Substituent Effects on 6-Substituted 3-Hydroxy-1-methyl-4-pyridones Kimiaki Imafuku,* Kumio Takahashi,† and Hisashi Matsumura Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860 (Received September 10, 1977) Acid dissociation constants and UV and NMR spectra of a series of 6-substituted 3-hydroxy-1-methyl-4-pyridones have been measured. The acid dissociation constants have been analyzed in terms of the Hammett equation to give linear relationships, with $\rho = 1.16$ for the conjugate acids and $\rho = 1.06$ for the neutral compounds. Halochromism in the UV spectra gave the equation: $\Delta \bar{r} = 689 \, \mathrm{p} K_a - 9399$, and the Hammett plots of the chemical shifts of the 2-H, 5-H, and CH₃ protons gave linear relationships, with $\rho = 1.78$, 2.56, and 1.39, respectively. In 1967 Choux and Benoit¹⁾ reported the substituent effects on the physical properties such as the acid dissociation constants and UV and NMR spectra of 4-pyrone derivatives. However, little is known about the 4-pyridone derivatives. The substituent effect on tautomerism of 6-substituted 3-methoxy-4-pyridones has been examined and it has been reported that the tautomeric ratios are affected by the substituents.²⁾ In this paper the substituent effects on the acid dissociation constants and UV and NMR spectra of 6-substituted 3-hydroxyl-1-methyl-4-pyridones will be reported in which tautomerism does not exist. ## Results and Discussion Acid Dissociation Constants. The acid dissociation constants of five 6-substituted 3-hydroxy-1-methyl-4-pyridones have been determined spectrophotometrically in water at 25 °C. The results are summarized in Table 1, where the pK_2 and pK_1 values represent the acid dissociation exponent (pK_a) of a neutral compound and that of its conjugate acid, respectively. The pK_1 values are comparable to the pK_1 values for 4-pyridone $(3.37)^3$ and N-methyl-4-pyridone $(3.33)^4$. The pK_2 values are slightly larger than the pK_2 values for the 3-hydroxy-4-pyrones, pK_1 i.e. the 3-hydroxy-1-methyl-4-pyridones are less acidic than the 3-hydroxy-4-pyrones. A correlarion between pK_2 and the Hammett σ_p constants⁵⁾ has been established for the 6-substituted 3-hydroxyl-1-methyl-4-pyridones, as shown in Fig. 1, Table 1. pK_a values | No.a) | R | σ | pK_1 | pK_2 | |-------|---------------------|------------|--------|--------| | 1 | $\mathrm{CH_3}$ | -0.170 | 3.43 | 9.29 | | 2 | Н | 0 | 3.07 | 9.15 | | 3 | CH_2OH | 0.08^{b} | 3.07 | 9.07 | | 4 | COO- | 0.132 | | 9.03 | | 5 | $\mathrm{CH_{2}Cl}$ | 0.184 | 3.02 | 8.88 | a) Numbers correspond to those in Fig. 1. b) Ref. 1. and gives the following equation by the least-squares method: $$pK_2 = 9.13 - 1.06\sigma$$ $(r=0.969, s=0.03)$ The reaction constant ($\rho = 1.06$) is apparently smaller than that for the proton loss of 6-substituted 3-methoxy-4-pyridones ($\rho = 4.94$).²⁾ In the latter case tautomerism produces the 4-pyridinols but since tautomerism does not exist in the former, transmission of the substituent effect is decreased. Fig. 1. The Hammett plot of pK_2 values. The Hammett plots of the pK_1 values gave the equation: $$pK_1 = 3.17 - 1.16\sigma$$ $(r=0.860, s=0.06)$ Although the correlation is not good, the transmission of the substituent effect is enhanced by the existence of a conjugated double bond, but is considerably smaller than that in the 3-methoxy-4-pyridones ($\rho = 3.01$).²⁾ Halochromism in UV Spectra. The UV spectra of the 6-substituted 3-hydroxy-1-methyl-4-pyridones have been measured in neutral and alkaline solutions. The wavelengths and wave numbers are listed in Table 2 as $\lambda_{\rm HA}$ and $\tilde{v}_{\rm HA}$ for the neutral species and $\lambda_{\rm A}$ - and $\tilde{v}_{\rm A}$ - for the conjugate bases, respectively. The $\Delta \tilde{v}$ values are the differences between the $\tilde{v}_{\rm A}$ - and $\tilde{v}_{\rm HA}$ values A general relationship between the electronic spectra and dissociation constants has been established for 4-substituted 2-nitrophenols.⁶⁾ Plots of the $\Delta \bar{\nu}$ values against p K_a ($\equiv pK_2$) values give a linear relationship as shown in Fig. 2, which is represented by the following equation. $$\Delta \bar{v} = 689 \, \text{p} K_a - 9399$$ $(r = 0.959, s = 31)$ [†] Present address: Prefectural Office of Hiroshima, Hiroshima 730. | TABLE | 2 | IIV | SPECTRAL. | DATA | |-------|---|-----|-----------|------| | | | | | | | | |] | Neutral specie | es | | Conjugate ba | se | $\Delta ar{v}$ | |-------------------|--------------------|---|--|-----------------------------|---------------------|--|-------------------------------|-----------------------------------| | No. ^{a)} | R | $\frac{\lambda_{\text{HA}}}{\text{nm}}$ | $\frac{\tilde{v}_{\mathrm{HA}}}{\mathrm{cm}^{-1}}$ | $\log arepsilon_{ ext{HA}}$ | λ _A - nm | $\frac{\tilde{v}_{A}}{\text{cm}^{-1}}$ | $\log arepsilon_\mathtt{A}$ - | $\frac{\Delta V}{\text{cm}^{-1}}$ | | 1 | CH ₃ | 278 | 35970 | 4.08 | 304 | 32890 | 3.96 | -3080 | | 2 | н | 282 | 35460 | 4.12 | 309 | 32360 | 3.97 | -3100 | | 3 | CH ₂ OH | 283 | 35340 | 4.11 | 311 | 32150 | 3.99 | -3190 | | 4 | COO- | 284 | 35210 | 4.04 | 312 | 32050 | 3.90 | -3160 | | 5 | CH_2Cl | 283 | 35340 | 4.00 | 312 | 32050 | 3 .8 9 | - 3290 | a) Numbers correspond to those in Fig. 2. TABLE 3. NMR SPECTRAL DATA | No. ^{a)} | D | δ | | | | |-------------------|---------------------|---------------|---------------|-------------------|---------------------------------| | | R | 2-H | 5-H | 1-CH ₃ | Others | | 1 | CH_3 | 7.43(s) | 6.40(s) | 3.61(s) | 2.30(s) for 6-CH ₃ | | 2 | Н | $7.59(d)^{b}$ | $6.58(d)^{c}$ | 3.82(s) | 7.58 (dd) ^{d)} for 6-H | | 3 | CH_2OH | 7.71 (s) | 6.80(s) | 3.89(s) | e) | | 4 | COOH | 7.88(s) | 7.13(s) | 3.98(s) | · | | 5 | $\mathrm{CH_{2}Cl}$ | 8.11(s) | 7.31 (s) | 4.14(s) | e) | a) Numbers correspond to those in Fig. 3. b) $J_{2,6}=3$ Hz. c) $J_{5,6}=7$ Hz. d) $J_{6,2}=3$ Hz and $J_{6,5}=7$ Hz. e) The δ values for 6-CH₂OH and 6-CH₂Cl could not be measured accurately because of overlapping with the signal of HOD. Fig. 2. The relationship between $\Delta \bar{v}$ and p K_2 . NMR Spectra. The ¹H-NMR spectral data in deuterium oxide are listed in Table 3. The chemical shifts of 3-OH could not be determined becasue of hydrogen exchange with deuterium in the solvent. The chemical shifts of 2-H, 5-H, and 1-CH₃ have been plotted against the respective σ_p constants (Fig. 3). The plots have yielded the following equations. From this data the substituents have a stronger effect on the chemical shifts of the 5-H proton than on that of the 2-H proton. The chemical shifts of the 1-CH₃ are less sensitive to the substituent effects than those of the 2-H and 5-H protons. Transmission of the substituent effects was apparently larger than for the 4-pyrones.¹⁾ Fig. 3. The relationships of the chemical shifts with σ constants. \bigcirc : $\delta_{2\text{-H}}$, \ominus : $\delta_{5\text{-H}}$, \bigcirc : δ_{CH_3} . ## **Experimental** All the melting points were measured on a Yanagimoto micro-melting point apparatus and are uncorrected. The IR, UV, and NMR spectra were taken on JASCO IRA-1, Hitachi EPS-3T, and Hitachi-Perkin-Elmer R-24 (60 MHz) spectrometers, respectively. The pH values were measured by a Hitachi-Horiba F-5 pH meter. The pK_a values were obtained by the method of Albert and Serjeant.⁷⁾ Materials. All the known compounds were prepared from kojic acid according to the methods in the literature: 3-hydroxy-1-methyl-4-pyridone, mp 215—217 °C (lit,8) 212—216 °C); 1,2-dimethyl-5-hydroxy-4-pyridone, mp 270—274 °C (lit,9) 273—274 °C); 5-hydroxy-2-hydroxymethyl-1-methyl-4- pyridone, mp 220 °C (lit,8) 225—227 °C). 2-Chloromethyl-5-hydroxy-1-methyl-4-pyridone was obtained by the treatment of 5-hydroxy-2-hydroxymethxl-1-methyl-4-pyridone⁸⁾ (1.0 g) with thionyl chloride (4.0 ml) at 60—70 °C for 30 min. Yield, 0.38 g (34.0%); mp 220—230 °C (from methanol-ethyl acetate); IR (KBr): 1628 cm⁻¹. Found: C, 48.36; H, 4.87; N, 8.06%. Calcd for C₇H₈-ClNO₂: C, 48.43; H, 4.64; N, 8.07%. 2-Carboxy-5-hydroxy-1-methyl-4-pyridone was obtained by reaction of comenic acid (1.1 g) with 48% methylamine solution (2.5 g) at 60—80 °C for 4 h. Yield, 0.28 g (23.5%); mp 224—230 °C (dec) (from water); IR (KBr): 1630, 1607 cm⁻¹. Found: C, 49.68; H, 4.37; N, 8.27%. Calcd for $C_7H_7NO_4$: C, 49.71; H, 4.17; N, 8.28%. The authors are grateful to Professor Satoru Yokota of Kumamoto Institute of Technology for the supply of kojic acid. ## References - 1) G. Choux and R. L. Benoit, J. Org. Chem., 32, 3974 (1967). - 2) H. Besso, K. Imafuku, and H. Matsumura, Bull. Chem. Soc. Jpn., 50, 710 (1977). - 3) A. Albert and J. N. Phillips, J. Chem. Soc. 1956, 1924. - 4) A. Gordon and A. R. Katritzky, J. Chem. Soc., B, 1968, 556. - 5) H. H. Jaffé, Chem. Rev., 53, 191 (1953). - 6) M. Rapoport, C. K. Hancock, and E. A. Meyers, J. Am. Chem. Soc., 83, 3489 (1961). - 7) A. Albert and E. P. Serjeant, "Ionization Constants of Acids and Bases," 1st ed, Methuen, London (1962), Chap. 4. - 8) A. A. Berson, W. M. Jones, and S. L. F. O'Callaghan, J. Am. Chem. Soc., 78, 622 (1956). - 9) J. W. Armit and T. J. Nolan, J. Chem. Soc., 1931, 3023.