STEROLS WITH MODIFIED SIDE CHAINS

by

Josef E. Herz and Esperanza Vázquez

Received: 11/20/75

INTRODUCTION

Recently Fouquet and Schlosser¹⁾ published an improved method for carbon-carbon linking by controlled copper catalysis, utilizing the reaction between a toluenesulfonate and a Grignard reagent in the presence of Li₂CuCl₄. This method seemed to us advantageous for the preparation of sterols with modified side chains and we therefore applied this reaction to the synthesis of a number of representative sterols in order to determine the scope of this reaction.

CONCLUSIONS

As can be seen in Table 1 the reaction proceeds with good yield when the group R₁ of the Grignard reagent is n-butyl, isopropyl, cyclohexyl, phenyl. When the group was 1-adamantyl or allyl the 24-bromide of the steroid was obtained exclusively. We intend to investigate this reaction further and to apply it to the synthesis of cholesterols deuterated in positions 25, 26 and 27.

		<u></u>	<u></u>
	(in ₂ ors	#. #. #. #. #. #. #. #. #. #. #. #. #. #
t	_ \ -\} -\}	+ RI Mg Br R20	\geqslant
R ₁ MgBr)	H	Ħ
R.	yield	$R_2 = CH_3$	R ₂ = H
		mp, $120-1^{\circ}C$ (α) _n -32°	
a) n-butyl	∞ 	Anal: C ₂₉ H ₅₀ O Cal. C: 83.98 H: 12.45 found C: 83.74 H: 12.01	
		mp. 82-3°C lit ³ 84°C (α) _D -45°C lit -46°	mp. 145° lit 148° (a) _n -38° lit -39.5°
b) isopropy1	78%	Anal: C ₂₈ H ₄₈ O Cal. C: 83.92 H: 12.07 found C: 83.86 H: 12.12	a
	ender schauserungsversche zur zu der in die	mp, 102-3° (α) _η -30°	mp. 108-9°C (α) ₁₁ -25°
c) cyclohexyl	80 28	Anal: C ₃₁ H ₅₂ O C: 84.48 H: 11.89 found C: 84.27 H: 11.91	C ₃₀ H ₅₀ O C: 84.43 H: 11.81 found C: 84.51 H: 11.98
		mp, 104-5°C (α) _n -24°	mp, 118-9°C (α) _n -32°
d) phenyl	80 50 80 80 80	Anal: $C_{31}H_{46}$	C ₃₀ H ₄₄ O C: 85.65 H: 10.54 found C: 85.91 H: 10.37
		THE PROPERTY OF THE PROPERTY O	

EXPERIMENTAL PART

3β-Methoxy-5-cholen-24-ol tosylate (I)

A solution of 3β -methoxy-5-cholen-24-ol⁴) (1g) in 16 ml dry pyridine was cooled to 0°C and 1.3 g p-toluene sulfonyl chloride added slowly and with agitation under anhydrous conditions. After 1 hour, the mixture was precipitated on ice, extracted with ether, washed free of pyridine and crystallized from ether-methanol. Yield 95%, mp. 124-5°C $\{\alpha\}_D$ -35°, Analysis: $C_{32}H_{48}O_3S$ C:72.69 H:9.45

found C:72.31 H:9.22

Cholesteryl methyl ether (II: R₁ = isopropyl, R₂ = CH₃-)

To a suspension of 240 mg dry Mg in 10 ml dry THF was added slowly with stirring 1 ml 2-bromopropane. The mixture was agitated during 15 minutes and then cooled to 0°C. Slowly 1.4 ml of a solution of Li₂CuCl₄ (0.1 m mol in 1 ml THF)²) was added. After completion of the addition of the complex, 200 mg (I) in 10 ml THF was added dropwise with agitation. After two hours at 0°C, the reaction mixture was left at room temperature over night. The solution was then acidified with 2N sulfuric acid, extracted with ether, and the product crystallized from metanol. Yield 78%, mp. 82-3°C, $\{\alpha\}_D$ - 45°(lit³) mp. 84°C, $\{\alpha\}_D$ -46°).

Cholesterol: (II:R₁ = isopropyl, R₂ = H).

The above methyl ether was transformed into the acetate by the method of Ganem and $Small^{5}$, and the crude acetate hydrolysed to cholesterol.

To a solution of 250 mg cholesteryl methyl ether in 4 ml acetic anhydride and 4 ml ethyl acetate was added at room temperature and with stirring 16 mg anhydrous ferric chloride. After 1 hour of agitation the mixture was poured on ice, extracted with ether, the ether washed free of acid and evaporated. A solution of 100 mg of the crude acetate in 20 ml methanol and 5 ml 10% aeq. KOH was refluxed for 1 hour, diluted with water, acidified and the mixture extracted with ether. The ether was washed, dried and evaporated. The product was crystallized from ether methanol. Yield (w/w) from (I): 65%,mp. 144-5°, (α)_D -38° (lit³) 148°, (α)_D -39°) identical in all respects with authentic cholesterol.

BIBLIOGRAPHY

- Fouquet G., Schlosser M., Angew. Chem. Internat. Ed. <u>13</u>, 82 (1974).
- 2) Tamura M., Kochi J., Synthesis <u>1971</u>, 303
- 3) Merck Index 6th Edition, 1952 p. 237
- 4) Herz, J.E., Cruz Montalvo S., J. Chem. Soc. (Perkin I) 1973, 1233
- 5) Ganem, B., Small, V.R., J. Org. Chem. <u>39</u>, 3728 (1974)