MASS SPECTROMETRY OF ARALKYL COMPOUNDS WITH A FUNCTIONAL GROUP—VI¹:

MASS SPECTRA OF 1-PHENYLETHANOL-1, 2-PHENYLETHANOL-1 AND 1-PHENYLPROPANOL-2*

N. M. M. NIBBERING and TH. J. DE BOER

Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, The Netherlands

(Received 19 April 1968; accepted 28 April 1968)

Abstract—Mass spectra of 1-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain, suggest that the $[M - CH_3]^+$ ion is represented partly by an α -hydroxybenzyl fragment. Moreover, the molecular ion loses successively—after scrambling of all hydrogen atoms, except those of CH₃—a hydrogen atom and C₆H₆, generating the CH₃CO⁺ ion.

Diffuse peaks, found in the spectra of 2-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain and in the phenyl ring, show that the molecular ion loses C_2H_4O , possibly *via* a four-center mechanism, after an exchange of aromatic and hydroxylic hydrogens.

Mass spectra of 1-phenylpropanol-2 and its analogues, specifically deuterated in the aliphatic chain, demonstrate that in the molecular ion exclusively the hydroxyl hydrogen atom is transferred to one of the *ortho*-positions of the phenyl ring *via* a McLafferty rearrangement, generating the $[M - C_2H_4O]^+$ ion. Furthermore, an eight-membered ring structure is proposed for the $[M - CH_3]^+$ ion to explain the loss of H_2O and C_2H_2O from this ion after an extensive scrambling of hydrogen atoms.

INTRODUCTION

TO OBTAIN more insight into the mass spectral behaviour of aralkyl compounds with a functional group, we have studied the mass spectra of 1-phenylethanol-1, 2-phenylethanol-1 and of 1-phenylpropanol-2 by comparing the standard spectra with those of specifically deuterated analogues.

The mass spectrum of unlabelled 1-phenylethanol-1 has been reported in the literature.²

Mass spectra of 2-phenylethanol-1 and its $O-d_1$ analogue have shown earlier,³ that the $[M - CH_2O]^+$ ion is formed *via* a McLafferty rearrangement⁴ of the hydroxyl hydrogen atom to one of the *ortho*-positions of the phenyl ring. The availability of 2-phenylethanol-1, specifically deuterated in the aliphatic chain and in the phenyl ring,⁵ provided an opportunity to study its mass spectrum in more detail.

As far as we know, the mass spectrum of unlabeled 1-phenylpropanol-2 has not been reported in the literature.

In the lower mass region of the spectra obtained in the present study many diffuse peaks are found, corresponding with the well-known decompositions of ions from aromatic hydrocarbons,⁶ e.g. m/e 91 \rightarrow 65, m/e 89 \rightarrow 63, m/e 77 \rightarrow 51, etc. These have been omitted in Appendices 1, 2 and 3. Moreover, it is not possible to locate exactly the charge in the molecular ions from 1-phenylethanol-1, 2-phenylethanol-1 and from 1-phenylpropanol-2, as long as the ionization potentials are not known. This should be borne in mind with regard to Schemes 1, 2, 3, 4 and 5.

* Part of the forthcoming thesis of N. M. M. Nibbering.

Fragmentation of 1-phenylethanol-1, $C_6H_5^{\alpha}CH(OH)CH_8$.

Comparison of the standard spectrum with that of α -d₁, β -d₃ and O-d₁ analogues together with the m/e and m_2/m_1 values for diffuse peaks enable us to distinguish two main reaction paths for the decomposition of the molecular ion. (See Figs. 1 to 4, Appendix 1 and Scheme 1.*)

1. Successive losses of CH₃ and CO from the molecular ion. In the mass spectra of undeuterated 1-phenylethanol-1 (M = 122) and its β -d₃ analogue the base peak is

FIGS. 1 and 2. Mass spectra of 1-phenylethanol-1 and its β -d₃ analogue.

found at m/e 107 (Figs. 1 and 2). This peak shifts to m/e 108 in the mass spectra of the α -d₁ and O-d₁ compounds (Figs. 3 and 4).

This can be explained simply by loss of the CH₃ group from the molecular ion, which reaction is supported by corresponding diffuse peaks found in the spectra (Scheme 1, sequence $a \rightarrow b$ and Appendix 1, reaction no. 1).

* Reactions for which corresponding diffuse peaks are observed are denoted by an asterisk. The numbers at the reactions correspond with the reaction numbers in Appendix 1.

FIGS. 3 and 4. Mass spectra of α -d₁ and O-d₁ analogues of 1-phenylethanol-1.

The structure of ion b however, generated in this reaction, is uncertain. Previously, deuterium labelling has indicated that after a nearly complete scrambling of all hydrogen atoms the molecular ion of benzylalcohol^{7,8} loses a hydrogen atom, giving an ion with the same mass as ion b in the present study. Shannon⁸ suggested this scrambling process to proceed via a π -complex before and after ring expansion of the phenyl ring to a seven-membered ring system and thus proposed an α -hydroxybenzyl-and a hydroxytropylium structure for the $[M - 1]^+$ ion from benzylalcohol. Apart from scrambling these structures are also reasonable for the fragment m/e 107 in the present case. Therefore, besides ion b (α -hydroxybenzyl) also ion b' (hydroxytropylium) has been included in Scheme 1. Just like the $[M - 1]^+$ -ion from benzylalcohol^{7,8} ions b and b' lose successively CO and H₂ generating ions c and d resp. (Scheme 1), possibly via the mechanisms proposed earlier.⁸ This sequence of reactions is supported by corresponding diffuse peaks (Appendix 1, reaction no.'s 3 and 5, resp.).

Although the further decomposition of fragment m/e 107 from 1-phenylethanol-1 is analogous to that from benzylalcohol,^{7,8} it is questionable whether all hydrogen atoms, except those of the CH₃ group, scramble and whether a ring expansion to a

seven-membered ring occurs in the molecular ion of 1-phenylethanol-1, as in the molecular ion of benzylalcohol.⁸ This problem results in two possible structures for fragment m/e 107 [M – CH₃], presented by ions b and b' (Scheme 1), which could be formed before and/or after an extensive scrambling of all hydrogen atoms in the molecular ion, except those of the CH₃ group. Sequences $a \rightarrow a' \rightarrow b'$ and $a \rightarrow b$ correspond with the first-mentioned possibility. In ion b none of the hydrogen atoms have lost their original position, which could be supported by the following arguments:

(a) In all spectra the peak at m/e 105 is the most intense one in the mass region m/e 100 to m/e 110, apart from the base peaks due to loss of the CH₃ group from the molecular ions. The same phenomenon was observed in the mass spectrum of benzylalcohol by Eliel *et al.*⁷ and because in that case the $[M - 1]^+$ ion $(m/e \ 107)$ was formed by loss of one hydrogen atom from the molecular ion after a nearly complete scrambling of all hydrogen atoms, it could not be the precursor of fragment

m/e 105. Therefore a different route to fragment m/e 105 was suggested,⁷ viz:

$$C_{6}H_{5}CH_{2}OH^{+} \xrightarrow{-H_{2}} C_{6}H_{5}CHO^{+} \xrightarrow{-H} C_{6}H_{5}CO^{+}$$

$$m/e \ 108 \qquad m/e \ 106 \qquad m/e \ 105$$

Analogous to this route the peak at m/e 105 in all spectra of the present study might be explained by the sequence:

$$C_{6}H_{5}CH(OH)CH_{3}^{+} \xrightarrow{-H_{2}} C_{6}H_{5}COCH_{8}^{+} \xrightarrow{-CH_{3}} C_{6}H_{5}CO^{+}$$
$$m/e \ 122 \qquad m/e \ 120 \qquad m/e \ 105$$

This cannot be true, however, because the peak at m/e 120, corresponding with the molecular ion of acetophenone, is hardly visible and can therefore not account for the rather high intensity of the peak at m/e 105 (relative abundances of the fragments m/e 120 and m/e 105 in the mass spectrum of acetophenone⁹ are 31.51% and 100%, respectively). A more probable formation of fragment m/e 105 would thus be the loss of a hydrogen molecule from ion b, but this implies that ion b has an α -hydroxybenzyl structure, in which the hydrogen atoms have not lost their original positions (Scheme 1, sequence $b \rightarrow e$). This reaction corresponds with the transition of one even-electron carbonium ion (ion b) to an other even-electron carbonium ion (ion e).¹⁰ This sequence may be more favourable than the sequence $b \rightarrow f \rightarrow e$ (Scheme 1), involving an intermediary odd-electron system. Nevertheless, this last sequence could also be operative in generating ion e. Sequence $f \rightarrow e$ resembles the behaviour of benzaldehyde,¹¹ which loses specifically the aldehydic hydrogen atom upon electron impact, as proved by deuteration. Finally, ion e loses CO giving ion d as demonstrated by diffuse peaks (Appendix 1, reaction no. 4).

(b) In the mass spectrum of unlabelled 1-phenylethanol-1 a peak of low intensity at m/e 29 is observed (Fig. 1). This peak does not shift in the mass spectra of the β -d₃ and O-d₁ analogues, but shifts to m/e 30 in the mass spectrum of the α -d₁ compound (Figs. 2, 4 and 3, resp.). The same was found in the mass spectra of benzylalcohol⁷ and its deuterated analogues and because no randomizing migration of hydrogens can have occurred in the formation of the fragment m/e 29 (CHO⁺), the following reaction sequence has been suggested:⁷

$$C_{6}H_{5}CH_{2}OH^{\ddagger} \xrightarrow{-H_{2}} C_{6}H_{5}CHO^{\ddagger} \xrightarrow{-C_{6}H_{5}} CHO^{+}$$

$$m/e \ 108 \qquad m/e \ 106 \qquad m/e \ 29$$

In the present study however, it is difficult to explain the formation of the fragment m/e 29 via such a mechanism. A more probable sequence would seem to be the elimination of a benzene molecule from ion b through a four-membered transition state¹² (arrows in ion b) to give ion g, although this ion g could also be generated via the sequence $b \rightarrow f \rightarrow g$ (Scheme 1).

From these considerations it may be concluded, that fragment m/e 107 consists, at least partly, of an α -hydroxybenzyl structure, in which the hydrogen atoms have not lost their identity. Consequently, the molecular ion of 1-phenylethanol-1 must have partly a structure as represented by ion a in Scheme 1. 2. Successive eliminations of H and C_6H_6 from a scrambled molecular ion. In the mass spectra of undeuterated 1-phenylethanol-1 and its β -d₃ analogue small peaks are found at m/e 121 and at m/e 124, respectively. These agree with the loss of a hydrogen atom from the corresponding molecular ions (Figs. 1 and 2). In the mass spectra of the α -d₁ and O-d₁ compounds small peaks are observed at m/e 122 and at m/e 121, generated by loss of a hydrogen as well as a deuterium atom from the corresponding molecular ions (Figs. 3 and 4).

These observations suggest a non-specific loss of a hydrogen atom from the molecular ion and analogous to the behaviour of benzylalcohol^{7,8} it may be assumed, that all hydrogen atoms except those of the CH_3 group scramble in the molecular ion, before a hydrogen atom is eliminated.

The $[M - 1]^+$ -ion from unlabelled 1-phenylethanol-1 and from its β -d₃, α -d₁ and O-d₁ analogues is the precursor of the acetyl cation, containing the original CH₃ group, as indicated by diffuse peaks found in the spectra and in agreement with the shift of the peak at m/e 43 in the mass spectra of undeuterated 1-phenylethanol-1 and its α -d₁ and O-d₁ analogues to m/e 46 in the mass spectrum of the β -d₃ compound (Appendix 1, reaction no. 2 and Figs. 1 to 4). This reaction can be rationalized by assuming that all hydrogen atoms, except those of the CH₃ group, scramble in the molecular ion via a π -complex without alteration of the carbon skeleton, as proposed by Shannon⁸ for the molecular ion of benzylalcohol. Loss of a hydrogen atom from this π -complex, represented by ion a'', could give ion h, from which a benzene molecule may be eliminated in a four-membered transition state¹² (arrows in ion h) to give the acetyl cation i (Scheme 1).

In relation to the discussions, given above, the following points can be made:

(a) The occurrence of the peak at m/e 43 in the mass spectra of unlabelled 1phenylethanol-1 and its α -d₁ and O-d₁ analogues and of the peak at m/e 46 in the mass spectrum of the β -d₃ compound are not caused by the presence of acetophenone, which could in principle be formed by chemical dehydrogenation in the mass spectrometer or by a loss of a hydrogen molecule from the parent ion of 1-phenylethanol-1. A peak at m/e 120 in the mass spectra of the d₀, α -d₁ and O-d₁ compounds and a peak at m/e 123 in the mass spectrum of the β -d₃ compound, corresponding with the molecular ions of acetophenone and its β -d₃ analogue, are hardly observed and can therefore not account for the high intensity of the peak due to the acetyl cation in the spectra (Relative abundances of the fragments m/e 120 and m/e 43 in the mass spectrum of acetophenone⁹ are 31.51% and 21.43%, resp.).

(b) Neither in section 1 nor in section 2 was a ring expansion of the molecular ion to a seven-membered ring system necessary to explain our results. Ring expansion could just as well occur during or after cleavage of a bond in the molecular ion, as depicted by the sequence $a'' \rightarrow b'$ in Scheme 1. This does not altogether exclude the possibility of an earlier ring expansion in the molecular ion itself before and/or after scrambling of hydrogen atoms. Naturally this would depend on the relative rates of scrambling and ring expansion (cf. sequences $a \rightarrow a'$ and $a \rightarrow a'' \rightarrow a'$ in Scheme 1).

In section 1 an unscrambled and in section 2 a scrambled molecular ion were assumed to interpret the spectra. This suggests that loss of a methyl group is a very fast reaction whereas loss of hydrogen is very slow compared with the rate of hydrogen scrambling in the molecular ion. Similar observations have been made earlier by Meyer and Harrison for ethylbenzene.¹³

Fragmentation of 2-phenylethanol-1, C₆H₅CH₂CH₂OH

Comparison of the standard spectrum with that of α -d₂, β -d₂, ortho-d₂, para-d₁, O-d₁ and (ortho-d₂ + O-d₁) analogues together with the m/e- and m_2/m_1 -values for diffuse peaks enable us to distinguish four reaction paths for the decomposition of the molecular ion (See Figs. 5 to 12, Appendix 2 and Schemes 2 and 3*).

1. Elimination of vinylalcohol after exchange of aromatic and hydroxylic hydrogen atoms in the molecular ion (Fig. 5, Appendix 2, reaction no's 2a to 2h, and Scheme 2). In the mass spectrum of undeuterated 2-phenylethanol-1 a diffuse peak of low intensity is found, corresponding with the loss of a C_2H_4O molecule from the molecular ion (M = 122). Clearly observable shifts of this diffuse peak in the mass spectra of the specifically deuterated analogues (Fig. 5) show, that the deuterium distribution in the eliminated C_2H_4O molecule is as follows:

$para-d_1:C_2H_4O$	α -d ₂ :C ₂ H ₃ DO
$prtho-d_2: C_2H_4O$ and C_2H_3DO	$O-d_1:C_2H_4O$
β -d ₂ :C ₂ H ₂ D ₂ O	$(ortho-d_2 + O-d_1): C_2H_4O \text{ and } C_2H_3DO$

Moreover, the relative heights of the diffuse peaks in the spectra of the ortho-d₂ and $(ortho-d_2 + O-d_1)$ compounds indicate that C_2H_4O and C_2H_3DO are lost in a 2:1- and in a 1:1 ratio, respectively. These ratios can be explained by assuming that all aromatic hydrogen atoms and the hydroxylic hydrogen atom are involved statistically in the elimination of the C_2H_4O molecule from the molecular ion. This would imply that the O-d₁ and para-d₁ analogues also lose C_2H_3DO besides C_2H_4O from the molecular ions. An indication that this actually occurs is the just visible enhancement in the base lines of the spectra from the O-d₁ and para-d₁ compounds at positions, where we must expect a diffuse peak corresponding with the elimination of a C_2H_3DO molecule from the molecular ions. 5).

Two mechanisms could account for these observations:

(a) The hydroxylic hydrogen atom could be captured by the π -orbital of the phenyl ring to give a π -complex (Scheme 2, sequence $a \rightarrow b$). After equilibration of this hydrogen atom with all aromatic hydrogens, which could be effected in the equilibrium $b \rightleftharpoons b'$, a hydrogen atom returns to oxygen (Scheme 2, sequence $b \rightarrow c$). From an infrared spectrometric study an OH- π -sextet interaction in 2-phenylethanol-1¹⁴ has also been suggested, despite the essential difference between infrared and mass spectrometry.

(b) The hydroxylic hydrogen atom could be transferred to one of the ortho positions of the phenyl ring to give a σ -complex (Scheme 2, sequence $a \rightarrow b'$). In this σ -complex equilibration of the hydroxylic hydrogen atom with all aromatic hydrogens could be reached by a series of consecutive 1,2-shifts of hydrogen, as proposed for toluene.¹³ Then, after equilibration, a hydrogen atom returns to oxygen (Scheme 2, sequence $b' \rightarrow c$).

Finally, from ion c a molecule of vinylalcohol may be eliminated via a fourmembered transition state¹² (arrows in ion c) generating ion d.

The 'aromatic — hydroxylic'-exchange of hydrogens in the molecular ion of 2phenylethanol-1 can only be deduced from observed diffuse peaks, because the peak at m/e 78 (ion d) in the mass spectrum of unlabeled 2-phenylethanol-1 does not shift clearly in the mass spectra of its deuterated analogues (see Figs. 6 to 12). Moreover, another route is also operative in the formation of ion d (see below).

* Reactions, for which corresponding diffuse peaks are observed, are denoted by an asterisk. The numbers at the reactions correspond with the reaction numbers in Appendix 2.

FIG. 5. Partial mass spectra of 2-phenylethanol-1 and its specifically deuterated analogues, obtained at 25-30 eV and with maximum gain of the electron multiplier. Code numbers 2a, 2b, etc. refer to reaction numbers in Appendix 2.

The suggested exchange contrasts with the behaviour of the molecular ions from γ -phenylpropanol,⁵ γ -phenylpropylbromide¹⁵ and benzoic acid,¹⁶ in which specific 'ortho- γ -hydroxylic'-, 'ortho- α '- and 'ortho-hydroxylic' exchanges of hydrogens have been found respectively.

2. Elimination of H₂CO from the molecular ion (Scheme 3). In the mass spectra of undeuterated 2-phenylethanol-1 (M = 122) and its α -d₂ analogue a peak is found at m/e 92 (Figs. 6 and 7). This peak shifts to m/e 93 in the mass spectra of the O-d₁ and para-d₁ compounds, to m/e 94 in the spectra of the β -d₂ and ortho-d₂ analogues and to m/e 95 in the mass spectrum of the (ortho-d₂ + O-d₁) derivative (Figs. 8 to 12).

FIGs. 6, 7 and 8. Mass spectra of 2-phenylethanol-1 and its α -d₂ and β -d₂ analogues.

FIGS. 9, 10 and 11. Mass spectra of ortho-d₂, para-d₁ and O-d₁ analogues of 2-phenylethanol-1.

3

FIG. 12. Mass spectrum of the $(ortho-d_2 + O-d_1)$ analogue of 2-phenylethanol-1.

This can all be explained by the elimination of a molecule of formaldehyde from the molecular ion via a McLafferty rearrangement⁴ of the hydroxylic hydrogen atom to one of the ortho positions of the phenyl ring (Scheme 3, sequence $a \rightarrow e$). Diffuse peaks support this reaction and indicate that the eliminated molecule of formaldehyde contains specifically the α -hydrogen atoms (Appendix 2, reaction no. 1).

The same conclusion was partly reached earlier by Gilpin,³ who measured the mass spectra of unlabelled 2-phenylethanol-1 and of its O-d₁ analogue. He noted, however, that the peak at m/e 92 in the mass spectrum of the O-d₁ compound could not be explained completely by the presence of undeuterated 2-phenylethanol-1 and natural ¹³C contribution of the peak at m/e 91. He therefore concluded that a hydrogen atom rearrangement also takes place (m/e 92), although to a minor extent as compared with the rearrangement of the deuterium atom (m/e 93).³ This explanation for the peak at m/e 92 in the mass spectrum of the O-d₁ compound seems to us very unlikely, because the molecule of formaldehyde, lost from the molecular ion, would then not contain *both* α -hydrogen atoms, as found by us. An alternative explanation for the occurrence of the peak at m/e 92 in the mass spectrum of the O-d₁ compound seems to us very unlikely, because the molecule of formaldehyde, lost from the molecular ion, would then not contain *both* α -hydrogen atoms, as found by us. An alternative explanation for the occurrence of the peak at m/e 92 in the mass spectrum of the O-d₁ compound can be given on the basis of the diffuse peaks, found in the spectra. These show a random loss of hydrogen from ion e to give the tropylium ion f, as found earlier⁵ (Appendix 2, reaction no. 6).

Finally, it may be noted that prior to the McLafferty rearrangement of the hydroxylic hydrogen atom to one of the *ortho* positions of the phenyl ring, an 'aromatic — hydroxylic' -exchange of hydrogens in the molecular ion may have occurred, as discussed in 1 (Scheme 3, sequence $c \rightarrow e$). This exchange process, however, has no influence on the elimination of a molecule of H₂CO from the molecular ion.

3. Formation of the tropylium ion (Scheme 3). The base peaks in all spectra can be explained by a simple C_{α} - C_{β} cleavage, generating the well-known tropylium ion, although this ion could possibly also be partly formed from an 'aromatic hydrogen-hydroxylic hydrogen'-exchanged molecular ion, as discussed in 1 (Figs. 6 to 12 and Scheme 3, sequence $a, c \rightarrow f$). Another route to the tropylium ion f is the loss of a hydrogen atom from ion e (Scheme 2), as discussed in 2.

4. Successive losses of H₂O and C₂H₂ from the molecular ion (Scheme 3). In the mass spectra of 2-phenylethanol-1 and its O-d₁ analogue a small peak is observed at m/e 104. This peak shifts to m/e 105 in the mass spectra of the para-d₁ and β -d₂ compounds and to m/e 106 in the spectra of the ortho-d₂, α -d₂ and (ortho-d₂ + O-d₁) analogues (Figs. 6 to 12).

These observations can be explained by the loss of a molecule of water, containing a β -hydrogen atom, from the molecular ion (Scheme 3, sequence $a \rightarrow g$), although dehydration prior to electron impact could also happen. Moreover, just as noted in 2 and 3, loss of a molecule of water from an 'aromatic hydrogen-hydroxylic hydrogen'exchanged molecular ion cannot be excluded altogether (Scheme 3, sequence $c \rightarrow g$).

After randomization of hydrogen atoms, ion g loses acetylene, as established by the diffuse peaks found in the spectra (Table 6, reaction no. 3).

The same is true for the loss of a hydrogen atom from ion g, which results in the formation of ion h, which also eliminates acetylene (Appendix 2, reaction no.'s 4 and 5, respectively).

This behaviour of ion g resembles that of styrene, for which an octatetraene ring with a random distribution of hydrogen atoms has been proposed earlier, based on the mass spectra of some specifically deuterated styrenes.¹⁷

Fragmentation of 1-phenylpropanol-2, C₆H₅CH₂CH(OH)CH₃

Comparison of the standard spectrum with that of α -d₁, O-d₁, β' -d₃, β , β' -d₅ and $(\beta, \beta'$ -d₅ + O-d₁) analogues together with the m/e and m_2/m_1 values for diffuse peaks enable us to distinguish four main reaction paths for the decomposition of the molecular ion (See Figs. 13 to 18, Appendix 3 and Schemes 4 and 5[†]).

1. Elimination of acetaldehyde from the molecular ion. In the mass spectra of unlabelled 1-phenylpropanol-2 (M = 136) and its β' -d₃ and α -d₁ analogues the base peak is found at m/e 92 (Figs. 13 to 15). This peak shifts to m/e 93 in the mass spectrum of the O-d₁ compound (Fig. 16), to m/e 94 in that of the β , β' -d₅ compound (Fig. 17) and to m/e 95 in that of the $(\beta, \beta'$ -d₅ + O-d₁) analogue (Fig. 18).

This can all be explained by a McLafferty rearrangement⁴ of the hydroxylic hydrogen atom to one of the *ortho*-positions of the phenyl ring and the deuterium labelling indicates that transfer occurs exclusively from this functionality, even if other hydrogen atoms are available like those of the CH_3 group in the present study. This has been already noted earlier¹⁸ from the mass spectra of O-d₁ analogues of compounds, closely related to 1-phenylpropanol-2. This phenomenon however, can be explained in two ways:

(a) The McLafferty rearrangement takes place in the molecular ion. Then we must conclude, that participation of the hydroxylic hydrogen atom in this rearrangement is energetically much more favourable than that of the hydrogen atom linked in the alkyl group (e.g. CH_3 group).

(b) The McLafferty rearrangement takes place in the fragment ion, formed from the molecular ion by loss of the CH₃ group. In that case a hydrogen atom from the CH₃ group cannot participate in this reaction. Diffuse peaks, found in the spectra, favour the first explanation (See Appendix 3, reaction no. 1). Thus we may conclude that the molecular ion of 1-phenylpropanol-2 loses a molecule of acetalde-hyde via the process depicted in Scheme 4, sequence $a \rightarrow b$.

* Reactions, for which corresponding diffuse peaks are observed, are denoted by an asterisk. The numbers at the reactions correspond with the reaction numbers in Appendix 3.

FIGS. 13, 14 and 15. Mass spectra of 1-phenylpropanol-2 and its β' -d₃ and α -d₁ analogues.

FIGS. 16, 17 and 18. Mass spectra of O-d₁, β , β' -d₅ and (β , β' -d₅ + O-d₁) analogues of 1-phenylpropanol-2.

Just as noted in 2-phenylethanol-1, prior to the McLafferty rearrangement an 'aromatic-hydroxylic'-exchange of hydrogens in the molecular ion may occur (Scheme 4, sequence $a' \rightarrow a$). This however has no influence on the sequence $a \rightarrow b$.

Diffuse peaks, observed in the spectra, indicate a random loss of a hydrogen atom from ion b to give the tropylium ion c, as found earlier⁵ (Appendix 3, reaction no. 5). An other route to the tropylium ion c could be a simple C_{β} - C_{α} -cleavage in the molecular ion (Scheme 4, sequence $a \rightarrow c$).

SCHEME 4

2. Successive losses of CH₃ and H₂O or C₂H₂O from the molecular ion. The shift of the peak at m/e 121 in the mass spectra of undeuterated 1-phenylpropanol-2 and its β' -d₃ analogue to m/e 122 in the mass spectra of the α -d₁ and O-d₁ compounds, to m/e 123 in the mass spectrum of the β , β' -d₅ analogue and to m/e 124 in the mass spectrum of the $(\beta, \beta'$ -d₅ + O-d₁) derivative, corresponds with the loss of the CH₃ group from the molecular ion (Figs. 13 to 18 and Scheme 5, sequence $a \rightarrow d$).

Ion d loses H₂O after an extensive scrambling of hydrogen atoms, as indicated by the diffuse peaks, found in the spectra (Appendix 3, reaction no. 2).

The extent of scrambling of hydrogen atoms in ion d could be estimated from retention of the original deuterium in the $[M - CH_3 - H_2O]^+$ ion, derived from corresponding ions d of the deuterated alcohols. To arrive at this, the intensity of the $[M - CH_3 - H_2O]^+$ ion from the undeuterated and from all specifically deuterated samples of 1-phenylpropanol-2 is expressed as percentage of the sum of the intensities of all corresponding $C_8H_xD_y^+$ ions after correction for natural ¹³C contribution (8.8%). This leads to the values in Table 1.

From this Table retention of the original deuterium in the $[M - CH_3 - H_2O]^+$ ion can be calculated. This leads to the values in Table 2, which also contains values, expected after a complete scrambling of all hydrogen atoms in ion d (rows 'found' and 'Calc.' in Table 2, respectively).

SCHEME	5
COLLENNES.	~

Table 1. Intensities of $C_8H_xD_y^+$ ions from deuterated 1-phenylpropanol-2 (in $\%\Sigma C_8H_xD_y^+$)

do	α- d 1	β' -d ₃	O-d ₁	β, β'-d _s	$(\beta, \beta' - \mathbf{d}_{\mathfrak{s}} + \mathbf{O} - \mathbf{d}_{\mathfrak{l}})$
8.0	5.0	9.3	12.0	2.2	1.5
92.0	26.0	90.7	38.5	11.8	7.5
	69-0		49.5	28.3	13.4
	_			57.7	39.4
					38.7
	d ₀ 8·0 92·0 —	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The underlined values refer to the $[M - CH_3 - H_2O]^+$ ion.

		I-PHENYLPRO	$DPANOL-2 (IN \ 7_{\mathcal{C}})$.)
<u> </u>	α-d1	O-d ₁	β, β' -d ₅	$(\beta,\beta'\text{-}d_5+\text{O-}d_1)$
Found	75.0	53-8	62.7	41.5
Calc.	77.8	77.8	58-3	41.7

Table 2. Label retentions in $C_8H_7^+$ from deuterated 1-phenylpropanol-2 (in %)

From this Table it appears, that scrambling of all hydrogen atoms in ion d is almost complete; however, it must be pointed out that:

(a) No corrections have been made for incomplete labelling, because the D-content of site-specifically deuterated 1-phenylpropanol-2 could not be measured by mass spectrometry (see Experimental). This is no objection, because the NMR spectra of the α -d₁, β' -d₃ and β , β' -d₅ analogues have shown a specific and an almost complete deuteration (see Experimental), whereas the peak at m/e 45 in the mass spectrum of the d₀ compound, due to the CH₃CH(OH)⁺-ion, shifts to a very large extent to m/e 46 and to m/e 49 in the mass spectra of the O-d₁ and (β , β' -d₅ + O-d₁) analogues, respectively (see Figs. 13, 16 and 18).

(b) It has been assumed, that the $C_8H_7^+$ -ion originates exclusively from ion *d*. Alternatively, the $C_8H_7^+$ -ion could also be formed from the $[M - H_2O]^+$ -ion by loss of the CH₃-group. If the $(M - H_2O)^+$ -ion has a β -methylstyrene structure, then the importance as a precursor of the $C_8H_7^+$ -ion is rather low (relative abundances of the fragments m/e 118 and m/e 103 in the mass spectrum of β -methylstyrene¹⁹ are 76.5% and 10%, respectively).

Another indication for scrambling of hydrogen atoms in ion d is the loss of C_2H_2O from this ion, as substantiated by the diffuse peaks (Appendix 3, reaction no. 3). To explain the scrambling of hydrogen atoms in ion d, we propose an eight-membered ring structure for the $C_8H_9O^+$ -ion, possibly formed by the mechanism presented in Scheme 5, sequence $d \rightarrow e \rightarrow f$, and analogous to that suggested for the $C_8H_9^+$ -ion from γ -phenylpropanol.⁵ After a series of successive 1-2- and/or 1-5 shifts of hydrogen²⁰ in ion f, H₂O as well as C_2H_2O (possibly hydroxyacetylene) are eliminated, generating ions g and h (Scheme 5).

Finally, from ion g a molecule of C_2H_2 is eliminated giving ion *i*, as supported by diffuse peaks (Appendix 3, reaction no. 4).

3. Loss of a molecule of water from the molecular ion. The peak at m/e 118 in the spectra of the d_0 and O- d_1 compounds shifts to m/e 119 in the mass spectrum of the α - d_1 analogue (Figs. 13, 15 and 16) and to m/e 121 in the spectrum of the β' - d_3 compound (Fig. 14; this peak coincides with that due to the $[M - CD_3]^+$ ion).

No clear shift of this peak is observed in the mass spectra of the β , β' -d₅ and $(\beta, \beta'$ -d₅ + O-d₁) analogues (Figs. 17 and 18).

It is possible, that water is eliminated from the molecular ion in a rather complicated manner. Also the structure of the resulting ion j is unknown (Scheme 5). It can only be stated, that the loss of H and H₂ from this ion is analogous to that found for the C₉H₁₀⁺ ion, derived from γ -phenylpropanol⁵ (Scheme 5, sequences $j \rightarrow k \rightarrow l$ and $j \rightarrow m$).

4. Formation and further degradation of the $C_2H_5O^+$ ion. The peak at m/e 45 in the mass spectrum of the d_0 compound shifts to m/e 46 in the mass spectra of the α -d₁ and O-d₁ analogues, to m/e 48 in the spectra of the β' -d₃ and β , β' -d₅ compounds and to m/e 49 in the mass spectrum of the $(\beta, \beta'-d_5 + O-d_1)$ derivative (Figs. 13 to

18). This can be explained by a simple C_{β} - C_{α} cleavage in the molecular ion with charge retention on the hydroxyl containing moiety (Scheme 5, sequence $a \rightarrow n$). It has been proposed earlier^{21,22} that ion *n* isomerizes to ion *o*, from which a CH₄ and a $C_{2}H_{2}$ molecule are eliminated (Scheme 5, sequences $o \rightarrow p$ and $o \rightarrow q$ and Appendix 3, reaction nos 6 and 7). The diffuse peaks, corresponding with these reactions, indicate that all hydrogen atoms in ion *o* scramble in contrast with a previous study,²¹ which has suggested no participation of the hydroxylic hydrogen atom in the scrambling process in ion *o*.

EXPERIMENTAL

Mass spectra were obtained with an AEI MS-2H and an AEI MS-9 mass spectrometer. Samples were introduced through a heated (Gallium) inlet system at 150°. The spectra from both instruments were essentially the same. The m/e and the m_3/m_1 values for diffuse peaks have been measured on the MS-9 instrument (Appendices 1, 2 and 3), as described earlier.⁵

TABLE	3.	MEASUREMENT	OF	DEUTERIUM	CONTENT	(%)	OF
					~	8	

	By mass spect Accuracy lim	rometry it 0·3%				By NMR
Ionization energy	Site-specifically deuterated 1-phenylethanol-1	d ₃	d ₂	d1	d₀	Accuracy limit 1 to 2%
	α-d1		_	95.9	4.1	95
9∙0 eV	β -d ₃	97.7	2.3			98
	O-d ₁		_	93.7	6.3	1

LABELLED 1-PHENYLETHANOL-1, $C_6H_5CH(OH)CH_5$

All samples were purified by preparative gas chromatography with a Wilkens Aerograph A-90-P instrument. The applied columns were a 2.5 m/6 mm with 30% PEG 2000 for the undeuterated 1-phenylethanol-1 and its α -d₁ and β -d₂ analogues (column temp. 170°; retention time 30.2 min) and for unlabelled 1-phenylpropanol-2 and its α -d₁, β' -d₂ and β , β' -d₅ analogues (column temp. 158°; retention time 61.5 min) and a 2 m/6 mm with 20% Silicone Rubber SE-52 for 2-phenylethanol-1 and its α -d₂, β -d₂, *ortho*-d₂ and *para*-d₁ analogues (column temp. 150°; retention time 13.6 min). The supporting material was kieselguhr and helium was used as carrier gas. After purification IR and NMR spectra established the structure, the D content and the purity.

The D content of the specifically deuterated analogues from 1-phenylethanol-1 and 2-phenylethanol-1 was also measured by mass spectrometry, using such a low ionization energy, that in the parent mass regions from the spectra of the corresponding undeuterated compounds only the molecular ion peaks remained. The results of these measurements have been collected in Tables 3 and 4. The D content of the specifically deuterated analogues from 1-phenylpropanol-2 could not be measured by mass spectrometry because of the low intensity of the molecular ion peak and the presence of a $[M - 1]^+$ ion peak, not disappearing completely at lower ionization energy, in the mass spectrum of the corresponding unlabelled compound.

Preparation of the α -d₁ analogue from 1-phenylethanol-1. 9.3 g of acetophenone were reduced²³ with LiAlD₄ to 8.8 g of C₆H₅CD(OH)CH₃.

Preparation of the β -d₃ analogue from 1-phenylethanol-1. 12 g of acetophenone were heated with 10 g of D₂O and 100 mg of K₂CO₃ for 16 hr at 110°.^{24, 95} After exchange the deuterated compound was extracted with dry ether, the ether was removed and the residue subjected to the same procedure three more times. Then it was reduced with LiAlH₄ to 9.7 g of C₆H₅CH(OH)CD₃.

Preparations of the O-d₁ analogue from 1-phenylethanol-1. D₂O was introduced in the heated inlet system of the mass spectrometer and pumped away after a few minutes. This operation was repeated several times. Then 1-phenylethanol-1, previously treated with an excess of D₂O, was introduced in the heated inlet system together with a fresh portion of D₂O.^{26,27}

	By mass spect Accuracy limit	rometry it 0·1 %	,			By NMR.
Ionization energy	Site-specifically deuterated 2-phenylethanol-1	d_3 d_2 d_1 d_0	Accuracy limit 1 to 2%			
	α-d ₂		94.4	5.6		96
	β -d ₂		94.6	5.4		9
10.0 eV	ortho-d2		95.4	4.6		
	para-d1			89.9	10-1	
	O-d ₁			92.8	7.2	and the second se
	$(ortho-d_2 + O-d_1)$	7 3 ·3	25.0	1.7		

TABLE 4. MEASUREMEN	r of deute	RIUM CON	TENT	(%)	OF
		β	α		
LABELLED 2-PHENYI	ETHANOL-1	, C ₆ H₅CH	2CH2	он	

Preparations of 2-phenylethanol-1, specifically deuterated in the α , β , ortho and para positions. The syntheses of these compounds have been described earlier.⁵

Preparations of the O- d_1 analogues from 2-phenylethanol-1 and its ortho- d_2 derivative. These compounds were obtained, as described above.

Preparations of 1-phenylpropanol-2 and its α -d₁ analogue. These compounds were obtained by reduction of phenylacetone with LiAlH₄ and LiAlD₄, respectively.²³ According to the NMR spectrum the α -d₁ analogue was deuterated specifically in the α -position and to the extent of 95%.

Preparation of the β' -d₃ analogue from 1-phenylpropanol-2. 50 g of propylenecarbonate (Fluka reagent) were reduced²⁸ with LiAlD₄ in diethylcarbitol to 9·4 g of CD₃OH with b.p. 61° to 64° and deuterated to the extent of 98% (NMR). This was converted into 32·7 g CD₃J.²⁹ The Grignard compound was made from 14·1 g of CD₃J to react with 11·6 g of phenylacetaldehyde, giving after hydrolysis and distillation 9·4 g of C₈H₅CH₂CH(OH)CD₃ with b.p. 90° to 91°/6 mm and deuterated to the extent of 97% (NMR).

Preparation of the β , β' -d₅ analogue from 1-phenylpropanol-2. 3 g of phenylacetone were exchanged twice with 12.5 g of D₂O and 200 mg of K₂CO₃ for 18 hr at 90°. The exchanged product was then reduced with LiAlH₄ in a standard procedure²³ to C₆H₅CD₂CH(OH)CD₃, which was deuterated specifically in the β - and β' -positions to the extent of 99% (NMR).

Preparations of the O-d₁ analogues from 1-phenylpropanol-2 and its β , β' -d₅ derivative. These compounds were obtained, as described above.

Acknowledgement—The authors are greatly indebted to Mr W. J. Rooselaar and Mr J. D. van Wageningen, who measured the mass spectra, to Miss M. Boomgaard for taking the NMR spectra and to Miss A. M. A. Schoff for the IR spectra.

Reaction		-	10	β-	1 ₃	4	d,	Ò	q,	Ca	lc.
no.	Metastable transitions	* <i>m</i>	$m_{\rm a}/m_{\rm 1}$	* <i>m</i>	m_2/m_1	*m	m_2/m_1	* <i>m</i>	m_2/m_1	* <i>m</i>	m_2/m_1
1†	$C_{s}H_{10}O^{+} \rightarrow C_{r}H_{r}O^{+} + CH_{s}$	93-83	-877	1	1	93-83	•878	93-82	·878	93.88	-877
+	$C_{a}H_{r}D_{a}O^{+} \rightarrow C_{r}H_{r}O^{+} + CD_{a}$	1]	91-56	·857	1	1	1	l	91.61	-856
+	$C_{s}H_{s}D_{s}O^{+} \rightarrow C_{r}H_{r}O^{+} + CHD_{s}$	1	1	92-30	-857		1	1	1	92.35	·863
+1	$C_{s}H_{s}DO^{+} \rightarrow C_{s}H_{s}DO^{+} + CH_{s}$	•	1	1	1	94.82	6 79-	94-81	. 879	94-87	·878
6	$C_{s}H_{s}O^{+} \rightarrow C_{s}H_{s}O^{+} + C_{6}H_{6}$	15-28	1	1	ł	1]	1	1	15.29	-355
2	$C_{s}H_{6}D_{3}O^{+} \rightarrow C_{2}D_{3}O^{+} + C_{6}H_{6}$]]	17-05	1	1]	1	1	17-08	·371
2	$C_{s}H_{s}DO^{+} \rightarrow C_{s}H_{3}O^{+} + C_{6}H_{s}D$	1	1	1	1	15-17	1	15-14]	15-16	-352
ŝ	$C,H,O^+ \rightarrow C_6H,^+ + CO$	58-41	-741	58-38	.741]	1	1	1	58-38	.738
3	$\mathrm{C_{7}H_{6}DO^{+}} ightarrow \mathrm{C_{6}H_{6}D^{+}} + \mathrm{CO}$	ł	1	1]	59-34	·743	59-32	-744	59-32	·741
4	$C_7H_5O^+ \rightarrow C_6H_5^+ + CO$	56-48	-736	56.47	-736	56.49	.737	56.50	-737	56-51	.733
S	$C_6H_{7^+} \rightarrow C_6H_{5^+} + H_3$	75-07	-974	75-07	-974		1	75-05	978	75-07	-975
S	$\mathrm{C_6H_6D^+} ightarrow \mathrm{C_6H_4D^+} + \mathrm{H_3}$	1	1	1	1	76-06	·975	76-05	976-	76-08	·975
5	$C_6H_6D^+ \rightarrow C_6H_5^+ + HD$	1	1	١	I	74-12	. 963	74-10	. 996	74-13	-962

×.
.≃
 _
ž.
5
ā.
a
<u> </u>
~
e
4
C
.=
ŏ
4
.=
8
×
0
0
Ō.
.
43
5
65
Ē
š
õ
ā
تب
5
₽.
S.
ē.
р.
3
Ð
4
فسها
C
-=
77
ŏ
5
<u>.</u>
٥.
~
~ .
2
of
n ot
en ot
een ot
been ot
been of
so been ot
lso been ot
also been ot
e also been ot
ve also been ot
ave also been ot
have also been ot
s have also been ot
ks have also been ot
aks have also been ot
eaks have also been ot
peaks have also been ot
e peaks have also been ot
se peaks have also been ot
use peaks have also been ot
ffuse peaks have also been ot
iffuse peaks have also been of
diffuse peaks have also been of
e diffuse peaks have also been of
pe diffuse peaks have also been ot
ope diffuse peaks have also been ot
tope diffuse peaks have also been of
otope diffuse peaks have also been ot
isotope diffuse peaks have also been of
isotope diffuse peaks have also been of
1 isotope diffuse peaks have also been of
o. I isotope diffuse peaks have also been of
to. I isotope diffuse peaks have also been of
no. 1 isotope diffuse peaks have also been ot
n no. 1 isotope diffuse peaks have also been ot
on no. 1 isotope diffuse peaks have also been ot
ion no. 1 isotope diffuse peaks have also been ot
ction no. 1 isotope diffuse peaks have also been of
action no. 1 isotope diffuse peaks have also been ot
eaction no. 1 isotope diffuse peaks have also been ot
reaction no. 1 isotope diffuse peaks have also been ot
r reaction no. 1 isotope diffuse peaks have also been ot
or reaction no. 1 isotope diffuse peaks have also been ot
For reaction no. 1 isotope diffuse peaks have also been of

Reaction		d	0	α-(d2
No.	Metastable transitions	m*	m_2/m_1	m*	m_2/m_1
1	$^{13}C_1^{12}C_7H_{10}O^+ \rightarrow ^{13}C_1^{12}C_6H_8^+ + H_2CO$	70-30			_
1	$C_8H_{10}O^+ \rightarrow C_7H_8^+ + H_2CO$	69-37	0.757		_
1	${}^{13}C_{1}{}^{12}C_{7}H_{7}D_{3}O^{+} \rightarrow {}^{13}C_{1}{}^{12}C_{6}H_{5}D_{3}^{+} + H_{2}CO$			_	
1	$C_8H_7D_3O^+ \rightarrow C_7H_5D_3^+ + H_2CO$				
1	${}^{13}C_{1}{}^{12}C_{7}H_{8}D_{2}O^{+} \rightarrow {}^{13}C_{1}{}^{12}C_{6}H_{6}D_{2}^{+} + H_{2}CO$				
1	$C_8H_8D_2O^+ \rightarrow C_7H_6D_2^+ + H_2CO$				
1	${}^{13}C_{1}{}^{12}C_{7}H_{8}D_{2}O^{+} \rightarrow {}^{13}C_{1}{}^{12}C_{6}H_{8}^{+} + D_{2}CO$	-	·	69.19	
1	$C_8H_8D_2O^+ \rightarrow C_7H_8^+ + D_2CO$		_	68·26	0.744
1	${}^{13}C_1{}^{12}C_7H_9DO^+ \rightarrow {}^{13}C_1{}^{12}C_6H_7D^+ + H_2CO$				—
1	$C_8H_9DO^+ \rightarrow C_7H_7D^+ + H_2CO$				
1	$C_8H_9DO^+ \rightarrow C_7H_8^+ + HDCO$			68.80	0.744
2a	$C_8H_{10}O^+ \rightarrow C_6H_6^+ + C_2H_4O$	4 9·91	0.643		-
2b	$C_8H_7D_3O^+ \rightarrow C_6H_3D_3^+ + C_2H_4O$		-		-
2c	$C_8H_7D_3O^+ \rightarrow C_6H_4D_2^+ + C_2H_3DO$				
2d	$C_8H_8D_2O^+ \rightarrow C_6H_4D_2^+ + C_2H_4O$		-		
2e	$C_8H_8D_2O^+ \rightarrow C_6H_5D^+ + C_2H_3DO$			50.35	0.640
2f	$C_8H_8D_2O^+ \rightarrow C_6H_6^+ + C_2H_2D_2O^-$	_			_
2g	$C_8H_3DO^+ \rightarrow C_6H_5D^+ + C_2H_4O$				
2h	$C_8H_9DO^+ \rightarrow C_6H_6^+ + C_2H_3DO$	_			—
3	$C_8H_8^+ \rightarrow C_6H_6^+ + C_2H_2$	58-52	0.754		
3	$C_8H_6D_2^+ \rightarrow C_6H_4D_2^+ + C_2H_2$			60.36	0.755
3	$C_8H_6D_2^+ \rightarrow C_6H_5D^+ + C_2HD$			59-0	0.747
3	$C_8H_7D^+ \rightarrow C_6H_5D^+ + C_2H_2$			59.45	0.753
3	$C_8H_7D^+ \rightarrow C_6H_6^+ + C_2HD$			57.95	0.738
4	$C_8H_8^+ \rightarrow C_8H_7^+ + H$	102.0	0 ∙987	—	_
4	$C_8H_6D_2^+ \rightarrow C_8H_5D_2 + H$			104.02	0.989
4	$C_8H_6D_2^+ \rightarrow C_8H_6D^+ + D$	—		102.06	0.979
4	$C_8H_7D^+ \rightarrow C_8H_6D^+ + H$	•		103.01	0.988
4	$C_8H_7D^+ \rightarrow C_8H_7^+ + D$	_		—	
5	$\mathrm{C_8H_7^+} \rightarrow \mathrm{C_6H_5^+} + \mathrm{C_2H_2}$	57.56	0.751		
5	$C_8H_5D_2^+ \rightarrow C_6H_3D_2^+ + C_2H_2$	_		59.45	0.753
5	$C_8H_5D_2^+ \rightarrow C_6H_4D^+ + C_2HD$		·	57.95	0.738
5	$\mathrm{C_8H_6D^+} ightarrow \mathrm{C_6H_4D^+} + \mathrm{C_2H_2}$			58.54	0 ∙749
6	$C_7H_8^+ \rightarrow C_7H_7^+ + H$	90 .01	0-987	90.03	0.987
6	$C_7H_5D_3^+ \rightarrow C_7H_4D_3^+ + H$				
6	$C_7H_5D_3^+ \rightarrow C_7H_5D_2^+ + D$	·			
6	$C_7H_6D_2^+ \rightarrow C_7H_5D_2^+ + H$	—	_		—
6	$C_7H_6D_2^+ \rightarrow C_7H_6D^+ + D$				
6	$C_7H_7D^+ \rightarrow C_7H_6D^+ + H$				-
6	$C_7H_7D^+ \rightarrow C_7H_7^+ + D$	—			

APPENDIX 2. DIFFUSE PEAKS, OBSERVED IN THE MASS SPECTRA

† These diffuse peaks are just visible (see Fig. 5).

									(orth	$o-d_2 +$		
Reaction	0	-d1	β.	-d ₂	ortl	10-d2	pai	ra-d ₁	0	-d1)	C	alc.
No.	m*	m₂/m₁	m*	m ₂ /m ₁	m*	m ₂ /m ₁	m*	m ₂ /m ₁	m*	m_2/m_1	m*	m ₂ /m ₁
1				_							70 ·37	0.756
1	69.38	0.757					69 ·37	0.757			69-43	0.754
1					<u> </u>				73-20		73·22	0.762
1				—				_	72·21		72 ·2 7	0.760
1			72.26	_	7 2·2 3		-	_	72.21		72 ·27	0.760
1			71.30	0 ·760	71.25	0.759	-		71.26	_	71.32	0.758
1			_	_				_		_	69-24	0.744
1	—			_		_		_			68 · 30	0.742
1	71.26						7 1·27	—	71.26		71.32	0.758
1	70·35	0.758	70.33	0 .760	7 0 ·30	0.758	70 ·31	0.758	70.31		70-38	0.756
1		_		_							68 .86	0.748
2a	4 9·9†	0.640	—		—		49 •9†	0.641	-	-	49 ·90	0.639
2b			—						52.51	0 ·650	52·53	0.648
2c	—	—	—		—				51.23	0.642	51.24	0.640
2d			—		51.64	0 ·647	_		51.6†	0.642	51.65	0.645
2e			—		50.34	0.640					50.36	0.637
2f	_		49·10	0.632	-						49 ·09	0 ·629
2g	50 ·79	0.645			—		50 ·77	0.646			50.78	0.642
2h	49·5†	0.640	—		—		49·5 †	0.641	_		49·49	0.634
3	58.51	0.752					5 8·51	0.752			58.54	0.750
3	—				60.42	0.755	-		60.40	0 ·755	60.42	0.755
3		_		—	59.0	0.744			59·0	0 ·744	58.91	0.745
3			59.48	0.755	59.45	0.753	59·5 0	0.754	59.47	0.751	59-48	0.752
3			57.97	0 ·749	57.96	0.743		—	57.92	0 ·748	57·97	0.743
4	102.02	0∙9 88		—		—	102 ·01	0.986			102 ·0 6	0.990
4		_		—	104 ·0 1	0 ∙986			104.00		104.06	0.990
4		_		-	102.04	0.978		_	102.0	_	102.08	0.981
4		_	103-05	0-989	103.01	0.986	103-01	0.988	103.0		103.05	0.990
4	—	_		-			101.02	0.977		_	101 ·07	0.981
5	57.57	0.749		_			5 7•57	0.748		_	57 ·59	0.748
5		—			59.45	0.753			59.47	0.751	59.48	0.752
5		_			57.96	0.743			57-92	0 ·748	57 · 97	0.743
5	—		58.53	0 ·749	58.53	0.748	5 8·51	0.752	58·5 0	0 ·748	58• 53	0.750
6	90.04	0.985	<u> </u>	—			90-02	0.984			90 ∙06	0.989
6		_			—		_		93·0	_	9 3·0 8	0.989
6					—		—		91 · 0		91·10	0.979
6			92.03	0 ·988	92.03	0.988	-		92·0		92 ·0 7	0.989
6	—	—	90.03	0 ∙981	9 0.0 6	9.976		_	90.0		90 ·09	0.979
6	91.04	0.986			91.02	0.983	91.02	0.987			91 ·0 6	0 ∙989
6	89·04	0·978					89 ·04	0.976			89.08	0-978

of site-specifically deuterated $C_6H_5CH_2CH_2OH$

	Appendix 3. Dirfuse pea	KS, OBSI	RVED IN	THE MA	SS SPECTI	ka of si	TE-SPECIF	ICALLY 1	DEUTERAT	тр СН	¢CH2CH	(OH)CH	. 97		
Reactio	uc			B,	d. b.	8	d,		-q1	β,β	,'-d5	(β,β'-d ₅	+ 0-d1)	ථි 	lc.
No.	Metastable transitions	*	m²/m1	* 4	m _s /m ₁	*	m²/m1	*	m²/m1	*u	m ₂ /m ₁	ж	m²/m1	* E	m²/m1
1	$C_9H_{12}O^+ \rightarrow C_7H_8^+ + C_2H_4O$	62·27	0.679]		62-27	0.674	62·32		1	ļ]		62-28	0.676
1	$C_9H_6D_6O^+ \rightarrow C_7H_5D_3^+ + C_2HD_3O$	1	ł	1	1]	ł	1	ł	1	l	63-59	0-670	63-60	0.669
7	$C_9H_7D_6O^+ \rightarrow C_7H_8D_2^+ + C_2HD_3O$]	1	ļ	١	1	ł	1	ļ	62-68	0-669	62-68	0-669	62·71	0-667
1	$C_9H_9D_3O^+ \rightarrow C_7H_8^+ + C_2HD_8O$]	ł	60-87	0-664	1	1	4	ļ]	I	1	ļ	60-93	0-662
-	$C_9H_{10}D_2O^+ \rightarrow C_7H_8^+ + C_8H_8D_8O$	1	-	61-31	0-664	1	ł	ł	ļ	1	ļ]	ļ	61-37	0-667
1	$C_{9}H_{11}DO^{+} \rightarrow C_{7}H_{8^{+}} + C_{2}H_{3}DO$	1	١	ļ	l	61·8I	0-674	I	ļ	ł	ł	1	ļ	61-82	0.672
1	$C_9H_{11}DO^+ \rightarrow C_7H_7D^+ + C_8H_4O$	1	ł	1	ł	1	ł	63-16	0-681	1	١	1	ĺ	63-18	0-679
7	$C_8H_9O^+ \rightarrow C_8H_7^+ + H_2O$	87-71	0-853	87-72	0-852	1		1	ļ	1	ł	1	-	87-72	0-851
0	$C_8H_6D_3O^+ \rightarrow C_6H_4D_3^+ + H_2O$	1	ł]	1	1	ł	1	ļ	ł	۱	90·69	0.856	90-68	0.855
7	$C_{8}H_{6}D_{3}O^{+} \rightarrow C_{6}H_{5}D_{2}^{+} + HDO$	1]	l	I	ł	1	l	1		86.98	0-847	88-96	0-847
7	$C_{3}H_{6}D_{3}O^{+} \rightarrow C_{6}H_{6}D^{+} + D_{2}O$	}	١	1	l	l	ł	١	l	1	l	87·18	0-843	87-27	0-839
7	$C_8H_7D_2O^+ \rightarrow C_8H_5D_2^+ + H_2O$	ł	I	1	ł	1	ł	١	ļ	89-66	0.855	1	1	89-69	0.854
7	$C_8H_7D_2O^+ \rightarrow C_8H_6D^+ + HDO$	}	ł	1	1	1	ł	1	ļ	88·00	0.847	1	l	87-98	0-845
7	$C_{s}H_{s}DO^{+} \rightarrow C_{s}H_{s}D^{+} + H_{s}O$	1	ļ	1	-	88-59	0-853	88-60	0-853	1	I	١	1	88·71	0-852
2	$C_{s}H_{s}DO^{+} \rightarrow C_{s}H_{r}^{+} + HDO$	1	****)	1	87-00	0.846	87·01	0-846	1	l]	I	87·00	0-844
ŝ	$C_8H_9O^+ \rightarrow C_6H_7^+ + C_2H_2O$	51-60	0-656	51.60	0-655]	ł	1]	1	-	1	l	51-62	0-653
ŝ	$C_{8}H_{6}D_{3}O^{+} \rightarrow C_{6}H_{4}D_{3}^{+} + C_{3}H_{3}O$]	١]	1	1	ł	1	ļ	ł	l	54.27	ļ	54-29	0-661
e	$C_{8}H_{6}D_{3}O^{+} \rightarrow C_{6}H_{5}D_{2}^{+} + C_{3}HDO$	1	ł]			ļ	1	ļ	1	I	52-98	0-655	52-96	0-653
ñ	$C_8H_7D_2O^+ \rightarrow C_6H_5D_2^+ + C_2H_2O$	l	-]	1]	ļ	1	ļ	53-37	ļ	1	1	53-40	0.659
£	$C_8H_7D_2O^+ \rightarrow C_6H_6D^+ + C_2HDO$	1	ł	ĵ	1]	ł	1	l	52·00	0.654	1	I	52-08	0.650
۴	$C_6H_6DO^+ \rightarrow C_6H_6D^+ + C_3H_3O$	1	[]	١	52-50	0-659	52.49	0-658	1		ł	(52-51	0-656
4	$C_{8}H_{7}^{+} \rightarrow C_{6}H_{5}^{+} + C_{2}H_{3}$	57-55	0.750	57-57	0.750	57-52	0.749	57·54	0·749	1	I	١	1	57-59	0.748
4	$C_8H_4D_3^+ \rightarrow C_6H_2D_3^+ + C_2H_2$	1	۱	1	l	1	I	ſ	ļ	1	1	60-43	0.755	60-42	0-755
4	$C_9H_4D_3^+ \rightarrow C_6H_3D_3^+ + C_2HD$]	1]]]	1		ł	ł	58-99	0.750	58-91	0-745

† Diffuse peaks from reaction no. 6 are flat-topped³⁰. ³⁰ J. H. Beynon, R. A. Saunders and A. E. Williams, Z. Naturforsch **20a**, 180 (1965).

	ılc.	m²/m1	0.752	0-743	0.750	0-989	0-989	0-979	0-989	0-979	0-989	0.978	0.644	0-612	0-591	0·624	0.604	0.630	0.422	0.449	0.429	0-438	0-417	0.435	0-413
	Ű	*	59-48	57-97	58-53	90.06	93 -08	91.10	92-07	60-06	91-06	80-68	18.68	18-36	17-15	18.74	17-50	18-27	8-03	9-90	9.02	9-20	8:34	8.71	7.86
	+ O-d1)	m²/m1	0-750	0.745	0·745	1	0-988	0.980	086-0	0-976	1	ļ	1	1		ł	I	1			1	1		I	1
	(β,β'-d ₅ -	m*	59-46	58-0	58-51	[93-03	91-07	92-03	90-07	1	I	1	18-30	17.10	ļ		[]	9-92	9-02	I		I	
	-ds	m²/m1	0-754	0-746	0-746	1	l	1	686-0	0.980	1	l		1	[1	1	ł	ł	1	!	I		1
	β,β	m*	59-44	58-00	58-49	1	[92-03	90-06		1]	I		18-73	17-50	1	ļ		1	9-22	8-35		1
	d1 d1	m₂/m₁		1	0·752	0.984		-	I	ł	0-987	0-976		l	I	1	ļ			1		1	1		
	ò	a*		I	58-51	90-03	I	I	I	I	10-16	89-04	ļ	1		ł	1	18-29	8-05	1	[1		8.73	7-87
	d ₁	m²/m1			0-752	0-988	[Manufacture of State	l		!	1]	!				1				1		1
	8	*u	1	l	58-50	90-04	1			1	1]			l	-	18-26		-	1		1	8.71	7-86
		mª/m1		1	[0-987				1]			1]	I					l	[1
	β'-d	*u			1	90-03		1	(1	1			I	[]	l		Į	l	[9-21	8.35	I	[
	-	mª/m1			1	0.988			.					I	1				ł	I		[I	I	1
	d,	*m			l	90-03	۱	l	[18-69		1	-	l	[8·04	1	l	ł	-	1	l
Appendix 3. (continued).)n	Metastable transitions	$C_{a}H_{c}D_{a}^{+} \rightarrow C_{a}H_{a}D_{a}^{+} + C_{a}H_{a}$	$C_{a}H_{a}D_{a}^{+} \rightarrow C_{a}H_{a}D^{+} + C_{a}HD$	$C_{s}H_{s}D^{+} \rightarrow C_{s}H_{s}D^{+} + C_{s}H_{s}$	$C_{H_a^+} \rightarrow C_{H_a^+} + H$	$C,H,D_a^+ \rightarrow C,H_AD_{a^+} + H$	$C,H,D,+ \rightarrow C,H,D,+ \rightarrow D$	$C,H,D,+ \rightarrow C,H,D,+ + H$	$C_{r}H_{r}D_{r}^{+} \rightarrow C_{r}H_{r}D^{+} + D$	$C_{2}H_{1}D^{+} \rightarrow C_{3}H_{6}D^{+} + H$	$C,H,D^+ \rightarrow C,H,+ + D$	$C_{s}H_{s}O^{+} \rightarrow CHO^{+} + CH_{a}$	$C_{a}HD_{a}O^{+} \rightarrow CDO^{+} + CHD_{a}$	$C_{A}HD_{A}O^{+} \rightarrow CHO^{+} + CD_{A}$	$C_{s}H_{s}D_{s}O^{+} \rightarrow CDO^{+} + CH_{s}D_{s}$	$C_{s}H_{s}D_{s}O^{+} \rightarrow CHO^{+} + CHD_{s}$	$C_{a}H_{a}DO^{+} \rightarrow CHO^{+} + CH_{a}D$	$C_{H,O^+} \rightarrow H_{O^+} + C_{H_0}$	$C_{a}HD_{a}O^{+} \rightarrow D_{a}O^{+} + C_{a}HD$	$C_{HD,O^+} \rightarrow HD_{O^+} + C_{O}D_{O^+}$	$C_{s}H_{s}D_{s}O^{+} \rightarrow HD_{s}O^{+} + C_{s}HD$	$C_{a}H_{a}D_{a}O^{+} \rightarrow H_{a}DO^{+} + C_{a}D_{a}$	$C_{a}H_{a}DO^{+} \rightarrow H_{a}DO^{+} + C_{a}H_{a}$	$C_{3}H_{4}DO^{+} \rightarrow H_{3}O + C_{2}HD$
	Reactic	No.	4	4	4	ŝ	Ś	5	. 40	· •	•	ŝ	6†	9	6†	6†	6	6†	~	5	-	-	1	. r	-

† Diffuse peaks from reaction no. 6 are flat-topped³⁰ ³⁰ J. H. Beynon, R. A. Saunders and A. E. Williams, Z. Naturforsch **20a**, 180 (1965).

REFERENCES

- 1. See for Part V: N. M. M. Nibbering and Th. J. de Boer, Tetrahedron, 24, 1435 (1968).
- 2. First Supplement to Compilation of Mass Spectral Data (Ed. A. Cornu and R. Massot), Heyden, London, 1967. Part A, ref. 77B12.
- 3. J. A. Gilpin, J. Chem. Phys., 28, 521 (1958).
- 4. F. W. McLafferty, Anal. Chem., 28, 306 (1956).
- 5. Part III: N. M. M. Nibbering and Th. J. de Boer, Tetrahedron, 24, 1415 (1968).
- 6. H. M. Grubb and S. Meyerson in (F. W. McLafferty, Ed.) Mass Spectrometry of Organic Ions, Academic Press, New York, 1963, chapter 10.
- 7. E. L. Eliel, J. D. McCollum, S. Meyerson and P. N. Rylander, J. Am. Chem. Soc., 83, 2481 (1961).
- 8. J. S. Shannon, Australian. J. Chem., 15, 265 (1962).
- 9. A. G. Sharkey, Jr., J. L. Shultz and R. A. Friedel, Anal. Chem., 28, 937 (1956).
- F. W. McLafferty, Mass Spectrometry of Organic Ions, Academic Press, New York, 1963, p. 318.
- 11. J. D. McCollum and S. Meyerson, J. Am. Chem. Soc. 85, 1739 (1963).
- 12. F. W. McLafferty, Determination of Organic Structures by Physical Methods, Vol. 2 (Ed. F. C. Nachod and W. D. Phillips), Academic Press, New York, 1962, Chap. 2; p. 145.
- 13. F. Meyer and A. G. Harrison, J. Am. Chem. Soc. 86, 4757 (1964).
- 14. P. J. Krueger and H. D. Mettee, Tetrahedron Letters, 1587 (1966).
- 15. Part IV: N. M. M. Nibbering and Th. J. de Boer, Tetrahedron, 24, 1427 (1968).
- 16. J. H. Beynon, B. E. Job and A. E. Williams, Z. Naturforsch. 20a, 883 (1965),
- 17. E. I. Quinn and F. L. Mohler, J. Res. Nat. Bur. Std. A. 62, 39 (1959).
- 18. H. Budzikiewicz, C. Djerassi and D. H. Williams, Mass Spectrometry of Organic Compounds, Holden-Day, San Francisco, 1967, p. 124 and references cited therein.
- 19. Compilation of Mass Spectral Data (Ed. A. Cornu and R. Massot), Heyden, London 1966, Part A, ref. no. 104B2.
- 20. See References 14, 16 and 17 in Ref. 5.
- 21. D. van Raalte and A. G. Harrison, Can. J. Chem. 41, 3118 (1963).
- 22. T. W. Shannon and F. W. McLafferty, J. Am. Chem. Soc. 88, 5021 (1966).
- 23. R. F. Nystrom and W. G. Brown, J. Am. Chem. Soc. 69, 2548 (1947).
- 24. D. S. Noyce, G. L. Woo and H. J. Jorgenson, J. Am. Chem. Soc. 83, 1162 (1961).
- 25. H. J. den Hertog, Thesis, Leiden (1964), p. 31.
- 26. K. Biemann, Mass Spectrometry, McGraw-Hill, New York, 1962, Chap. 5.
- 27. H. Budzikiewicz and C. Djerassi, Chem. & Ind. 1697 (1965).
- 28. W. F. Edgell and L. Parts, J. Am. Chem. Soc. 77, 5515 (1955).
- 29. A. I. Vogel, Textbook of Practical Organic Chemistry, Longmans, Green, London, 1956 (3rd Ed.), p. 287.