
Cyclic Quaternary Ammonium Salts. Part VIII.¹ Imidazo[1,2-a]pyrazinium Salts

By J. Adamson and E. E. Glover,* Department of Chemistry, Teesside Polytechnic, Middlesbrough, Teesside

The synthesis of imidazo[1,2-a] pyrazinium 7-oxide salts and their deoxygenation to the title compounds is described.

THE synthesis of imidazo[1,2-a]pyrazine hydroperchlorate has been previously described² but to date no quaternary salts in which the 1-nitrogen atom is alkylated, have been recorded. We now report the synthesis

of such compounds [(19)-(22)], by the deoxygenation of the corresponding N-oxides [(15)-(18)]. The starting materials for the preparation of the N-oxides were N-methyl- (2) and N-benzyl-imidazole-2-carbaldehyde

TABLE 1

2-(1,2-Dioxolan-2-yl)imidazoles

		Yield				Found			Calc.	
Precursor	Product	%	Cryst. solvent	M.p.	С	H	N	C	H	N
(2)	(5) <i>a</i>	62		9899°/ 0·1mm b	54 ·15	6.7	17.8	54.5	6.5	18.2
	(5) (picrate)		H ₂ O	126 - 127	40.7	3.1	18.6	40.7	$3 \cdot 4$	18.3
(3)	(6) ª	80	Light petroleum (b.p. 40-60°)- Et ₂ O	79-80	68 ·0	6 ∙0	12.2	67.8	6.1	12.2
(6)	(4) °	77	Light petroleum (b.p. $40-60^\circ$)	127 - 128	51.7	5.7	20.2	51.4	5.75	20.0

^a The procedure used was that described by Bradsher and Parham ⁴ for the preparation of 2-(1,3-dioxolan-2-yl)pyridine. ^b Liquid b.p. • The procedure used was that described by Iversen and Lund 3 for the preparation of the corresponding diethyl acetal.

TABLE 2

Precu	irsors		Rea	action	In	nidazole q Product	uaterna Cryst.	2	5	Fo	und (%	,)	Ca	.lc. (%)
Wt(g)	Wt(g)	Solvent	Time(h)	Temp		Х	solvent	(%)	M.p. (°C)	С	н	Ν	С	\mathbf{H}	Ν
(5) 1.0	(23) 0.95	Tetra- methylene sulphone (1 ml)	264 ^b	Room	(8)°	Br	EtOH– Pri ₂ O		193195 đ						
		()			(8)	C ₆ H ₂ N ₃ O ₇	EtOH		140 - 142	41.2	3.7	18.9	40.9	3.7	19.1
(4) 1.0	(23) 1.05	None	336 ¢	Room	(7)°	Br	EtOH Pr ⁱ ,0	18	132—135						
					(7)	C ₆ H ₂ N ₃ O ₇	Н ₂ Õ		149 - 150	39.0	3.3		39.4	3.3	
(9) i 0·5	(25) 0.58	MeCN (1 ml)	17	Reflux	(11)	Br	EtOH Pri ₀ O	60	126-128	35.8	4.7	15.05	35.4	4 ∙8	15.50
					(11)	$C_6H_2N_3O_7$			156 - 158	41 ·2	3.5	20.6	41 ·0	$3 \cdot 4$	20.5
(9) ⁱ 1·0	(26) 1.65	MeCN (2 ml)	1.5 h	Reflux	(12)	Br	EtOH- MeNO,	68	205-207	48.2	4 ·4	12.8	$48 \cdot 2$	4.35	13.0
					(12)	$\mathrm{C_6H_2N_3O_7}$			167—170	48 ∙55	3.7	17.75	4 8·3	3.4	17.8

" Based on the imidazole. " The reaction mixture was triturated with ether, allowed to stand for a further day, the product filtered off and washed with ice-cold n-propanol. Satisfactory analyses could not be obtained. d Decomp. The gum was dissolved in n-propanol (2 ml), Pri2O added to initiate precipitation and the reaction mixture set aside for a further 4 days. I Ether was added to the cooled reaction mixture, the precipitated gum washed with ether and triturated with ethanol-acetone until solid. # Hemihydrate. * The bromide was filtered off and washed with ice-cold acetonitrile. * Prepared from the aldehyde 3 (2) in 62% yield, the oxime crystallized from aqueous methanol as needles, m.p. $172-174^{\circ}$ (lit.,⁵ m.p. 176°) (Found: C, 48.0; H, 5.9; N, 33.8. Calc. for C₅H₇N₃O: C, 48.0; H, 5.6; N, 33.6%).

1	Part	VII,	J.	Adamson	and	E. 1	Ε.	Glover,	J.	Chem.	Soc.	(C),
1971	, 861.		-						-			

² W. L. F. Armarego, J. Chem. Soc., 1965, 2778.

]

³ P. Iversen and H. Lund, Acta Chem. Scand., 1966, 20, 2649.

4 C. K. Bradsher and J. C. Parham, J. Org. Chem., 1963, 28,

83.⁵ P. Fournari, P. De Cointet, and E. Laviron, Bull. Soc. chim. France, 1968, 2348.

TABLE 3

Imidazo[1,2-a]pyrazinium 7-oxide salts

		Rea	action										
		Time		Product	Cryst.	Yield		For	und ($\%$	6)	Ca	alc. (%))
Precursor(s)	Reagent	(min)	Temp. (°C) X	solvent	(%)	M.p. (°C)	С	н	Ν	С	н	Ν
(7) (0.2 g)	Conc. H_2SO_4 (1.5 ml)	5 a	100	(14) ^b Br	EtOH– Pri ₂ O	84	168—172 °						
				(14) ClO ₄	MeOH- Pr ⁱ ₂ O		204—206 °	30.4	$2 \cdot 6$	18.0	30.6	$2 \cdot 6$	17.8
(8) (0·31 g)	Conc. H_2SO_4 (2 ml)	5 a	100	(15) Br	MeŌH	81	> 330 d	36.3	3.4	18.2	36.5	$3 \cdot 5$	18.3
	, ,			$(15) C_6 H_2 N_3 O_7$			218 - 221	40.95	$2 \cdot 65$	$22 \cdot 2$	41.3	$2 \cdot 7$	$22 \cdot 2$
(12) (0.4 g)	Conc. H_2SO_4 (2 ml)	5 a	100	(17) ^e ClO ₄	$H_{2}O$	79	ء 225–228	47.7	$3 \cdot 6$	13.1	47.9	3.7	12.9
	. ,			$(17) C_6 H_2 N_3 O_7$	H ₂ O		153 - 155	49.7	3.5	18.0	50.2	$3 \cdot 1$	18.5
(9) (1.0 g) +	MeCN (2 ml)– 48% HBr (0·2	150 g	Reflux	(16) Br	EtOH– MeOH	71	264—267 °	36.5	4 ∙1	16.0	36.7	4 ·6	16·0 h
(25) (1·15 g)	ml)												
(11) $(0.51 g)$	Conc. H_2SO_4 (2 ml)	5 a	100	(16) Br	EtOH– MeOH	81	264—267 °						
				(16) CIO ₄	EtOH		252-255 •	36.6	$3 \cdot 8$	$16 \cdot 1$	$36 \cdot 4$	$3 \cdot 8$	15.9
$\begin{array}{c} (10) \ (1 \cdot 0 \ g) \\ + \\ (24) \ (0 \cdot 65 \ g) \end{array}$	MeCN (2 ml)- 48% HBr (0·2 ml)	180 g	Reflux	(18) ^e ClO ₄	MeOH– H ₂ O	53 ^f	214217	47.85	3.7	12.5	47.9	3.7	12.9
(27) (0°00 g)	****												

^a The cooled reaction mixture was treated with ether, the precipitated gum dissolved in 48% hydrobromic acid and the product precipitated with ethanol-ether. ^b Satisfactory analyses could not be obtained. ^c Decomposed without melting below 330°. ^c The hygroscopic bromide was converted to the perchlorate. ^f Based on the crude bromide. ^e The cooled reaction mixture was treated with ether and the precipitated gum was triturated with ether until solid. ^h Monohydrate.

TABLE 4

Imidazo[1,2-a]pyrazinium salts

Starting		Heating			37' 11		Fo	und (%	Z)	C	alc. (%	()	
N-oxide		time	Product a	Cryst.	\mathbf{Y} ield			und (/	0/	U	AIC: \ //	3)	
(X = Br)	Reagent	(min)	X	solvent	(%)	M.p. (°C)	С	Н	N	С	Η	N	
(15)	PBr_3	25	(19) Br	MeOH–Pr ⁱ ₂ O	69	>330 b	39.1	$3 \cdot 8$	19.2	39.3	$3 \cdot 8$	19.6	
(16)	PCl ₃	120	(20) Br	EtOH-Pr ⁱ ₂ O	89	> 33 0 ^b	41.7	4.4	17.9	42.1	4.4	18.4	
			(20) ClO_4	EtOH		201 - 204			16.7			17.0	
			(20) $C_6 H_2 N_3 O_7$	MeNO ₂ -Pr ⁱ ₂ O		162 - 164	44.7	$3 \cdot 2$	$22 \cdot 1$	44.2	$3 \cdot 2$	$22 \cdot 3$	
(17)	PBr_3	4	(21) ° ClO ₄	EtOH	66	209 - 211	50.3	3.85	13.3	50.4	$3 \cdot 9$	13.6	
			(21) $C_6H_2N_3O_7$	EtOH-H ₂ O		214 - 217	$52 \cdot 6$	3.4		$52 \cdot 1$	$3 \cdot 2$		
(18)	PCl_3	4	(22) ° ClO ₄	EtOH–Pri ₂ O	21	118 - 121	50.15	$4 \cdot 0$	13.6	50.4	$3 \cdot 9$	13.6	

^{*a*} A suspension of the *N*-oxide in the phosphorus trihalide was boiled under reflux for the time indicated, the reaction mixture cooled and the product filtered off. ^{*b*} Decomposed without melting below 330° . ^{*c*} The crude product was washed with ether, dissolved in ethanol and treated with 60% perchloric acid followed by ether.

Table 5

U.v. spectra

Compound	1	
X	$\lambda_{\rm max.} ({\rm nm})$	log ε
(14) ClO ₄	211, 251, 292sh, 306sh, 337	4.18, 4.2, 3.65, 3.7, 3.88
(15) Br	206, 228sh, 238, 249, 317, 331sh	3.97, 3.77, 3.87, 3.85, 3.92, 3.89
(16) Br	200, 229, 237, 250, 319, 334sh	4.3, 3.99, 3.99, 3.94, 3.97, 3.92
(17) ClO ₄	203, 245, 324, 333sh	$4 \cdot 27, 4 \cdot 22, 4 \cdot 0, 3 \cdot 97$
(18) ClO ₄	193, 206, 238, 252, 317, 331sh	$4 \cdot 34, \ 4 \cdot 29, \ 3 \cdot 91, \ 3 \cdot 91, \ 3 \cdot 98, \ 3 \cdot 96$
(19) Br	202, 217, 300	4.25, 4.18, 3.84
(20) Br	208, 255, 310, 321sh	4·25, 3·45, 3·87, 3·8
(21) ClO ₄	206, 256, 325	$4 \cdot 36, 4 \cdot 39, 3 \cdot 82$
(22) ClO ₄	193, 204, 297	4.39, 4.31, 3.91

(3), the synthesis of which in good yield, has been described by Iversen and Lund.³ The aldehydes (1), (2), and (3) were then converted into either the 1,3-di-oxolan-2-yl derivatives (4)—(6) or the oximes (9) and (10); the resulting bases were quaternized with bromoacetaldehyde oxime (23), bromoacetaldehyde (24), bromoacetone (25), or phenacyl bromide (26). The most satisfactory combination of base and quaternizing agent is shown in Tables 2 and 3.

The monoquaternary salts (7), (8), and (11)--(13) were cyclized by acid and the resulting N-oxides (15)--(18) were deoxygenated with either boiling phos-

phorus tribromide or trichloride (see Table 4). In the cases where phosphorus trichloride was used, the use of the higher boiling tribromide gave rise to extensive decomposition. The unsubstituted N-oxide was recovered unchanged from boiling phosphorus trichloride and the use of boiling phosphorus tribromide gave only an intractable gum.

EXPERIMENTAL

M.p.s were determined with a Kofler hot-stage apparatus; u.v. spectra were obtained with a Perkin-Elmer 137 spectrometer and are for aqueous solutions.