Dialkylphosphinsäureazide II [1, 2]

Von Horst Fr. Schröder und Joachim Müller

Marburg/Lahn, Fachbereich Chemie der Philipps-Universität

Inhaltsübersicht. Die Dialkylphosphinsäureazide des Typs R_2PXN_3 wurden mit X = O, S, Se bzw. R = Phenyl, Ethyl und Methyl[²H₃] dargestellt. Die Eigenschaften, Massenspektren, Schwingungsspektren und NMR-Daten werden mitgeteilt und diskutiert. Zusätzlich wurden die entsprechenden Ausgangsverbindungen [(CH₃)₂PS]₂ und R₂PXCl aufgenommen.

Dialkylphosphinic Azides. II

Abstract. The title compounds with X = 0, Se, Se and R = Phenyl, Ethyl, and Methyl[²H₃] were prepared and recorded by mass, vibrational and n.m.r. spectroscopy. The spectra are discussed in relation to the parent compounds [(CH₃)₂PS]₂ and R₂PXCl, which are also recorded.

Einleitung

Bisher waren auf dem Gebiet der Dialkylphosphinsäureazide nur die symmetrischen Oxo- und Thioverbindungen [1-9] bekannt, wobei die Darstellung nach Gl. (1) aus dem Chlorid und Natriumazid oder Lithiumazid [8] und Trimethylsiliciumazid [6] erfolgte.

$$R_2P(X)Cl + NaN_3(LiN_3, Me_3SiN_3) \rightarrow R_2P(X)N_3 + Na(Li, Me_3Si)Cl.$$
(1)

Als Lösungsmittel wurden Pyridin oder Acetonitril bei den Oxo- und Aceton bei den Thioverbindungen verwendet. Schwingungsspektroskopische Daten wurden nur selten mitgeteilt; ausführliche IR-, Raman-, NMR- und massenspektroskopische Untersuchungen nur in einer Arbeit [1]. Vor kurzem berichteten wir über die Untersuchungen einiger dieser Verbindungen mit ¹⁵N-Markierung [10].

Es erschien wichtig zu untersuchen, ob sich die nur an zwei Beispielen gewonnenen Ergebnisse [1] verallgemeinern lassen. Zu diesem Zweck wurden die Phenylderivate, die analogen Selenophosphinsäureazide und ein Teil der Verbindungen deuteriummarkiert dargestellt und charakterisiert.

Bei den Seleno-Verbindungen war der Anteil der Grenzstrukturen I und II von besonderem Interesse; dieser unterscheidet sich bei den Oxo- und Thioverbindungen stark.

$$\overset{\mathrm{R}}{\longrightarrow} \overset{\mathrm{P}}{\underset{N_3}{\times}} \overset{\mathrm{X}}{\underset{\mathrm{R}}{\times}} \overset{\mathrm{R}}{\underset{\mathrm{R}}{\times}} \overset{\mathrm{P}}{\underset{N_3}{\times}} \overset{\mathrm{X}^-}{\underset{\mathrm{N}_3}{\times}} \overset{\mathrm{II}}{\underset{\mathrm{N}_3}{\times}}$$

Durch Kraftkonstantenberechnungen wurde letzteres von GOUBEAU u. Mitarb. [11] bei anderen Phosphorverbindungen ebenfalls gefunden.

Darstellung und Eigenschaften

²H-markierte Dialkylphosphinsäurederivate

Bis(dimethyl)diphosphindisulfid wird nicht nur häufig als Ausgangsverbindung zur Darstellung von Dialkylphosphinsäure-, Dialkylthiophosphinsäure- [12] und Dialkylphosphor-Derivaten [13] verwendet (Gl. (2)-(6)), sondern fand auf Grund seiner Struktur [14] sowohl schwingungs- als auch NMR-spektroskopisches Interesse.

$$\vdash Cl_2 \rightarrow 2 R_2 PSCl \tag{2}$$

$$\mathbf{R}_{2}\mathbf{P}(S) - \mathbf{P}(S)\mathbf{R}_{2} + SO_{2}Cl_{2} \rightarrow 2 \mathbf{R}_{2}\mathbf{P}SCl + SO_{2}$$

$$\tag{3}$$

$$+ 3 \operatorname{SO}_2 \operatorname{Cl}_2 \rightarrow 2 \operatorname{R}_2 \operatorname{POCl} + \operatorname{SO}_2 + 2 \operatorname{S} + 2 \operatorname{SOCl}_2$$
(4)

$$+ 2 \operatorname{SOCl}_2 \rightarrow 2 \operatorname{R}_2 \operatorname{POCl} + \operatorname{S}_2 \operatorname{Cl}_2 + 2 \operatorname{S}$$
(5)

$$\mathbf{R}_{2}\mathbf{P}(\mathbf{S})\mathbf{C}\mathbf{I} \qquad + \mathbf{B}\mathbf{u}_{3}\mathbf{P} \quad \rightarrow \mathbf{R}_{2}\mathbf{P}\mathbf{C}\mathbf{I} + \mathbf{B}\mathbf{u}_{3}\mathbf{P}\mathbf{S}. \tag{6}$$

Die deuterierte Verbindung wurde daher an den Anfang dieses Berichts gestellt. Sie läßt sich entsprechend nach NIEBERGALL u. Mitarb. [15] unter Verwendung von Brommethan[${}^{2}H_{3}$] in Form weißer, langer Nadeln erhalten. Die physikalischen Eigenschaften, eine kurze Charakterisierung des Lösungsverhaltens und der Hydrolyseempfindlichkeit und die Ausbeute bei der Darstellung sind in Tab. 1 aufgetragen. In Tab. 1 sind auch die Eigenschaften der Titelverbindungen zusammengefaßt. Bei den Oxo- und Thioverbindungen erfolgte die Darstellung der Chloride nach Gl. (3) bzw. (5) [12], die der deuterierten Azide aus den Chloriden und Natriumazid nach Gl. (1). Alle dargestellten Azide explodieren weder auf Schlag noch beim Erhitzen mit der freien Flamme, sondern verbrennen langsam. Die Verbrennungsgeschwindigkeit an der Luft ist abhängig vom Siedepunkt bzw. der Molekülgröße.

Verbindung	Schmelzp. °C	Siede- punkt ^a) °C/mm Hg	Farbe ^b)	Hydro- lyse- Empfin	/Licht- dlichk.	Löslich unpol./ Lösung	k. in pol. sm.	Aus- beute %	Literatur zur un- mark. Ver- bindung
$[(CD_3)_2PS]_2$	236-238		weiß					86	[12, 15, 53]
$(CD_3)_2POCl$	73 - 74		weiß	++	_		++	80	[12]
$(CD_3)_2PSCI$	≈ 25	58 - 59/5	farblos	+	—	_	++	83	[12]
$(CD_3)_2PON_3$		48/1	farblos	+			++	74	[1]
$(CD_3)_2PSN_3$	72		weiß	→			+	95	[1]
$(CH_3)_2PSeCl$	15 - 17	52/1,5	farblos	++	++		+	95	
$(CH_3)_2PSeBr$	23 - 24	61/1,5	s. gelb	+	+	_	+	52	
$(CH_3)_2PSeN_3$	69 - 70		farblos	+-	+	-		71	
$(\mathrm{C_2H_5})_2\mathrm{PSeN_3}$		97/2,5	farblos	-+-	+	-	+	67	
$(C_6H_5)_2PSeCl$		140/0,01	s. gelbgrün	+		+	+	80	
$(C_6H_5)_2PSeN_3$	25	Zers.	weiß	+	+		+	45	
$(C_6H_5)_2PSN_3$		Zers.	farblos			~~	++	95	
$(C_6H_5)_2PON_3$		138—140/ 0,01	s. gelb				++		

Tabelle 1 Darstellung und Eigenschaften der Phosphinsäurederivate

^a) 1 mm Hg = 1,33 mbar

^b) Die Abkürzungen sind: s. schwach; ++ sehr groß bzw. sehr gut; -- sehr schwach bzw. sehr schlecht

Dialkylselenophosphinsäurederivate

Bei den Selenoverbindungen führt die Oxydation der entsprechenden dreiwertigen Phosphorverbindungen mit elementarem Selen in zum Teil sehr guten Ausbeuten zu den gewünschten Ausgangsverbindungen. Diese Bromide oder Chloride müssen infolge ihrer großen Empfindlichkeit unter Lichtausschluß und bei 0°C mit NaN₃ umgesetzt werden. Die Aufarbeitung zur reinen Verbindung muß ohne zeitliche Verzögerung angestrebt werden, da Spuren von Verunreinigungen die Zersetzung unter Rotfärbung katalysieren. Die rasche Zersetzung z. B. bei Luftzutritt wird durch Tageslicht verstärkt. Auch beim Verbrennen hinterlassen diese Verbindungen elementares, rotes Selen.

Während die Darstellung des Diethylselenophosphinsäurechlorids in der Literatur [16] erwähnt ist, fehlt diese für die Methylverbindung, obwohl das Photoelektronenspektrum bekannt ist [17].

Diphenylphosphinsäureazide

Vom käuflichen, destillierten Diphenylphosphinsäureazid, das aus Diphenylphosphinsäurechlorid hergestellt werden kann [6, 8, 9], sind die experimentellen Daten ebenfalls in Tab. 1 angegeben. Da die analoge Thioverbindung nicht unzersetzt destilliert werden kann [9], wird sie einer Tieftemperatur-Umkristallisation in Pentan unterworfen und so in spektroskopischer Reinheit erhalten. Die hochviskose Flüssigkeit zersetzt sich nach dem Erwärmen auf 50°C langsam unter Braunfärbung. Bei der Reaktion von Diphenylphosphorchlorid mit grauem Selen bildet sich Diphenylselenophosphinsäurechlorid in sehr guter Ausbeute. Die viskose Flüssigkeit ist im Gegensatz zu den Alkylverbindungen bedeutend lichtbeständiger. Bei der Zugabe von Aceton wird sofort rotes Selen ausgeschieden. Die Umsetzung mit Natriumazid ergibt ebenfalls ein nicht mehr destillierbares Azid, das wie die Thioverbindung durch Tieftemperaturumkristallisation in Aceton gereinigt wird.

Massenspektrometrischer Teil

Die bereits untersuchten Oxo- und Thiophosphinsäureazide [1] sind monomer auf Grund der Massenspektren und der kryoskopischen Molekulargewichtsbestimmungen. Zur Klärung der Anlagerungsprodukte $M+16^+$ bzw. $M+29^+$ wurden einige Methylverbindungen ²H-markiert dargestellt und deren Massenspektrum mit dem der unmarkierten Verbindungen verglichen.

Hilfreich bei der Zuordnung waren die Isotopenmuster des Schwefels (³²S 95,1%, ³³S 0,7%, ³⁴S 4,2%) und des Selens (⁷⁴Se 0,9%, ⁷⁶Se 9,5%, ⁷⁷Se 9,3%, ⁷⁸Se 24,0%, ⁸⁰Se 48%, ⁸²Se 9,3%) [18].

Tab. 2 und 3 geben die Massenspektren der Phosphinsäureazide wieder.

Außer dem Vergleich mit der Vielfalt der hier beschriebenen Daten waren die Zuordnungen der Spektren des Dimethylphosphinsäurechlorids $Me_2P(O)Cl$ [19], Trimethylphosphinoxids Me_3PO [20], Triethylphosphins Et_3P [21], Diphenylphosphinsäurechlorids $Ph_2P(O)Cl$ [22], Diphenylthiophosphinsäurechlorids $Ph_2P(S)Cl$ [22], Triphenylphosphinoxids Ph_3PO [23] und des Triphenylthiophosphins Ph_3PS [23] sowie die eingehenden Untersuchungen bei gemischten dreiwertigen Alkylaryl-phosphorverbindungen wie Me_2PhP , $MePh_2P$ und MeEtPhP [24] hilfreich.

Es treten keine großen Unterschiede zu den Spektren der unmarkierten Verbindungen auf. In der Hauptsache läuft bei den Oxophosphinsäurechloriden die Fragmentierung auf zwei Wegen ab: Abspaltung eines Chlor- bzw. eines Methylrests, wobei der erste Weg bevorzugt wird. Die Tendenz zur Rekombination oder

Fragment	$(CD_{s}) = X = Z = D_{m/e^{+}}$) ₂ P(O)Cl D Cl O ' (Int.)	(CD X = Y = Z = m/e	¹ 5) ₂ P(S)Cl = D = Cl = S + (Int.)	$(CD_{2} \times \mathbb{Z}) = \mathbb{Z}$ $\mathbb{Z} = \mathbb{Z}$ $\mathbb{Z}/\mathbb{Z}^{+}$	3)2P(O)N3 D N3 O (Int.)	(CD _a X == Y == Z == m/e ⁺)2P(S)N3 D N3 S (Int.)	$\begin{array}{l} (CH_{s} \\ \mathbf{X} = \\ \mathbf{Y} = \\ \mathbf{Z} = \\ \mathbf{m}/e^{\div} \end{array}$)2P(Se)N H N3 Se (Int.)	$ \begin{array}{c} \mathbf{X} = \\ \mathbf{X} = \\ \mathbf{Y} = \\ \mathbf{Z} = \\ \mathbf{m}/\mathbf{e}^{\dagger} \end{array} $	s)2P(Se)N3 H N3 Se (Int.)
C ₂ X ₂	-	_	-			_	-		_		26	(2,5)
C ₂ X ₃	30	(3,2)		_	30	(8,6)	30	(3,3)	_		27	(11.2)
Nz		_			28	(16,3)	28	(30,4))	(m. m.)]	
C_2X_4			_]	(7.0)	28	(5,1)	2^{28}	(5,2)
s						-	32	(7,3)	í `	-	' —	
C ₂ X ₅	_	_				-	´				29	(7,5)
Р	_				-						31	(4,7)
PX ₂	35	(5,3)	-									
X ⁸⁸ Cl	37	(34, 9)	-			-						
X ³⁷ Cl	39	(9,9)						_		_	_	
C_3X_5		-					_				41	(4,6)
XN_3					44	(100)				_	43	(100)
CXP	45	(7,3)		_			45	(3,1)	_			
CX ₂ P		(70.0)	47	(5,1)	1.7	(0.0)	47	(14, 4)	45	(4,8)	_	_
PZ	5 47	(10,0)]	(15.0)	41	(3,0)] ~~	(01.0)	111	(4,2)	111	(3,0
C ₂ X ₄ P	_	—	100	(15,0)	´		103	(21,0)	59	(3,9)	59	(91,0)
C ₃ X ₂ P	-		·	<u> </u>	_	_	59	(5,0)		_	_	_
$CX_2(CX_3)P$	_	-		-					60	(4,5)		
CPY		_	78	(5,7)					_	_		_
XPZ		(F 0)		_	_	-					_	_
CX3P	49	(5,9)					49	(2,5)	46	(2,7)	46	(9,9)
X,PZ	5 1	(19,4)	67	(23, 4)	51	(6,8)	67	(36,7)	113	(4, 8)	113	(2,5)
C ₂ XP	—				_					_	56	(2,9)
C ₂ X ₃ P						_	_		_	_	58	(10,8)
CX ₂ PZ			79	(5,8)			79	(3,9)	_			_
CX ₃ PZ	65	(3,2)	81	(3,1)		-	81	(7,9)		-	128	(4,7)
$(CX_3)_2PZ$	83	(100)	99	(98,2)	83	(32,1)	99	(60, 4)	141	(8,9)	_	
$CX_2(CX_3)PZ_2$	97	(11,0)				<u> </u>			. —			-
$(CX_s)_2PZ_s$	99	(4,5)		—	99	(2,9)			-	_		
CX ₃ P(Z)Y	100	(52,2)	116	(11,3)	107	(3,4)	_		—			
$(CX_3)_2P(Z)N$				—			113	(11, 6)	155	(2,6)		
$(CX_3)_2P(Z)Y$	118	(52,7)	134	·(100)	125	(8,1)	141	(100)	183	(19,0)	—	-
$(C_2X_5)_2P(Z)Y$	_				_		-		-		211	(11,2)
$(C_2X_4)_2PN$		—			_	-	_		-	_	101	(9,9)
(CX3Z)CX3P(Z)Y	_			-	141	(4,4)	_				—	

Tabelle 2 Massenspektren der Dialkylphosphinsäurechloride und -azide $(C_n X_{2n+1})_2 P(Z) Y$

Die Angabe der Intensität erfolgt eingeklammert als relative Intensität zum Basispeak in %. Alle Peaks unter 2% wurden weggelassen, ebenso die Nebenpeaks der Isotopen von S und Se.

A bspaltung von HCl bzw. DCl ist jedoch sehr verschieden. Bei den Thiophosphinsä urechloriden tritt dagegen weder HCl noch DCl auf, des weiteren ist eine deutliche Stabilisierung der Fragmente CH_2PZ bzw. CD_2PZ für Z = S zu sehen. Im Gegensatz zur Sauerstoffverbindung hat jetzt der Molpeak die größte Intensität. Dominierend ist die primäre Abspaltung von Chlor.

Ähnlich verläuft die Fragmentierung bei den Aziden, hier unter Abspaltung der N_3 -Gruppe, bei den stabileren Thioverbindungen wird auch zunächst N_2 abgespalten. Die zu Beginn erfolgende Eliminierung einer Methylgruppe wird in geringem Ausmaß nur bei den Sauerstoffverbindungen beobachtet.

Fragment	$(C_{\mathfrak{e}}H_{\mathfrak{s}})$.)2P(O)N3)	(C_6H_6) Z = 3	,)₂P(S)N₃ S	$(C_{\theta}H_{s})$ Z = S	,)₂P(Se)N₃ Se	
	m/e+	(Int.)	m/e+	(Int.)	m/e ⁺	(Int.)	
C₂H₃	27	(4,2)	27	(4,1)	27	(2,6)	
N ₂ (28	(100)	28	(5,5)	28	(17,8)	
C.H.) 29	(12.2)	,		,	_	
C.H.	39	(4.2)	39	(10.5)	39	(5.5)	
C.H.	40	(4, 2)	-	(10,0)			
C.H.	41	(9,6)	_				
N.	ີ	(0,0)	_	_		_	
C.H.	42	(8,7)	_				
HN.	J 43	(93.7)			43	(15.6)	
HCP	41	(5.0)	_	_		(10,0)	
H-CP			_	_	45	(4.4)	
H ₂ CP		_	_	_	46	(3,0)	
PZ	47	(5.0)	1		111	(6.5)	
C ₄ H ₃			63	(30,5)	63	(2.7)	
C ₄ H ₂	50	(4.4)	50	(10.3)	50	(4.1)	
C4H3	51	(10.4)	51	(76.2)	51	(25.2)	
C4H	<u>ا</u> ا		_	-	1		
$(C_2H_3)P$	57	(4,4)	_	_	\$ 57	(3,0)	
$(C_2H_4)P$	<i>'</i> –	-			, 58	(3,8)	
C ₆ H ₄	64	(4,2)			_	_	
C ₅ H ₅		_	65	(4,1)	65	(2,6)	
C ₆ H ₅	77	(9,8)	77	(92,7)	77	(42,9)	
(C ₆ H ₄)P			107	(29,5)	107	(22, 1)	
$(C_{6}H_{5})P$		·	108	(4,1)	108	(3,1)	
(C ₈ H ₅)PH			109	(9,3)	109	(3,8)	
$(C_7H_7)P$]	(00.0)]	(100)	
(C ₆ H ₆)PN		_	$\int 122$	(22,2)	122	(100)	
(C ₈ H ₄)PZ			139	(96,6)	187	(9,2)	
$(C_6H_4)_2$			152	(11,4)	152	(8,6)	
$(C_7H_7)PZ$		-]	(11.0)]	(10.7)	
(C ₆ H ₅)P(Z)N			104	(11,9)	202	(10, i)	
$(C_6H_4)_2P$	_	_	183	(95,8)	183	(51,2)	
(C ₆ H ₅) ₂ P		<u> </u>	185	(92, 6)	185	(29,4)	
(C ₆ H ₅) ₂ PH	-	_	186	(4,4)	186	(3,8)	
$(C_{\theta}H_{\delta})_{2}PZ$	201	(96, 2)	217	(100)	265	(4,8)	
$(C_6H_5)_2P(Z)N$		<u> </u>	—	-	279	(6,4)	
$(^{C_{\mathfrak{g}}H_{\mathfrak{f}})_{2}}\mathbf{P}(\mathbf{Z})\mathbf{N}_{3}$	243	(3,5)	259	(99,1)	307	(20,7)	

Tabelle 3 Massenspektren der Diphenylphosphinsäureazidea)

a) siehe Fußnote der Tab. 2

Neben dem M⁺-Peak erscheint sowohl beim Dimethylphosphinsäureazid als auch bei der deuterierten Verbindung ein Teilchen höherer Massenzahl (M⁺ + 16). Dieses wurde als Anlagerungsprodukt einer Alkylgruppe erklärt [1], da beim Diethylphosphinsäureazid ein ähnliches Teilchen (M⁺ + 29) beobachtet wird und die Bildung des stabilen Phosphoniumions [R₂P(OR)N₃]⁺ nahelag. Mit dem erneuten Erscheinen des M⁺ + 16-Peaks beim deuterierten Phosphinsäureazid ist zumindest bei der Methylverbindung der Sauerstoffeinfang bewiesen. Im Fragmentierungsschema treten auch die Folgeprodukte CX₃(CX₃O)PO dieses Teilchens auf. Die Thiophosphinsäureazide verhalten sich wie die besprochenen Chloride und auch die Unterschiede zwischen Oxo- und Thioverbindungen werden wiederum angetroffen. Das Dimethyl- und Diethylselenophosphinsäureazid (Tab. 2) zeigen eine große Ähnlichkeit im Fragmentierungsverhalten mit den Thioverbindungen.

Bei der Methylverbindung ist die Abspaltung von Ethen unter Bildung des Bruchstücks H₂PSe jedoch bevorzugt, und die Fragmentierung der Ethylverbindung verläuft einfacher. Hier wird zuerst nur die Azidogruppe abgespalten, dann erfolgt der schon bekannte Zerfall wie bei den Thioverbindungen. Die große Höhe des HN₃-Peaks steht in Übereinstimmung mit dem ersten, ausschließlichen Schritt. Auch die Massenspektren der Diphenylphosphinsäureazide (Tab. 3) zeigen erhebliche Unterschiede. Während bei der Oxoverbindung außer dem Mol- und $(M-N_3)$ -Peak nur Aromatenbruchstücke gefunden werden, läßt sich der Zerfall bei der Thio- und Selenoverbindung gut verfolgen. Nach der Abspaltung des Stickstoffs erfolgt die Abtrennung des Heteroatoms S bzw. Se unter Bildung der sehr stabilen Bruchstücke $C_6H_5-P-C_6H_5$ und $C_6H_4-P--C_6H_4$, daraufhin die Abspaltung eines aromatischen Rings oder des Phosphoratoms.

Schwingungsspektroskopischer Teil

Bis(dimethyl)diphosphindisulfid $[{}^{2}H_{12}]$, Dimethylphosphinsäurechlorid $[{}^{2}H_{6}]$, Dimethylphosphinsäureazid $[{}^{2}H_{6}]$, Dimethylthiophosphinsäurechlorid $[{}^{2}H_{6}]$ und Dimethylthiophosphinsäureazid $[{}^{2}H_{6}]$.

Schon im Jahr der Erstdarstellung haben GOUBEAU u. Mitarb. [25] auf Grund des Schwingungsspektrums die Symmetrie C_{2h} des Bis(dimethyl)diphosphindisulfids erkannt [14]. Später gab es weitere schwingungsspektroskopische Berichte und Diskussionen [26–28]; alle Zuordnungen waren nicht vollständig und teilweise widersprechend zu den anderen. Zusammen mit dem Spektrum der ²Hmarkierten Verbindung soll das vollständige Schwingungsspektrum samt Zuordnung mitgeteilt werden (Tab. 4).

Besonders hilfreich war für die Zuordnung der Vergleich mit dem Spektrum des deuterierten Dimethylthiophosphinsäurechlorids wegen der Massenähnlichkeit der Substituenten Cl und P. Die folgenden Tab. 5 und 6 geben die Schwingungsspektren der übrigen deuterierten Titelverbindungen wieder. Hier wurde die Zuordnung mit Hilfe der Spektren der unmarkierten Verbindungen [1, 29] getroffen. Es fällt auf, daß sich durch die ²H-Markierung fast alle Frequenzen verändern; mit Ausnahme der energetisch entfernt liegenden Azidvalenzschwingungen und der P-O-Valenzschwingung. Damit wird die starke Kopplung der Schwingungen des Grundgerüsts bestätigt. Die folgenden Quotienten der Schwingungsfrequenzen v_{1_H} : v_{1_H} zeigen dies:

 $v_{as} CH_3 \ 1,33 \pm 0,01; \ v_s CH_3 \ 1,36 \pm 0,01; \ \delta_{as} CH_3 \ 1,35 \pm 0,02; \ \delta_s CH_3 \ 1,27 \pm 0,02; \ \varrho CH_3 \ 1,18 \pm 0,03; \ \nu P-S \ 1,05 \pm 0,02; \ \nu P-O \ 1,00 \pm 0,01; \ \nu P-Cl \ 1,03 \pm 0,01; \ v_{as} PC_2, \ v_s PC_2 \ 1,10 \pm 0,01; \ v_{as} N_3 \ 1,00 \pm 0,01, \ v_s N_3 \ 1,00 \pm 0,01 \ und \ \nu P-P \ 1,06 \pm 0,01.$

[(CH3),PS]2			[(CD ₂)2PS] 2			Zuordnung
IRa)		Rama	ın	IRa)		Rama	n	
cm-1	Int.	cm-1	Int	cm-1	Int.	cm ⁻¹	Int.	
2981	s-m	2983	s—m	2238	s—m	2238	s-m	Pas CX3
2962	m	2965	m	2212	m	2212	m	vas CX3
2895	m	2897	m-st	2118	m	2118	m-st	v _s CX ₃
				1990	88	1987	SS	$2\delta_8 CX_3$
2010	8			1732	88)
				1670	ss/br			$\delta_{\rm S} {\rm CX}_{\rm s} + \varrho {\rm CX}_{\rm s}$
				1620	ss/br]
1470	s/br			1190	SS			$\delta_{\rm S}{ m CX_3} + \varrho{ m SPC_3}$
1410	Sch	1409	s					
1401	\mathbf{st}	1399	m	1020	st	1018	s-m	$\delta_{as} C X_{s}$
1390	s-m	1388	Sch					$\delta_{as} CX_{s}$
1282	sst	1285	Sch	1008	sst	1000	s-m	$\delta_{\mathbf{S}} \operatorname{CX}_{3}$
		1278	85					
1265	Sch			0.07				
				935	ss			
1174	s			000	_			$2\nu P-S$
1100	a /lam			880	8			
1100	s/br			001	Sab			
040	004	044		021 778	ent	780		o CX, in plana Claight
940	550	018	e e	750	s/Sch	755	8 8 m	o CX, in plane, Gerout
800	Sch	910	8	150	8/15011	135	8-m	g OA3 in plane, oogent.
881	sst			727	m			o CX, out of plane Gleicht
860	sm	860	88	•=-				going out of plane, official
		840	s			719	s-m	o CX ₃ out of plane. Gegent
820	m							
800	s/Sch							
748	m—st			708	sst			ν _s PC ₂ ; Bu
				690	ss/Sch			
734	sst	734	m	666	m			$v_{\rm as} PC_2$; Au, Bg
		722	m			658	m	$v_{\rm S} PC_2$; Ag
				610	ss/Sch			U U
						612	SS	
		597	sst			560	st-sst	$\nu P-S, Ag$
573	sst			545	sst			$\nu P-S, B_{u}$
		560	SS					$2 \times \delta \operatorname{PC}_2$
		428	sst			402	sst	vP-P, Ag
						263	\mathbf{m}	δPC_2 , Bg
		280	sst			247	sst	$\delta PC_2, Ag$
278	m							$\delta PC_2, B_U$
		268	m/Sch					δPC2, Bg
		000	_1			237	m/Sch	SDC 4
		220	st			100	-1	e SPC ₂ , Ag
		198	8U 00 1			189	SU	$\varrho SPU_2, \ \sigma S - P - P - S, \ Ag$
		108	ssu			105	885	$\omega \cup_2 FS$ oder $\tau \cup_2 FS$ oder
								$101S1011 U_2SP - PSU_2$

Tabelle 4 Schwingungsspektren des unmarkierten und des ^aH-markierten Bis(dimethyl)diphosphindisulfids [(CX₃)₂PS]₈

a) KBr-Preßling

Die Abkürzungen der Intensitäten sind: sst = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, br = breit, Sch = Schulter. Die Depolarisationsgrade sind unkorrigiert

(CD ₃);	₂ P(O) Cl			(CD ₃)	P(S)Cl				Zuordnung
IR ^a)		Rama	nb)	IR ^a)		Rama	ın		
em-1	Int.	em-1	Int.	cm ⁻¹	Int.	cm-1	Int.	Depolgrd.	
2255	s-m	2260	8	2235	s/Sch	22 45	m	0,7	vas CDa Gegentakt
2240	s-m			2230	m	2232	\mathbf{m}	0.7	vas CD ₂ Gleichtakt
2135	s-m	2150	\mathbf{st}	2123	m	2135	sst	0,01	v _s CD ₃
2020	ss/br	2035	8			2019	m	0,01	2 S _S CD ₃
1272	Sch			1235	8			-	
1231	sst	1245	m/br						* P==0
1205	Sch/br								
1105	Sch								
1050	\mathbf{st}			1050	s/Sch				
1040	st								$\delta_{\rm as}{\rm CD}_{3}$
1030	st	1028	m						
1019	st			1025	Sch				
965	m/br	980	m	1018	st	1020	m	0,5	$\delta_8 { m CD}_3$
820	SS			845	ss				
772	Sch								ℓ CD₂ in plane
762	sst			802	sst	792	m	0,02	ℓ CD ₃ in plane
745	Sch	750	s/br	738	sst	737	s-m	0,7	ℓ CD₂ out of plane
690	Sch	696	s						vas PC2
				666	m	668	s-m	0,6	vas, vs PC2
631	m	634	st			613	8	0,8	$\nu_{\mathbf{S}} \mathbf{PC}_{2}$
608	88								
				572	st	573	\mathbf{sst}	0,05	v P S
467	st	475	st	442	st	446	sst	0,08	v PCl
440	Sch			420	s/Sch				
390	88								
340	m	346	s-m						$\delta_{\rm as}{\rm OPC_2}$
325	s	329	m						$\delta_8 OPC_2$
		255	s-m			243	\mathbf{st}	0,6)
		211	st						δ ω, τ, θ XYPC2
		179	m			189	\mathbf{st}	0,6	

Tabelle 5 Schwingungsspektren des Dimethylphosphinsäurechlorids $[{}^{2}H_{e}]$ und des Dimethylthiophosphinsäurechlorids $[{}^{2}H_{e}]$

a) kapillare Schicht; b) Lösung in Benzol; in Substanz ist jede Bande aufgespalten

Da diese Werte bei allen Verbindungen nur wenig streuen, dienten sie als zusätzliche Zuordnungshilfe.

Die auch hier beobachtete starke Kopplung der P-N-Valenzschwingung mit der Aziddeformationsschwingung [1] ist somit außer durch ¹⁵N-Markierung [10] auch durch die ²H-Markierung bewiesen. Beim Dimethylthiophosphinsäureazid werden die folgenden Aufspaltungen Δ beobachtet: Δ unmarkiert = 184 cm⁻¹ ($\underline{m} = 630 \text{ cm}^{-1}$), Δ ²H-markiert = 222 cm⁻¹ ($\overline{m} = 627 \text{ cm}^{-1}$) und Δ ¹⁵N-markiert = 175 cm⁻¹ ($\overline{m} = 612,5 \text{ cm}^{-1}$).

Während man für die Schwingungen, bei denen die H-Atome direkt beteiligt sind, bei den Methylhalogeniden [30] wenig unterschiedliche Quotienten (1,38 bis 1,32) ermittelt hat, gleichen die hier gefundenen, stark unterschiedlichen Werte denen des Trimethylphosphins [31]. Durch die Variation der Liganden O, S und Se treten nur geringfügige Veränderungen auf.

TOO

Tabelle 6 Schwingungsspektren des Dimethylphosphinsäureazids [²H_e] und des Dimethylthiophosphinsäureazids [²H_e]

(CD ₁)	P(O)N3			(CD _s),	P(S)N3			Zuordnung
IRa) cm ⁻¹	Int.	Raman cm ⁻¹ Int	. Depolgrd.	IR ^b) cm ⁻¹	Int.	Rama cm ⁻¹	n Int.	
		· · · · · · · · · · · · · · · · · · ·						
3390	s			3392	S			$v_{as} + v_s N_s$
2505	85			2528	s			$2 \times \nu_{\rm S} { m N}_{3}$
2235	S	2250 m	0,7	2240	s-m	2246	s-m	$v_{ m as}{ m CD_2}$ Gegentakt
				2230	\mathbf{Sch}	2237	m	$v_{ m as}{ m CD_3}$ Gleichtakt
2145	sst	2145 sst	0,05					$\nu_{\rm as}$ N ₃ , $\nu_{\rm s}$ CD ₃
				2150	st	2148	s	vas N3
				2125	Sch	2128	m-st	$\nu_{\rm S}{\rm CD}_{\rm 3}$
		2032 s-:	m 0,01			2018	8	
1395	88	1000 01	0.05	1375	m			
		1320 Ser	1 0,05	1 0 0 7	Cob			
1000	- 4	1070	~4.0.1	1287	scn	1970		- N
1208	st	1272 m-	-si 0,1	1242	Sch	1270	5	$\nu_{\rm S}$ N ₃
1992	et set	1918 m-	-st 0 15	1240	BCII			v P −−Ô
1190	Sch	1210 m	50 0,10					,1=0
1125	Sch			1147	88			
	DOM			1103	88			
1046	st	1045 Sch	0,6	1025	\mathbf{st}	1023	s	$\delta_{\rm as}{\rm CD}_3$
			-			1018	SS	
1023	m-st	1028 m -	st 0,15	1012	m-st	1010	85	$\delta_{\mathbf{S}} \operatorname{CD}_{\mathbf{z}}$
		990 s	0,01					$\delta_{\mathbf{S}}^{\mathbf{C}}\mathbf{D}_{3}$
940	m			958	s			
				845	\mathbf{Sch}			
830	\mathbf{Sch}			815	\mathbf{Sch}			ο CD₃ in plane
				795	st			<i>q</i> CD ₃ in plane
772	st-sst	780 Sch	h/br 0,1	770	st	780	88	Q CD ₃ out of plane
740	Sch	750 m	0,01	70.0	-+	700	_	ν PN, δ N ₃ ; ν _{as} PC ₂
		700 -	0.05	738	St	738	s	ν PN, ο N ₃
		700 s	0,05	400	SCH a m	878	e	
690	n m	699 of	0.05	004 885	sm	667	8 80	$v_{as} r C_2$
0.00	8—III	000 50	0,00	005	111	658	55 58	×§ 1 02
				610	Sch	613	88	
				570	st	568	m-st	ν P S
553	Sch			550	m	542	58	2 N3
532	m	535 sst	0,05	516	st	512	sst	νPN, δN3
380	m	382 s -	m 0,85					$\delta O(N)PC_2$ Gleichtakt
356	m	357 s -	m 0,85					$\delta O(N)PC_2$ Gegentakt
				312	mst	308	m-st	$\delta_{\mathrm{as}} \mathrm{C_2PN}$
				281	m	278	SS	$\delta_{\rm S} {\rm C_2 PN}$
270	\mathbf{Sch}	270 s-	-m 0,5					Г
		240 m	0,7			242	m	ω PC ₂
		219 m	0,7			212	m	$\tau \operatorname{PC}_2$
						195	m	$\delta \mathbf{X}(\mathbf{N})\mathbf{PC}_{\mathbf{z}}$
		138 m	0,5			150	Sch	
						121	m-st	-1

a) kapillare Schicht; b) KBr-Preßling

Diethylselenophosphinsäureazid

Das Schwingungsspektrum des Dimethylselenophosphinsäureazids ist mit der Zuordnung bei den ¹⁵N-markierten Phosphoraziden [10] erwähnt. Das bandenreiche Spektrum der Diethylverbindung [2] wurde durch Vergleich mit ersterem, der Oxo- bzw. Thioverbindung [1] und des Triethylphosphins [32-34] zugeordnet. Zweckmäßig ist die Abtrennung der Schwingungen, die von den Ethylgruppen ausgeführt werden. Diese sind:

 $v_{\rm as}$ CH₃ 2973 (st), $v_{\rm q}$ CH₃ 2900 (m), $v_{\rm as}$ CH₂ 2933 (m-st), $v_{\rm s}$ CH₂ 2875 (m), $\delta_{\rm as}$ CH₃ 1452 (st), δ CH₂ 1401 (m-st), $\delta_{\rm s}$ CH₃ 1380 (m), v C-C, ω CH₂, ϱ CH₃ jeweils um 1020 und ϱ CH₂ 773 cm⁻¹ (sst).

Die Schwingungen der Azidogruppe sind leicht zu identifizieren: $\nu_{as} N_3$ 2140 (sst) und $\nu_s N_3$ 1259 cm⁻¹ (sst); δN_3 und ν PN führen wieder eine Gleichund eine Gegentaktbewegung aus, die bei 546 (sst) und 729 cm⁻¹ (sst) gefunden werden. Wie beim Dimethylselenophosphinsäureazid sollte die P—Se-Valenzschwingung unter 500 cm⁻¹ zu finden sein, wahrscheinlich noch frequenztiefer als bei der Methylverbindung [35]. Hier bieten sich die sowohl im Ultrarot- als auch im Ramanspektrum sehr starken Banden bei 444 (st) bzw. 438 cm⁻¹ (sst) an. Die PC₂-Valenzschwingungen lassen sich nicht eindeutig zuordnen, da zwischen 650 und 800 cm⁻¹ eine Vielzahl von Banden auftritt.

Diphenylphosphinsäureazide

Diphenylphosphinsäureazid, Diphenylthiophosphinsäureazid und Diphenylselenophosphinsäureazid.

In Anlehnung an die Zuordnungen der Schwingungsspektren des Triphenylphosphinoxids [36], mehrerer von GOUBEAU u. Mitarb. [37, 38] veröffentlichter Spektren von Phenylphosphorverbindungen, des Azidotriphenylphosphoniumhexachloroantimonats [39] und mit Hilfe des gegenseitigen Vergleichs wurden die Frequenzen der in Tab. 7 angegebenen Schwingungen zugeordnet.

Zur Vereinfachung der Nomenklatur bei der Zuordnung der Phosphor-Aromaten-Schwingung wird die von WHIFFEN [40] vorgeschlägene alphabetische Bezeichnung benutzt. Die Abweichungen zu den oben genannten Zuordnungsvorschlägen stammen teils von DEACON u. Mitarb. [41] selbst oder wurden anhand systematischer Variation der substituierenden Elemente gewonnen [42].

Wieder ist es zweckmäßig, die Aromatenschwingungen auszuklammern oder umgekehrt die starken Banden, die vom $C_2P(X)N_3$ -Gerüst herrühren, zuerst zuzuordnen und dann die restlichen zu Aromatenschwingungen zu erklären.

Auf diese Weise können mit Sicherheit die symmetrische und asymmetrische Azidvalenzschwingung, die P-N-Valenz- und die N₃-Deformationsschwingung zugeordnet werden. Letztere sind gegenüber den Alkylverbindungen immer kurzwellig verschoben. Das gleiche gilt für die P-O- und die P-S-Valenzschwingung, zudem fehlen diese Banden in den Spektren wechselseitig. Für die P-Se-Valenzschwingung bei der Trialkylphosphinseleniden schlägt ZINGARO [43] bei der Methyl- und Ethylverbindung Frequenzen von 441 bzw. 422 cm⁻¹ und bei der

 ${\bf Tabelle \ 7} \quad Schwingungsspektren \ des \ Diphenylphosphins \ aureazids, \ des \ Diphenylthiophosphins \ aureazids \ und \ des \ Diphenylphosphins \ aureazids, \ des \ Diphenylphosphins \ aureazids \ und \ des \ Diphenylphosphins \ aureazids \$

(C ₆ H ₅)2PON3	:			(C ₆ H ₅)2PSN3				(C ₆H)2PSeN3			Zuordnung,
IRa)		Ram	an		IRa)		Rama	in		IRa)		Ram	an	Bezeichnung
cm-1	Int.	em-1	Int.	Depol- grđ.	cm ⁻¹	Int.	cm-1	Int.	Depol- grd.	cm ⁻¹	Int.	cm-1	Int.	nach [40]
- 3389	s				3378	s				3368	8			$v_{\rm as} + v_{\rm s} N_{\rm s}$
3155	SS				3142	ss				3119	88			}
3100	\mathbf{Sch}													
3080	\mathbf{Sch}				3075	s								
3065	\mathbf{st}	3065	\mathbf{st}	0,33	3058	\mathbf{m}	3062	\mathbf{st}	0,75	3071	s-m	3066	m	The H
3050	\mathbf{Sch}									3044	\mathbf{m}			j ve-n
3032	s				3038	\mathbf{Sch}								
3020	s				3022	s								1
2995	s				3005	88								J
2890	88				2918	SS								
					2853	SS								
2720	ss				2780	ss								
2695	s				2685	ss				2675	88			
					2575	88				2578	88			0. L
2505	s-m	0140		o =	2490	s	0140		0.0	2476	s			$2 \times \nu_{\rm S} \Lambda_3$
2144	sst	214.5	m	0,5	2130	sst	2142	s	0,9	2138	sst	2140	s	vas Na
1000	s				1904	8				1904	8			$\mathbf{j} + \mathbf{n}$
1800	8				1090	8				1090	8			1 + n
1020	5				1776	8				1000	8			g + n
					1675	00								8 T 4 i
					1614	seb								i T i e i n
1 594	m	1588	st	0.6	1586	s	1584	st	0.9	1586	s-m	1585	st	s + p k
1580	Sch	1574	Sch	0.7	1573	88	1001		0,0	1571	s	1569	Sch	I
1487	m	1480	88	э,. р	1478	m	1480	88	0.5	1480	m	1475	s	m
				1.	1470	Sch			0,0	1472	Sch	1470	ss	
1443	\mathbf{st}	1438	s	0.3	1436	\mathbf{st}	1435	ss	dp	1437	sst	1434	s	n
				<i>,</i>	1384	s				1382	ss	1375	88	
					1356	ss								i + y
1340	Sch				1331	m				1330	s	1334	85	0
1312	\mathbf{Sch}				1309	m-st				1308	s - m	1305	SS	w + i
					1281	\mathbf{st}				1275	Sch	1275	Sch	е
1260	\mathbf{sst}	1260	m	0,25	1254	sst	1254	s	0,8	1252	\mathbf{sst}	1250	s	vs N3
1229	\mathbf{sst}	1225	m-st	t 0,3										v P=O
1187	s	1182	m	0,6	1183	s-m	1181	8	0,9	1182	m	1183	s-m	a
l 16 5	8	1160	m	0,7	1159	s-m	1158	m	$^{\mathrm{dp}}$	1158	s-m	1158	\mathbf{m}	с
132	st	1125	m	0,7	1108	sst	1104	\mathbf{st}	0,7	1104	sst	1099	st	q
1110	m	1105	m-st	0,25	1100	\mathbf{Sch}								
1075	s-m				1058	8				1067	8	1065	SS	d
				0.47	1035	\mathbf{Sch}								
1030	s-m	1028	st	0,25	1028	m	1028	st	0,7	1025	m	1024	m	b
997	m	997	sst	0,3	997	st	997	sst	0,7	998	m-st	997	sst	р
985	88	980	sch	\mathbf{p}	980	Sen	980	Sch	0,6	0.54		0.00	a .7	1
970	ss	0.00	~	() ()	974	ss	6-0	_	0.5	970	SS	980	Sch	n
945 055	88	930	5	0,9	926	s	918	s	0,7	922	s	922	88	1
699 800	Sal	800 707	85	0,9	849	5	845	6 5	0,7	841	8	842	ss	g
000 760	Sch	195	22	0,2	184	111 00*	75.0	60	dn	744	at	740		£
730	Sch	750	c	0.9	739	set Seb	709	85 80	սր	144	50	749	22	L
798	set	102 799	0 9	0,2	140 796	son sot	740 720	88 0	P dr	700	of Bak	705	65	"D. N SN
140	000	140	5	0,0	190	550	192	8	սր	719	st/Sch	720	55 60	" PC
692	st	602	101 ef	0.5	719	eet	715	6	dp	713	st/SCII	704	55	* r U2 * PC
675	Sch	675	Sch Sch	0.9	687	eet	62K	2 20	0.2	400 695	aau at	404	55 50	v F C2
0.0	NOI1	010	io du	0,0	661	st	660	50 5	0,0	000 RRX	su Seb	000	55	L X
					619	et.	620	o et	0,9	000	ioc11			v v D C
					042	0 U	009	80	0,4					v r 5

Tabelle 7 (Fortsetzung)

(C6H3)2PON3				(C ₆ H₅)2PSN3			-	(C ₆ H ₅)2PSeN3			Zu	ordnung,
IRa) cm ⁻¹	Int.	Rama cm ⁻¹	in Int.	Depol- grd.	IRa) cm ⁻¹	Int.	Rama cm ⁻¹	in Int.	Depol- grd.	IRa) cm ⁻¹	Int.	Rama cm ⁻¹	in Int.	Be na	zeichnung ch [40]
619	m	616	st	0,8	613	st	612	m	0,8	612 595	s Sch	612	m	8	
590 570	st Sch	590	m-st	0,6											
532	st	530	S 8	0 ,9	565	sst	565	m	0,9	554	sst/br	552	sst/br	νP νP	-N, δ N ₈ , -Se
					519	\mathbf{st}	520	s	0,9						
506	m	503	s	0,3	496 492	sst Sch	490	8	0,9	488	st	480	m/br	У	
					458 446	m m				442	m	$\frac{460}{443}$	88 88		
425	\mathbf{m}	422	s-m	0,3	422	8				425	\mathbf{Sch}	420	\mathbf{Sch}	t	
390	ss	395	88	0,5	$\frac{374}{348}$	m s—m	$374 \\ 345$	m s-m	0,8 0,9	390 340	88 88	$390 \\ 341$	ss m—st		Gerüst- deforma-
308	ŝ	301	s-m	0,75	310	88	310	s	0,7						tionen
285	ss `	280	m	0,3						282	88	281	mst	1	δ C ₂ PXN
265	SS	268	m	0,3								269	mst		
235	ss s	241	m	0,5	250 228 991	Sch m	248	m	0,7			248 232	m—st st	u	
212	a-m	170	\mathbf{Sch}	0,3	441	111						170	8		

a) kapillare Schicht

Phenylverbindung 560 cm⁻¹ vor. Dieser große Unterschied wird auch hier gefunden: $v P-Se = 451 \text{ cm}^{-1}$ für Me₂P(Se)N₃ und 554 cm⁻¹ für Ph₂P(Se)N₃, wenngleich letztere Zuordnung nicht sicher ist, da die asymmetrisch geformte Bande bei 554 cm⁻¹ mit Sicherheit auch der $v P-N/\delta$ N₃-Schwingung zuzuordnen ist und im Bereich um 500 cm⁻¹ noch eine starke IR-Bande auftaucht. Auch die eindeutige Zuordnung der PC₂-Valenzschwingungen ist wegen der Bandenhäufigkeit zwischen 780 und 680 cm⁻¹ unmöglich.

Bei der hier vorgeschlagenen Zuordnung wurde davon ausgegangen, daß die Schwingungen des Aromaten lagekonstant sind und die $\nu \text{PN}/\delta \text{ N}_3$ -Kopplung sich bei allen drei Verbindungen um denselben Mittelwert von 640 cm⁻¹ gruppiert. Während eine von ZINGARO [43] aufgestellte Korrelation zwischen räumlicher Ausdehnung, Elektronegativitäten und Lage der P-S-Valenzschwingung hier nicht anwendbar ist, erhält man mit der induktiven Konstanten von 2,82 für die Azidogruppe in guter Übereinstimmung ($\pm 6 \text{ cm}^{-1}$) nach BELL u. Mitarb. [44] die P=O-Valenzschwingungsfrequenzen.

Es zeigte sich, daß die Selenoverbindungen den Thiophosphinsäureaziden nahe verwandt sind. Überraschend war die niedrige P—Se-Valenzschwingungsfrequenz bei den Alkylderivaten. Um zu untersuchen, ob dies wieder mit einem hohen Anteil einer Grenzstruktur mit P⁺—Se⁻-Einfachbindung zusammenhängt, wurden die NMR-Spektren aufgenommen.

NMR-Spektroskopischer Teil

Bei den Dialkylphosphinsäurechloriden und -aziden sind bisher nur die ¹H-, ³¹P- und ¹³C-NMR-Daten einiger Verbindungen [1] und die ³¹P-NMR chemischen Verschiebungen von gemischten Dialkyl- und Alkylarylphosphinsäurechloriden [45] sowie eine Reihe von P-H-Kopplungskonstanten [46] bekannt. Vor kurzem kamen noch Untersuchungen über Me₂P(S)H und dessen Komplexe [47], über Me₂P(O)-PMe₂, Me₂P(S)-OSiMe₃ [48] und einige ¹⁵N-markierte Phosphorazide [10] hinzu. Das unmarkierte Bis(dimethyl)diphosphindisulfid wurde von HARRIS u. Mitarb. [49, 50] untersucht.

Verb indung	Chemi	ische Ve	erschiebu	ng ð ppr	n	Koppl	ungskons	stante J	Hz					Lösungs-
	CH3	CH2		CH3	CH2	¹ JC- ²	H ² JP-1	I ³ JP-J	H ¹ JP-	C ² JP-	С ² Ј Н —	H _° 1H-	-н ^у Р-	Se
(Me2PS)sa)	1,96		35,02	16,33			12,64	6,85	48,3	12,2				CDCl ₃
(Me ₂ PS) ₂			32,95											$C_{6}D_{6}$
(Me ₂ PS) ₂ [² H ₁₂]			34,25											CDC18
Me ₂ P(O)Cl	1,59		58,7	23,4			13,8		80					$C_s D_s$
$Me_2P(O)Cl[^2H_6]$			59,0	22,73		19,8			78,9					C _c D ₆
Me ₂ P(O)N ₃	1,37		46,4	17,2			14,1		85					$C_{e}D_{e}$
$Me_2P(O)N_3[^2H_3]$			46,5	16,40		19,7			86,1					$C_s D_s$
Me ₂ P(S)Cl	1,92		84,9	30,3			13,1		61					C.D.
Me ₂ P(S)Cl[² H ₆]			85,3	29,47		20,0			60, 5					$C_{6}D_{6}$
Me ₂ P(S)N ₃	1,44		74,2	24,2			13,4		68					C.D.
Me ₂ P(S)N ₅ [² H ₆]			76,5	23,81		20,2			69,8					$C_s D_s$
Me ₂ P(Se)Cl	2,15		67,58	31,77			12,9		51,2				838,4	C.D.
Me ₂ P(Se)N ₈	1,58		63,96	25,58			13,3		60,6				808,3	C.D.
Et ₂ P(0)Cl	1,07	1,88	73,7	6,1	27,8		11	21	75	5		7,5		$C_{6}D_{6}$
Et ₂ P(O)N ₃	1,00	1,64	55,7	5,6	22,7		12	19	82	7		7,5		C ₆ D ₆
Et ₂ P(S)Cl	1,10	$1,92 \\ 1,99$	108,6	6,9	33,4		10	23	58	6	-12	7,4		$C_{\mathfrak{s}}D_{\mathfrak{s}}$
$Et_2P(S)N_3$	0,96	$1,55 \\ 1,62$	91,4	6,3	28,1		10,1	21,2	65	5	-20	7,5		$C_6 D_6$
Et ₂ P(Se)Cl	1,13	$1,95 \\ 2,10$	99,82	7,42	34,17		7,6	23,7	46,9	5,6	14	7,5	.834,4	C_6D_6
$\mathrm{Et}_{2}\mathrm{P}(\mathrm{Se})\mathrm{N}_{3}$	1,00	$1,62 \\ 1,73$	89,38	6,66	28,65		7,8	22,0	56,7	4,9	-15	7,5	807,3	C_6D_6

Labelle o II., I. and O-IAnti-Daten dei Diarkyrphosphinisaureueiry	lphosphinsäurederivate	Dialkylp	der	¹³ C-NMR-Daten	, ³¹ P- und	¹ H	Fabelle 8
--	------------------------	----------	-----	---------------------------	------------------------	----------------	-----------

a) ${}^{1}J_{P-P} = 18,85 \text{ Hz}$

Tabelle 9	'H-, ⁸¹ P·	und	¹³ C-NMR-Daten	der	Diphenylphosphinsäurederivate
-----------	-----------------------	-----	---------------------------	-----	-------------------------------

Verbindung	Chemi	Chemische Verschiebung δ ppm ^a) ^b)						Kopplungskonstante J Hz						
	δ ₁ H ortho	m meta, para	δsıP	<i>д</i> 13С С1	C2	C3	C4	³J _{P−H}	¹J₽,−−C	² J P-C	^s JP-C	⁴J₽−C	^{1J} P-Se	
Ph ₂ P(O)Cl	7,88	7,43	42,7	133,07	130,97	128,88	133,21	14,2	122,5	11,6	14,5	3,3		
Ph ₂ P(O)N ₃	7,83	7,42	29,58	129,72	130,79	128,47	132,58	13	130,0	10	13,0	<3		
Ph ₂ P(S)Cl	7,92	7,48	80,05	135,07	130,60	128,44	132,36	14	96,5	12,5	14,0	3,7		
Ph ₂ P(S)N ₃	7,85	7,45	67,98	133,10	130,82	128,63	133,46	14	104,9	11,5	13,8	3,0		
Ph ₂ P(Se)Cl	7,90	7,34	71,75	134,29	130,26	127,90	131,86	15,6	83,8	12,8	13,9	3,6	853,9	
Ph₂P(Se)N₃	7,83	7,36	66,51	$\begin{array}{c} \textbf{132,6} \\ \pm \textbf{ 0,1} \end{array}$	131,00	128,66	132,52	14,8	86 ± 5	12,2	13,7	3,2	823,7	

a) Lösungsmittel: CDCls b) Standard: Tetramethylsilan, intern; 85%ige Phosphorsäure, extern

Die von den Titelverbindungen gesammelten NMR-Daten sind in Tab. 8 und 9 angegeben.

Als Berichtigung zu den NMR-Daten der Diethylthiophosphinsäurederivate [1] werden die chemischen Verschiebungen der diastereotopen H-Atome der Methylengruppen und die geminalen Kopplungskonstanten ${}^{2}J_{H-H}$ nachgetragen. Bei den Oxo- und Thioverbindungen wurde zunächst nur eine Linienverbreiterung des Ethylgruppensignals beobachtet und diese auf Inhomogenitäten zurückgeführt. Bei der erneuten Aufnahme des ${}^{31}P$ -rauschentkoppelten ${}^{1}H$ -NMR-Spektrums der Ethylverbindungen und Simulation als ABC₃-System konnten nur die Daten für die Oxoverbindung belassen werden. Diese zufällige Äquivalenz ist bedingt durch die große Ähnlichkeit im elektronischen Verhalten von Cl und N₃ einerseits und O andererseits. Unterscheiden sich die beiden Substituenten, die über und unter der Spiegelebene C-C-P-C-C liegen, stärker, wird die Aufspaltung zum AB-System sichtbar. Durch die ${}^{2}H$ -Markierung werden die Phosphorsignale nach tiefem Feld, die ${}^{13}C$ -Signale nach hohem Feld verschoben. Diese Polarisierung der P-C-Bindung macht sich jedoch nicht bei der P-C-Kopplungskonstanten bemerkbar.

Die Veränderung der chemischen Verschiebungen aller untersuchten Kerne ¹H, ³¹P und ¹³C beim Übergang von den Oxo- über die Thio- zu den Selenoverbindungen ist nicht stetig; es tritt immer bei den Schwefelverbindungen ein Extremwert auf. Dieses den Elektronegativitäten widersprechende Verhalten wird mit dem Vorherrschen der Grenzformel I bei der Oxoverbindung und einem großen Anteil der Grenzformel II bei den Thio- und nun auch den Selenoverbindungen erklärt. Die Schwefel- und die Selenderivate ähneln sich im Bindungscharakter anscheinend so stark, daß der geringere induktive Effekt des Selens wieder zur erwarteten, geringeren Abschirmung führt. Auf Grund der hier ohne das Vorzeichen bestimmten P-Se-Kopplungskonstanten kommt man zu demselben Ergebnis. Sie sind vergleichbar mit den von McFarlane u. Mitarb. [51] bei 17 P=Se-Verbindungen gemessenen Kopplungskonstanten, die zwischen -684 und-1046 Hz betragen. McFARLANE findet zusätzlich stark hochfeldverschobene Signale der Selenatome und schließt daraus ebenfalls auf einen hohen Anteil der polaren Grenzstruktur; GLIDEWELL u. Mitarb. [52] benutzen den Betrag von ${}^1\!J_{\rm P-Se}$ als Indiz für eine Koordination des Selenatoms bzw. des Sauerstoffatoms in Verbindungen des Typs [(RO)₂POSe]-Ligand. Insgesamt zeigt sich, daß die elektropositivsten Atome in der Molekel – dies ist immer das Phosphoratom, bei den Selenoverbindungen auch das Selenatom - die größten Änderungen der chemischen Verschiebungen bei der Substitution der Liganden erfahren.

Experimenteller Teil

Die Spektren wurden aufgenommen mit: Massenspektrometer Atlas CH 7 (Varian MAT), 70 eV; IR-Spektrometer PE 457 (Perkin-Elmer); Raman-Spektrometer Cary 83 (Varian) und NMR-Spektrometer XL 100-15 (Varian) mit den Resonanzfrequenzen 100,1 (¹H), 40,54 (³¹P) und 25,23 MHz (¹³C).

Die Analysenwerte, teilweise von der Fa. Bernhardt, Elbach, stammend, sind in Tab. 10 zusammengefaßt, die Darstellungsvorschriften in Tab. 11. Soweit dies nötig war (siehe Tab. 1), wurden die Arbeiten unter Lichtausschluß, unter Stickstoff und mit absoluten Lösungsmitteln ausgeführt.

Substanz	C gef. (ber.)	H gef. (ber.)	N gef. (ber.)	P gef. (ber.)	O, S oder Se gef. (ber.)	
	+0.02 (01.00)		<u> </u>			
$[(CH_3)_2 PS]_2$	26,23 (25,80)	6,46 (6,50)				
$[(CD_3)_2 PS]_2$	24,47 (24,23)	12,10 (12,19)				
(C ₆ H ₅) ₂ PON ₃	59,20 (59,26)	3,91 (4,14)	15,18 (17,27)	12,41 (12,73)	6,34 (6,57)	
(C ₆ H ₅) ₂ PSN ₃	55,61 (55,59)	4,06 (3,89)	15,65 (16,21)	10,62 (11,94)	13,36 (12,37)	
(CH ₃) ₂ PSeN ₃	13,09 (13,17)	3,21 (3,32)	22,92 (23,08)	17,14 (17,02)	43,19 (43,37)	
(C ₂ H ₅) ₂ PSeN ₃	24,10 (22,88)	4,92 (4,80)	19,67 (20,00)	14,69 (14,74)	37,03 (35,58)	

Tabelle 10 Analysen

Tabelle 11 Darstellungsvorschriften

Produkt	Ausg g	angsverbindungen	g		flüssige Phasea ml) Rea t	ktionsverlauf ^b) °C/t °C/t °C	Aufarbeitung ^c)
[(CD ₃) ₂ PS] ₂	18,0	$CD_3Br + 4,3 Mg$	9,2	PSC13	200 Et ₂ O	1 h	5/ - / -	Hydr., -LM, Um
(CDa)2POCI	1,29	$[(CD_3)_2PS]_2$	0,8	SOCI2 ^a)	15 C _s H _s	1 he) 0/ /1h 80	F1, -LM, HV-S
(CD ₃) ₂ PSCI	1,58	$[(CD_3)_2PS]_2$	1,07	SO ₂ Cl ₂	$10 C_6H_6$	0,31	n 5/ /	-LM, HV-K
(CD ₃) ₂ PON ₃	0,45	(CD ₃) ₂ POCl	0,5	NaN ₂	10 Pyridin	_	/10 h 20/ —	Fi, -LM, T. Um in Pentan
(CD ₃) ₂ PSN ₃	0,7	(CD ₃) ₂ PSCl	0,6	NaN ₃	20 Aceton	~~	/ 5 h 20/	Fi, -LM, HV-S
(CH ₃) ₂ PSeCl	3,0	(CH ₃) ₂ PClf)	2,8	gr. Se	_	0,51	h 20/ - /1 h 50	HV-K, HV-D
(CH ₃) ₂ PSeBr	20	$(CH_3)_2PBr + g)$ $(CH_3)_2PBr_3$	11,0	gr. Se	100 Toluol	1 h	20/ — /1 h 50	Fi, -LM, HV-D
(CH ₃) ₂ PSeN ₃	7,3	(CH ₃),PSeBr	2,4	NaN3	25 Aceton	2 h	0/12 h 20/ —	Fi, -LM, 2HV-D
(C2H3)2PSeN3	9,0	(C ₂ H ₅) ₂ PSeCl	3,25	NaN _s	25 Aceton	2 h	0/10 h 20/	Fi, -LM, HV-D
(C,H),PSeCl	27,2	(C,H ₅),PCl	9,7	gr. Se		2 h	20/h) - /1 h 150	HV-D
(C,H ₅) ₂ PSeNs	19,7	(C _s H _s) ₂ PSeCl	6,5	NaN _s	30 Pyridin	_	- /10 h 20/ —	Fi, -LM, 2 T. Um in Aceton

a) Lösungs- bzw. Aufschlämmungsmittel

b) Der Reaktionsverlauf wird durch die Temperatur bei der Zugabe, die anschließende Reaktionszeit und -temperatur und eine eventuell notwendige Temperaturerhöhung beschrieben

c) Die Abkürzungen sind: Hydr = Hydrolyse, -LM-Abziehen des Lösungsmittels im Vakuum, Um = Umkristallisation, T. Um = Tieftemperaturumkristallisation, Fi = Filtration, HV = Hochvakuum, S = Sublimation, K = Kondensation, D = Destillation d) Lösung in 10 ml Benzol

e) Die Reaktion verläuft nach der intermediären Bildung des Thiophosphinsäurechlorids äußerst heftig

f) [12, 13] g) [54] h) Am Äquivalenzpunkt tritt ein Farbumschlag von grüngelb nach rotbraun auf

Literatur

- [1] H. FR. SCHRÖDER u. J. MÜLLER, Z. anorg. allg. Chem. 418, 247 (1975) (1. Mitteilung).
- [2] H. FR. SCHBÖDER, Dissertation, Univ. Marburg 1976.
- [3] R. A. BALDWIN, C. O. WILSON U. R. I. WAGNER, J. Org. Chem. 32, 2172 (1967).
- [4] Bayer AG, (Erf. G. SCHRADER) D.B.P. 1058056 (27. Mai 1959) [C. A. 55, 7290 b (1961)].
- [5] S. IVIN, I. D. SHELAKOVA U. V. K. PROMONENKOV, Zh. Obshch. Khim. 40, 561 (1970) [C. A. 73, 14940a (1970)].
- [6] American Potash and Chem. Corp. (Erf. K. L. PACIOREK u. R. KRATZER) US-Pat. 3272846 (13. Sept. 1966) [C. A. 65, 18618 g (1966)].
- [7] I. M. FILATOVA, E. L. ZAITSEVA, A. P. SIMONOV u. A. Y. YAKUBOVICH, Zh. Obshch. Khim. 38, 1304 (1968) [C. A. 69, 8709 1b (1968)].
- [8] K. L. PACIOREK, Inorg. Chem. 3, 96 (1964).

- [9] R. A. BALDWIN U. R. M. WASHBURN, J. Amer. Chem. Soc. 83, 4466 (1961); J. Org. Chem. 30, 3860 (1965).
- [10] J. MÜLLER u. H. FR. SCHRÖDER, Z. anorg. allg. Chem. 450, 149 (1979).
- [11] R. PANTZER, W. D. BURCKHARDT, E. WALTER U. J. GOUBEAU, Z. anorg. allg. Chem. 416, 297 (1975); W. D. BURCKHARDT, E.-G. HÖHN U. J. GOUBEAU, Z. anorg. allg. Chem. 442, 19 (1978).
- [12] HOUBEN-WEYL, Methoden der Organischen Chemie, 4. Auflage, Band 12/1, S. 244 u. 274, Herausg. E. Müller, G. Thieme-Verlag, Stuttgart 1963; L. MAIER, Chem. Ber. 94, 3051 (1961);
 L. MAIER, Chem. Ber. 94, 3056 (1961); Bayer AG (Erf. R. Cölln u. G. Schrader) D.B.P. 1054453 (9. Apr. 1959) [C. A. 55, 6375 b (1961)].
- [13] H. E. ULMER, L. C. D. GROENWEGHE u. L. MAIER, J. Inorg. Nucl. Chem. 20, 82 (1961).
- [14] J. D. LEE u. G. W. GOODACRE, Acta Crystallogr. B 27, 302 (1971).
- [15] H. NIEBERGALL U. B. LANGENFELD, Chem. Ber. 95, 64 (1962).
- [16] W. KUCHEN u. H. KNOP, Chem. Ber. 99, 1663 (1966).
- [17] S. ELBEL u. H. TOM DIECK, J. Chem. Soc., Dalton Trans. 1976, 1762.
- [18] H. REMY, Lehrbuch der Anorganischen Chemie, 11. Aufl., Bd. 2, S. 656, Akadem. Verlagsanstalt, Leipzig 1961.
- [19] F. SEEL u. K.-D. VELLEMANN, Chem. Ber. 104, 2972 (1971).
- [20] M. HALMAN u. Y. KLEIN, Advan. in Mass Spec. 3, 267 (1966).
- [21] Y. WADA u. R. W. KISER, J. Phys. Chem. 68, 2290 (1964).
- [22] R. A. SPENCE u. J. M. SWAN, Austr. J. Chem. 22, 2359 (1969).
- [23] D. H. WILLIAMS, R. S. WARD u. G. COOKS, J. Amer. Chem. Soc. 90, 966 (1968).
- [24] K. HENRICK, M. MICKIEWICZ, N. ROBERTS, E. SHEWCHUK u. S. B. WILD, Austr. J. Chem. 28, 1473 (1975).
- [25] J. GOUBEAU, H. REINHARDT U. D. BIANCHI, Z. Phys. Chem. (Frankfurt/M.) 12, 387 (1957).
- [26] A. H. COWLEY U. W. D. WHITE, Spectrochim. Acta 22, 1431 (1966).
- [27] H. GERDING, D. H. ZIJP, F. N. HOOGE, G. BLASSE u. P. J. CHRISTEN, Rec. Trav. Chim. Pays-Bas 84, 1274 (1965).
- [28] A. H. COWLEY u. H. STEINFINK, Inorg. Chem. 4, 1827 (1965).
- [29] J. R. DURIG, D. W. WERTZ, B. R. MITCHELL, F. BLOCK u. J. M. GREENE, J. Phys. Chem. 71, 3815 (1967).
- [30] G. HERZBERG, Molecular Spectra and Molecular Structure, Vol. 2, S. 315, van Nostrand Comp., New York 1945.
- [31] P. J. D. PARK u. P. J. HENDRA, Spectrochim. Acta A 24, 2081 (1968).
- [32] M. BAUDLER u. H. GUNDLACH, Naturwissenschaften 42, 152 (1955).
- [33] J. GREEN, Spectrochim. Acta A 24, 137 (1968).
- [34] A. CREIGHTON, Austr. J. Chem. 20, 583 (1967).
- [35] D. E. C. CORBRIDGE, Topics in Phosphorus Chemistry, Bd. 6, S. 235 und 269, (Herausg.: M. GRAYSON U. E. J. GRIFFITH) Interscience Publ., New York 1969.
- [36] G. DEACON u. J. GREEN, Spectrochim. Acta A 24, 845 (1968).
- [37] J. GOUBEAU U. D. LANGHARDT, Z. anorg. allg. Chem. 338, 163 (1965).
- [38] J. GOUBEAU U. P. WENZEL, Z. Phys. Chem. (Frankfurt/M.) 45, 31 (1965).
- [39] W. BUDER u. A. SCHMIDT, Chem. Ber. 106, 3812 (1973).
- [40] D. WHIFFEN, J. Chem. Soc. 1956, 1350.
- [41] G. DEACON U. J. GREEN, Chem. Ind. (London) 1965, 1031.
- [42] D. BROWN u. A. MOHAMMED, Spectrochim. Acta 21, 659 (1965).
- [43] R. A. ZINGARO, Inorg. Chem. 2, 192 (1963).
- [44] J. V. BELL, J. HEISLER, H. TANNENBAUM u. J. GOLDENSON, J. Amer. Chem. Soc. 76, 5185 (1954).
- [45] V. MARK, C. H. DUNGAN, M. M. CRUTCHFIELD U. J. R. VAN WAZER, Topics in Phosphorus Chemistry, Bd. 5, S. 227, (Hrsg.: M. GRAYSON U. E. J. GRIFFITH) Interscience Publ., New York 1967.

- [46] J. F. NIXON u. R. SCHMUTZLER, Spectrochim. Acta 22, 565 (1966).
- [47] E. LINDNER u. W. P. MEIER, J. Organomet. Chem. 114, 67 (1976).
- [48] M. VOLKHOLZ, O. STELZER u. R. SCHMUTZLER, Chem. Ber. 111, 890 (1978).
- [49] R. K. HARRIS U. R. G. HAYTER, Can. J. Chem. 42, 2282 (1964).
- [50] S. AIME, R. K. HARRIS, E. M. MCVICKER U. M. FILD, J. Chem. Soc., Dalton Trans. 1976, 2144.
- [51] W. MCFARLANE u. D. S. RYCROFT, J. Chem. Soc., Dalton Trans. 1973, 2162.
- [52] C. GLIDEWELL u. E. J. LESLIE, J. Chem. Soc., Dalton Trans. 1977, 527.
- [53] H. REINHARDT, D. BIANCHI u. D. MÖLLE, Chem. Ber. 90, 1656 (1957).
- [54] L. MATER, Helv. Chim. Acta 46, 2026 (1963).

Bei der Redaktion eingegangen am 3. Oktober 1978.

Anschr. d. Verf.: Dr. HORST FR. SCHRÖDER u. Dr. JOAOHIM MÜLLER, Fachbereich Chemie d. Univ., Lahnberge, D-3550 Marburg