarius* adults caused by concentrations of 10 ppm 2-s-alkyl-4,6-dinitrophenols, their methyl carbonates, ethyl carbonates and crotonates. With 1-methyl-

alkyl-compounds (Fig. 2) up to 1-methylhexyl- (total chain of 7 carbon atoms), with 1-ethylalkyl-compounds (Fig. 3) up to 1-ethylpentyl- (total chain of 7 carbon atoms), with 1-propylalkyl-compounds (Fig. 4) up to 1-propylpentyl- (total chain of 8 carbon atoms) the esters were more active than the phenols. With the longer alkyl chains: heptyl and octyl (Fig. 2); hexyl (except for No. 31), heptyl and octyl (Fig. 3); hexyl, heptyl and octyl (Fig. 4) and pentyl, hexyl and heptyl with 1-butylalkyl-compounds (Fig. 5) the phenols were more active than their ester derivatives. High polarity of $2-(C_3$ to C7-alkyl)-4,6-dinitrophenols may impede their penetration to the vital sites of action; esterification may aid it. The more lipophilic properties of $2-(C_8 \text{ to } C_{13}\text{-alkyl})-4,6\text{-dinitrophenols}$ may aid their penetration and render these phenols more active. Esterification of these higher alkylphenols proved detrimental to activity perhaps because: increase in bulk may interfere with penetration; and the bulky alkyl group may hinder hydrolysis of the esters to the phenols. Significantly, the bulkier crotonates of 4,6-dinitrophenols with 2-s-alkyl groups of seven or more carbon atoms were less active than the corresponding methyl carbonates (Table VII, Figs 2-5),

FIG. 2. (right). Activity of 2-(1-methylalkyl)-4,6-dinitrophenols, their methyl carbonates, ethyl carbonates and crotonates at 10 ppm against Tetranychus telarius adults

J. Sci. Fd Agric., 1968, Vol. 19, February

FIG. 3. Activity of 2-(1-ethylalkyl)-4,6-dinitrophenols, their methyl carbonates, ethyl carbonates and crotonates at 10 ppm against Tetranychus telarius adults

the crotonates were less active than the acetates (Table IX; Nos. 81 & 79; 85 & 83; 90 & 88; 94 & 91), and 2-(1-ethyl-hexyl)-4,6-dinitrophenyl butyrate (No. 92) was less active than the acetate (No. 91).

Extension of the carbonate chain of 2-(1-ethylhexyl)-4,6dinitrophenol (Table X) to propyl (No. 33) and isopropyl (No. 34), hexyl (No. 35) and decyl (No. 36) had surprisingly little effect on activity. 2-(1-Methylheptyl)-4,6-dinitrophenyl isopropyl- (No. 28) and methylthiolo- (No. 29) carbonates were considerably less active than methyl- (No. 26) or ethyl-(No. 27) carbonates.

As with the 2-s-alkyl-4,6-dinitrophenols, esterification generally reduced the activity of 4-s-alkyl-2,6-dinitrophenols containing an s-alkyl group of seven or more carbon atoms (Tables VIII-X).

J. Sci. Fd Agric., 1968, Vol. 19, February

FIG. 4. Activity of 2-(1-propylalkyl)-4,6-dinitrophenols, their methyl carbonates, ethyl carbonates and crotonates at 10 ppm against Tetranychus telarius adults

••	Phenols Methyl carbonates
$\Delta - \cdot - \cdot - \cdot \Delta$	Ethyl carbonates
00	Crotonates

Etherification

The activity of methyl ethers of 2-alkyl-4,6-dinitro- and 4-alkyl-2,6-dinitro-phenols was found to be very low, compared with that of the parent phenols (Table XI). 2-s-Butyland 2-t-butyl-4,6-dinitroanisoles¹ and 2-t-butyl-5-methyl-4,6dinitroanisole² also had very low activity, compared with that of the parent phenols. The view that the low activity of anisoles may be due to their hydrolytic stability¹ gains thus a broader basis.

Conclusions

The following tentative conclusions may be drawn about the structure-activity relationship in the dinitroalkylphenols and their esters examined: 2-s-alkyl-4,6-dinitrophenols are more toxic than 4-s-alkyl-2,6-dinitrophenols to spider mites; with s-alkyl groups whose total number of carbon atoms is 5, 6, 7, 9 or 10 within a series of 2-s-alkyl-4,6-dinitrophenols containing the same total number of carbon atoms, the more compact the isomers the higher is their acaricidal activity; acaricidal activity remains high up to 2-(C₁₁-s-alkyl)-4,6dinitrophenols, beyond which it drops; generally esters of 2-(C₃ to C₇-s-alkyl)-4,6-dinitrophenols are more acaricidal

FIG. 5. Activity of 2-(1-butylalkyl)-4,6-dinitrophenols, their methyl carbonates, ethyl carbonates and crotonates at 10 ppm against Tetranychus telarius adults

than the parent phenols, but 2-(C₈ to C₁₃-s-alkyl)-4,6-dinitrophenols are more acaricidal than their esters, and a similar relationship holds for 4-s-alkyl-2,6-dinitrophenols and their esters; crotonates of 2-(C7 to C13-s-alkyl)-4,6-dinitrophenols are less acaricidal than methyl carbonates or acetates; 2-s-alkyl-4,6-dinitrophenols are more phytotoxic than their esters; etherification of the toxiphoric phenols substantially reduces acaricidal activity; and methyl carbonates of 2-(1-ethylhexyl)- and 2-(1-propylpentyl)-4,6-dinitrophenols are of particular practical and economic interest for their activity against various resistant spider mites.

Acknowledgments

Thanks are due to Messrs. W. S. Catling and P. J. Jeffery for the assessment of the acaricidal activity of the compounds, and Mr. T. R. Middleton of Glaxo Laboratories Ltd. for the acute oral LD_{50} determination in rats.

The Murphy Chemical Co. Ltd., Wheathampstead, St. Albans, Herts.

Received 3 July, 1967

References

- 1.
- 2
- Pianka, M., J. Sci. Fd Agric., 1966, 17, 47 Pianka, M., & Edwards, J. D., J. Sci. Fd Agric., 1967, 18, 355 Pianka, M., Vth International Pesticides Congress, London, 1963 3.
- 4. Pianka, M., Chemy Ind., 1967, p. 1625
- 5.
- Pianka, M., & Edwards, J. D., J. chem. Soc., (C), 1967, 2281 Pianka, M., & Browne, K. M., J. Sci. Fd Agric., 1967, 18, 447
- 6. 7. Kirby, A. H. M., Frick, E. L., & Gratwick, M., Ann. appl. Biol., 1966, **57,** 211
- 8. Pianka, M., Second Crop Protection Symposium, Magdeburg,
- October, 1966 9. Clifford, D. R., Watkins, D. A. M., & Woodcock, D., Chemy Ind., 1965, p. 1655