hexanol had m. p. 157.5°. Anal. Calcd. for $C_{17}H_{16}O_6N_2$: N, 8.14. Found: N, 8.10.

Mixed melting point of the two 3,5-dinitrobenzoates 125 to 136° . This indicates the chloride to be not the 1,4, but the 1,3 compound.

Summary

Tertiary butyl chloride was found to react with cyclohexene in hydrogen fluoride to produce a 65%

yield of cyclohexyl chloride, 11.5% cyclohexyl fluoride and an 11% yield of a chloride identified as 1-chloro-3-t-butylcyclohexane.

Reactions of *t*-butyl chloride with trimethylethylene and of isopropyl chloride with cyclohexene produced no isolable addition product of the chloride to the olefin.

STATE COLLEGE, PA.

RECEIVED JULY 10, 1942

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AT THE OHIO STATE UNIVERSITY]

The Addition of Hydrogen Fluoride to Halo-olefins

BY ALBERT L. HENNE AND EDWIN P. PLUEDDEMAN

The individual cases of hydrogen fluoride addition to halo-olefins previously reported^{1,2,3} are here supported by more examples and extended to a generalized study. The technique outlined in the three papers cited has been used, with minor adjustments for specific cases.⁴

All but two of the compounds were already known: these are described with analysis in the table. The large quantities of material prepared made it possible to purify all samples adequately, and two sets of physical properties were found to be improvements over previously reported values. They are also listed in the table.

Monohalo-olefins RHC=CHX did not react well and did not yield clean cut products. At room temperature there was no apparent combination with hydrogen fluoride. After four hours at 100°, CH₃CH=CHCl gave traces of CH₃CH₂CHF₂, 5% of unchanged olefin, 10% CH₃CH₂CHFCl, 20% CH₃CHFCH₂Cl, 20% CH₃CHClCH₂Cl, and the remainder of the material was tar. After two hours at 65°, C₂H₅CH=CHCl gave traces of C₃H₇CHFC₂, 25% of recovered olefin, 10% of C₃H₇CHFC₁, 5% of C₄H₈Cl₂ and tar; higher temperatures increased the amount of tar.

The two isomeric $C_{3}H_{6}FCl$ were distinguished as follows. The lower boiling isomer (b. p. 46–49°, d^{20}_{4} 1.030, $n^{20}D$ 1.3685) did not react with zinc and proved identical with the compound obtained from CH₃CH₂CHCl₂ and mercuric fluoride⁵; its formula is therefore CH₃CH₂CHClF. The higher boiling isomer (b. p. 68.5° , d^{20}_4 1.086, n^{20}_D 1.3824) must therefore be CH₄CHFCH₅Cl.

The butane derivative (b. p. 73-76, d^{20}_4 0.968, n^{20}_D 1.3890) was interpreted as predominantly CH₂CH₂CH₂-CH₂CH₂CH₂CH₂CH₂CH₅CHFCl because it boiled only slightly higher than 31° above its propane homolog. Such a boiling point difference is known to exist between homologs.^{3,6}

In contrast, $(CH_3)_2C=CHCl$, a monochloroolefin of the RR'C=CHCl type, was found to react very readily with hydrogen fluoride at 0° and also at -23° , and a 65% yield of $(CH_3)_2$ -CHCHClF was easily obtained. Tar formation was negligible at the lower temperatures, but increased rapidly in importance at higher temperatures. The same chlorofluorobutane was obtained almost as readily from methallyl chloride. This was due to the fact that hydrogen fluoride isomerized methallyl chloride rapidly to isocrotyl chloride. The physical properties are listed in the table.

Originally the assumption was made that the chlorofluoride was $(CH_3)_2CFCH_2CI$ but the error of interpretation became apparent when it was observed that the compound did not react with zinc, an indication that the halogen atoms are not located on adjacent carbon atoms. The correct formula was settled definitely by synthesis. Isobutyraldehyde was transformed to $(CH_3)_2CHCHCl_2$, in which one of the chlorine atoms was exchanged for fluorine by means of mercuric fluoride.⁵ Mixed freezing curves demonstrated the identity of the three preparations.

Monohalo-olefins of the RCX=CR'R" type reacted extremely readily with hydrogen fluoride to give mixtures of difluorides RCF_2R' and dichlorides $RCCl_2R'$ in preference to the straight addition product RCClFR'. Experiments on $CH_3CCl=CH_2$, $CH_3CH_2CCl=CH_2$, $CH_3CH=$ $CClCH_3$ and $CH_3CH_2CCl=CHCH_3$ gave results in agreement with Miss Renoll's reports.³ In (6) Henne, Renoll and Leicester, (bid., 61, 938 (1939).

⁽¹⁾ Henne and Haeckl, THIS JOURNAL, 63, 2692 (1941).

⁽²⁾ Henne and Whaley, ibid., 64, 1157 (1942).

⁽³⁾ Mary Renoll, ibid., 64, 1115 (1942).

⁽⁴⁾ The experiments described by Miss Renoll' were published while the present paper was being written; they are specifically limited to one class of compounds. As we agree with Miss Renoll's results we have removed from our paper the description of the class reported by her.

⁽⁵⁾ Henne, THIS JOUENAL, 60, 1569 (1938).

Vol. 65

Compounds	F. p., °C.	B. p., °C.	t, °C.	$n_{\mathbf{p}}^{\mathrm{t}}$	d_4^t	MR	A.R.F	Fluori Found	ne, % Calcd.	Chlori: Found	ne, % Calcd.
(CH ₃) ₂ CHCHFCl	- 69.3	82.5	20	1.3891	1.0362	25.2	0.8	17.1	17.2	32.1	32.1
C ₂ H ₅ CFClCH ₃	-110.0	67.7	20	1.3782	0.9982	25.55	1.11	17.0	17.2	32.3	32.1
CH ₂ ClCFClCH ₃	- 91.7	88.6	20	1.4099	1.2624	25.71	1.03				
CH_3CFCl_2	-103.5	32.0	10	1.3600	1.250	21.20	1.14				

TABLE OF PHYSICAL CONSTANTS

The second compound, prepared with J. B. Hinkamp,⁷ was tranformed to the known $C_2H_6CF_2CH_3$ to demonstrate the location of its halogen atoms. The third compound, prepared with F. W. Haeckl, improves the data in reference no. 1. The fourth compound improves the data of THIS JOURNAL, 58, 889 (1936).

contrast, it should be recalled that the combination of HF with $CH_2ClCCl=CH_2$ is considerably less vigorous and yields mostly the straight addition product $CH_2ClCClFCH_3^1$ with very little further substitution to $CH_2ClCF_2CH_2$ unless long heating is resorted to. Experiments with alpha-chlorostyrene were inconclusive but in this case the chlorine atom is somewhat activated by the phenyl group and cannot be regarded as strictly vinylic.

Asymmetrical dihalo-olefins of the RR'C= CX₂ type combined smoothly with hydrogen fluoride, preferably at about 65°, and without much substitution. After three hours at 65° with four moles of hydrogen fluoride CH₂=CCl₂ gave traces of CH3CF2Cl, 50% of CH3CFCl2, 10% of recovered material, 5% of CH₃CCl₃ and some 15% of tar. The addition of hydrogen fluoride to CH₃CH=CCl₂ and to CH₃CH=CClF has been described before.² After sixteen hours at 65°, CH₃CH₂CH=CCl₂ gave 15% of C₃H₇-CF2Cl, 28% of C3H7CFCl2, and 23% of unreacted olefin; higher temperatures favored further substitution.7 After one hour of heating at 100° with two moles of hydrogen fluoride, (CH₃)₂C==CCl₂ (b. p. 109, n²⁰D 1.4580) gave about 35% of a product (b. p. 105-109, n^{20} D 1.4558) which was held to be mostly (CH₃)₂CHCCl₂F, 10% of recovered material and the rest tar; at 120° tar formation became preponderant.

The addition of hydrogen fluoride to symmetrical dihalo-olefins RCX=CXR' gave contradictory results. No addition was observed to CHCl=CHCl, despite the variety of condi-(7) Hinkamp, unpublished Ph.D. Dissertation, The Ohio State University, 1943. tions tried. In contrast, addition took place smoothly at 120° in the case of CH₃CCl=CHCl. Both the *cis* and the *trans* forms gave the same addition product, CH₃CClFCH₂Cl, and it was observed that the *trans*-olefin gave consistently a slightly higher yield of substitution product, CH₃CF₂CHCl. To illustrate, after four hours at 95° with six moles of HF, the *trans* and *cis* olefins gave, respectively, 10 and 7% of CH₃CF₂CH₂Cl, 5 and 8% of CH₃CFClCH₂Cl, 62 and 60% of recovered olefin and 15 and 18% of residue. Similarly, the *trans* and *cis* forms of CH₃CF= CHCl reacted very easily with HF to yield CH₃CF₂CHCl; here again the *trans*-olefin reacted somewhat more readily.⁸

Trichloroethylene, CHCl==CCl₂, and its homolog CH₃CCl==CCl₂ did not combine with hydrogen fluoride even at 160°, and the original olefins were recovered unchanged.

Perchloro-olefins and hydrogen fluoride did not add. Perchloroethylene was recovered intact. In the case of CCl_2 =CClCCl₃, no addition took place, but substitution in the CCl₃ group became more important as the temperatue of reaction rose.⁹

Summary

The addition of hydrogen fluoride to the following types of halo-olefins is described: RHC=CHX, RR'C=CHX, RCX=CR'R", RR'C=CX₂, RCX=CXR', RCX=CX₂, and CX_2 =CX₂.

Columbus, Ohio

RECEIVED AUGUST 21, 1942

(9) Henne, Whaley and Stevenson, THIS JOURNAL, 63, 3478 (1941).

⁽⁸⁾ Henne and Mahan, unpublished.