Substituent Effects on 6-Substituted 3-Hydroxy-1-methyl-4-pyridones

Kimiaki Imafuku,* Kumio Takahashi,† and Hisashi Matsumura

Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860

(Received September 10, 1977)

Acid dissociation constants and UV and NMR spectra of a series of 6-substituted 3-hydroxy-1-methyl-4-pyridones have been measured. The acid dissociation constants have been analyzed in terms of the Hammett equation to give linear relationships, with $\rho = 1.16$ for the conjugate acids and $\rho = 1.06$ for the neutral compounds. Halochromism in the UV spectra gave the equation: $\Delta \bar{r} = 689 \, \mathrm{p} K_a - 9399$, and the Hammett plots of the chemical shifts of the 2-H, 5-H, and CH₃ protons gave linear relationships, with $\rho = 1.78$, 2.56, and 1.39, respectively.

In 1967 Choux and Benoit¹⁾ reported the substituent effects on the physical properties such as the acid dissociation constants and UV and NMR spectra of 4-pyrone derivatives. However, little is known about the 4-pyridone derivatives. The substituent effect on tautomerism of 6-substituted 3-methoxy-4-pyridones has been examined and it has been reported that the tautomeric ratios are affected by the substituents.²⁾

In this paper the substituent effects on the acid dissociation constants and UV and NMR spectra of 6-substituted 3-hydroxyl-1-methyl-4-pyridones will be reported in which tautomerism does not exist.

Results and Discussion

Acid Dissociation Constants. The acid dissociation constants of five 6-substituted 3-hydroxy-1-methyl-4-pyridones have been determined spectrophotometrically in water at 25 °C. The results are summarized in Table 1, where the pK_2 and pK_1 values represent the acid dissociation exponent (pK_a) of a neutral compound and that of its conjugate acid, respectively. The pK_1 values are comparable to the pK_1 values for 4-pyridone $(3.37)^3$ and N-methyl-4-pyridone $(3.33)^4$. The pK_2 values are slightly larger than the pK_2 values for the 3-hydroxy-4-pyrones, pK_1 i.e. the 3-hydroxy-1-methyl-4-pyridones are less acidic than the 3-hydroxy-4-pyrones.

A correlarion between pK_2 and the Hammett σ_p constants⁵⁾ has been established for the 6-substituted 3-hydroxyl-1-methyl-4-pyridones, as shown in Fig. 1,

Table 1. pK_a values

No.a)	R	σ	pK_1	pK_2
1	$\mathrm{CH_3}$	-0.170	3.43	9.29
2	Н	0	3.07	9.15
3	CH_2OH	0.08^{b}	3.07	9.07
4	COO-	0.132		9.03
5	$\mathrm{CH_{2}Cl}$	0.184	3.02	8.88

a) Numbers correspond to those in Fig. 1. b) Ref. 1.

and gives the following equation by the least-squares method:

$$pK_2 = 9.13 - 1.06\sigma$$
 $(r=0.969, s=0.03)$

The reaction constant ($\rho = 1.06$) is apparently smaller than that for the proton loss of 6-substituted 3-methoxy-4-pyridones ($\rho = 4.94$).²⁾ In the latter case tautomerism produces the 4-pyridinols but since tautomerism does not exist in the former, transmission of the substituent effect is decreased.

Fig. 1. The Hammett plot of pK_2 values.

The Hammett plots of the pK_1 values gave the equation:

$$pK_1 = 3.17 - 1.16\sigma$$
 $(r=0.860, s=0.06)$

Although the correlation is not good, the transmission of the substituent effect is enhanced by the existence of a conjugated double bond, but is considerably smaller than that in the 3-methoxy-4-pyridones ($\rho = 3.01$).²⁾

Halochromism in UV Spectra. The UV spectra of the 6-substituted 3-hydroxy-1-methyl-4-pyridones have been measured in neutral and alkaline solutions. The wavelengths and wave numbers are listed in Table 2 as $\lambda_{\rm HA}$ and $\tilde{v}_{\rm HA}$ for the neutral species and $\lambda_{\rm A}$ - and $\tilde{v}_{\rm A}$ - for the conjugate bases, respectively. The $\Delta \tilde{v}$ values are the differences between the $\tilde{v}_{\rm A}$ - and $\tilde{v}_{\rm HA}$ values

A general relationship between the electronic spectra and dissociation constants has been established for 4-substituted 2-nitrophenols.⁶⁾ Plots of the $\Delta \bar{\nu}$ values against p K_a ($\equiv pK_2$) values give a linear relationship as shown in Fig. 2, which is represented by the following equation.

$$\Delta \bar{v} = 689 \, \text{p} K_a - 9399$$
 $(r = 0.959, s = 31)$

[†] Present address: Prefectural Office of Hiroshima, Hiroshima 730.

TABLE	2	IIV	SPECTRAL.	DATA

]	Neutral specie	es		Conjugate ba	se	$\Delta ar{v}$
No. ^{a)}	R	$\frac{\lambda_{\text{HA}}}{\text{nm}}$	$\frac{\tilde{v}_{\mathrm{HA}}}{\mathrm{cm}^{-1}}$	$\log arepsilon_{ ext{HA}}$	λ _A - nm	$\frac{\tilde{v}_{A}}{\text{cm}^{-1}}$	$\log arepsilon_\mathtt{A}$ -	$\frac{\Delta V}{\text{cm}^{-1}}$
1	CH ₃	278	35970	4.08	304	32890	3.96	-3080
2	н	282	35460	4.12	309	32360	3.97	-3100
3	CH ₂ OH	283	35340	4.11	311	32150	3.99	-3190
4	COO-	284	35210	4.04	312	32050	3.90	-3160
5	CH_2Cl	283	35340	4.00	312	32050	3 .8 9	- 3290

a) Numbers correspond to those in Fig. 2.

TABLE 3. NMR SPECTRAL DATA

No. ^{a)}	D	δ			
	R	2-H	5-H	1-CH ₃	Others
1	CH_3	7.43(s)	6.40(s)	3.61(s)	2.30(s) for 6-CH ₃
2	Н	$7.59(d)^{b}$	$6.58(d)^{c}$	3.82(s)	7.58 (dd) ^{d)} for 6-H
3	CH_2OH	7.71 (s)	6.80(s)	3.89(s)	e)
4	COOH	7.88(s)	7.13(s)	3.98(s)	·
5	$\mathrm{CH_{2}Cl}$	8.11(s)	7.31 (s)	4.14(s)	e)

a) Numbers correspond to those in Fig. 3. b) $J_{2,6}=3$ Hz. c) $J_{5,6}=7$ Hz. d) $J_{6,2}=3$ Hz and $J_{6,5}=7$ Hz. e) The δ values for 6-CH₂OH and 6-CH₂Cl could not be measured accurately because of overlapping with the signal of HOD.

Fig. 2. The relationship between $\Delta \bar{v}$ and p K_2 .

NMR Spectra. The ¹H-NMR spectral data in deuterium oxide are listed in Table 3. The chemical shifts of 3-OH could not be determined becasue of hydrogen exchange with deuterium in the solvent. The chemical shifts of 2-H, 5-H, and 1-CH₃ have been plotted against the respective σ_p constants (Fig. 3). The plots have yielded the following equations.

From this data the substituents have a stronger effect on the chemical shifts of the 5-H proton than on that of the 2-H proton. The chemical shifts of the 1-CH₃ are less sensitive to the substituent effects than those of the 2-H and 5-H protons. Transmission of the substituent effects was apparently larger than for the 4-pyrones.¹⁾

Fig. 3. The relationships of the chemical shifts with σ constants. \bigcirc : $\delta_{2\text{-H}}$, \ominus : $\delta_{5\text{-H}}$, \bigcirc : δ_{CH_3} .

Experimental

All the melting points were measured on a Yanagimoto micro-melting point apparatus and are uncorrected. The IR, UV, and NMR spectra were taken on JASCO IRA-1, Hitachi EPS-3T, and Hitachi-Perkin-Elmer R-24 (60 MHz) spectrometers, respectively. The pH values were measured by a Hitachi-Horiba F-5 pH meter. The pK_a values were obtained by the method of Albert and Serjeant.⁷⁾

Materials. All the known compounds were prepared from kojic acid according to the methods in the literature: 3-hydroxy-1-methyl-4-pyridone, mp 215—217 °C (lit,8) 212—216 °C); 1,2-dimethyl-5-hydroxy-4-pyridone, mp 270—274 °C (lit,9) 273—274 °C); 5-hydroxy-2-hydroxymethyl-1-methyl-4-

pyridone, mp 220 °C (lit,8) 225—227 °C).

2-Chloromethyl-5-hydroxy-1-methyl-4-pyridone was obtained by the treatment of 5-hydroxy-2-hydroxymethxl-1-methyl-4-pyridone⁸⁾ (1.0 g) with thionyl chloride (4.0 ml) at 60—70 °C for 30 min. Yield, 0.38 g (34.0%); mp 220—230 °C (from methanol-ethyl acetate); IR (KBr): 1628 cm⁻¹. Found: C, 48.36; H, 4.87; N, 8.06%. Calcd for C₇H₈-ClNO₂: C, 48.43; H, 4.64; N, 8.07%.

2-Carboxy-5-hydroxy-1-methyl-4-pyridone was obtained by reaction of comenic acid (1.1 g) with 48% methylamine solution (2.5 g) at 60—80 °C for 4 h. Yield, 0.28 g (23.5%); mp 224—230 °C (dec) (from water); IR (KBr): 1630, 1607 cm⁻¹. Found: C, 49.68; H, 4.37; N, 8.27%. Calcd for $C_7H_7NO_4$: C, 49.71; H, 4.17; N, 8.28%.

The authors are grateful to Professor Satoru Yokota of Kumamoto Institute of Technology for the supply of kojic acid.

References

- 1) G. Choux and R. L. Benoit, J. Org. Chem., 32, 3974 (1967).
- 2) H. Besso, K. Imafuku, and H. Matsumura, Bull. Chem. Soc. Jpn., 50, 710 (1977).
 - 3) A. Albert and J. N. Phillips, J. Chem. Soc. 1956, 1924.
- 4) A. Gordon and A. R. Katritzky, J. Chem. Soc., B, 1968, 556.
 - 5) H. H. Jaffé, Chem. Rev., 53, 191 (1953).
- 6) M. Rapoport, C. K. Hancock, and E. A. Meyers, J. Am. Chem. Soc., 83, 3489 (1961).
- 7) A. Albert and E. P. Serjeant, "Ionization Constants of Acids and Bases," 1st ed, Methuen, London (1962), Chap. 4.
- 8) A. A. Berson, W. M. Jones, and S. L. F. O'Callaghan, J. Am. Chem. Soc., 78, 622 (1956).
- 9) J. W. Armit and T. J. Nolan, J. Chem. Soc., 1931, 3023.