654 Communications Synthesis

by the reaction of N-alkyl-1,3-propanediamines with amidinium salts<sup>2</sup> or by the intramolecular dehydration of N-alkyl (or aryl), N'-acyl-1,3-propanediamines<sup>3</sup>.

We have recently found a very convenient method for synthesizing the title compounds, namely the oxidation of 1,3-dimethylhexahydropyrimidines (1) with N-bromosuccinimide<sup>4</sup>. Compounds 1 are easily prepared by the condensation of N,N'-dimethyl-1,3-propanediamine with aldehydes, the latter being much more readily available than amidines.

$$H_3C-N$$
 $N-CH_3$ 
 $R$ 
 $H_3C$ 
 $N-CH_3$ 
 $H_3C$ 
 $N-CH_3$ 
 $N$ 

2

## A Facile Synthesis of 2-Aryl-1,3-dimethyl-1.4,5,6-tetrahydropyrimidinium Salts

James E. Douglass, Randy Dial

Department of Chemistry, Marshall University, Huntington, West Virginia 25701, U.S.A.

Few 1,3-dialkyl-1,4,5,6-tetrahydropyrimidinium salts have been reported, due at least in part to a lack of a simple, general method of synthesis. Heretofore, the most accessible routes have been the reaction of N,N'-dialkyl-1,3-propanediamines with amidinium salts  $^1$  or the 3-alkylation of 1-alkyl-1,4,5,6-tetrahydropyrimidines $^2$ . The latter can be prepared

## 2-Aryl-1,3-dimethylhexahydropyrimidines (1a-f):

A 500-ml flask equipped with a Dean-Stark tube and condenser is charged with aldehyde (0.25 mol), N, N'-dimethyl-1,3-propanediamine<sup>5</sup> (0.263 mol), p-toluenesulfonic acid (0.1 g), and benzene (200 ml). The mixture is heated until no additional water is collected ( $\sim$ 2 h). After being cooled to room temperature, the reaction mixture is washed successively with 100-ml portions of 5% sodium hydroxide solution and water. The organic layer is dried over

October 1975 Communications 655

Table 1. Synthesis of 2-Aryl-1,3-dimethylhexahydropyrimidines (1)

| Product | R                | Yield (%) | b.p./<br>(0.4 torr)    | Elemental Analyses                                         |                |                  |                |                  |
|---------|------------------|-----------|------------------------|------------------------------------------------------------|----------------|------------------|----------------|------------------|
| la      | Н                | 83        | 67-69°                 | C <sub>12</sub> H <sub>18</sub> N <sub>2</sub><br>(190.28) | calc.<br>found | C 75.75<br>75.81 | H 9.53<br>9.47 | N 14.72<br>14.58 |
| 1b      | CH <sub>3</sub>  | 89        | 8990°                  | $C_{13}H_{20}N_2$ (204.31)                                 | calc.<br>found | C 76.42<br>76.46 | H 9.87<br>9.79 | N 13.71<br>13.61 |
| le      | OCH <sub>3</sub> | 90        | 112°                   | $C_{13}H_{20}N_2O$ (220.31)                                | calc.<br>found | C 70.87<br>71.01 | H 9.15<br>9.18 | N 12.71<br>12.80 |
| 1d      | $N(CH_3)_2$      | 86        | 129–131°<br>(m.p. 56°) | $C_{14}H_{23}N_3$ (233.35)                                 | calc.<br>found | C 72.06<br>71.96 | H 9.93<br>9.78 | N 18.01<br>18.14 |
| le      | Cl               | 83        | 102-103°               | $C_{12}H_{17}CIN_2$ (224.73)                               | calc.<br>found | C 64.13<br>64.21 | H 7.63<br>7.65 | N 12.46<br>12.27 |
| 1f      | NO <sub>2</sub>  | 78        | 106-108°<br>(m.p. 67°) | $C_{12}H_{17}N_3O_2$ (235.29)                              | calc.<br>found | C 61.26<br>61.33 | H 7.28<br>7.20 | N 17.86<br>17.62 |

Table 2. Synthesis of 2-Aryl-1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium Bromides (2)

| Product  2a | R<br>H                           | Yield<br>(%) | m.p.<br>106107° | Elemental Analyses                                                                    |                |                  |                |                  |
|-------------|----------------------------------|--------------|-----------------|---------------------------------------------------------------------------------------|----------------|------------------|----------------|------------------|
|             |                                  |              |                 | C <sub>12</sub> H <sub>17</sub> CIN <sub>2</sub> O <sub>4</sub> <sup>a</sup> (288.73) | calc.<br>found | C 49.91<br>49.86 | H 5.94<br>5.89 | N 9.70<br>9.78   |
| 2b          | CH <sub>3</sub>                  | 80           | 119–121°        | C <sub>13</sub> H <sub>19</sub> BrN <sub>2</sub><br>(283.20)                          | calc.<br>found | C 55.13<br>55.19 | H 6.76<br>6.81 | N 9.89<br>9.80   |
| <b>2</b> c  | OCH <sub>3</sub>                 | 86           | 192–194°        | C <sub>13</sub> H <sub>19</sub> BrN <sub>2</sub> O<br>(299.20)                        | calc.<br>found | C 52.19<br>52.08 | H 6.40<br>6.33 | N 9.36<br>9.42   |
| 2d          | N(CH <sub>3</sub> ) <sub>2</sub> | 81           | 9798°           | C <sub>14</sub> H <sub>22</sub> BrN <sub>3</sub><br>(312.25)                          | calc.<br>found | C 53.85<br>53.95 | H 7.10<br>7.16 | N 13.46<br>13.38 |
| <b>2</b> e  | Cl                               | 77           | 129–131°        | C <sub>12</sub> H <sub>16</sub> BrClN <sub>2</sub><br>(303.62)                        | calc.<br>found | C 47.47<br>47.34 | H 5.31<br>5.33 | N 9.26<br>9.20   |
| 2f          | NO <sub>2</sub>                  | 76           | 200-203°        | $C_{12}H_{16}BrN_3O_2$                                                                | calc.<br>found | C 45.87<br>45.81 | H 5.13<br>4.98 | N 13.37          |

a Perchlorate salt.

Table 3. Spectral Data on Compounds 2a-f

| Product | $^{1}$ H-N.M.R. (D <sub>2</sub> O), $\delta$ ppm I.R. (KBr), cm $^{-1}$ |                    |                  |          |  |  |  |
|---------|-------------------------------------------------------------------------|--------------------|------------------|----------|--|--|--|
|         | N—CH <sub>3</sub>                                                       | 4,6-H <sup>a</sup> | 5-H <sup>b</sup> | v(N—C—N) |  |  |  |
| 2a      | 2.97                                                                    | .3.79              | 2.36             | 1660     |  |  |  |
| 2b      | 2.96                                                                    | 3.74               | 2.33             | 1665     |  |  |  |
| 2c      | 3.00                                                                    | 3.74               | 2.33             | 1665     |  |  |  |
| 2d      | 3.00                                                                    | 3.70               | 2.28             | 1670     |  |  |  |
| 2e      | 3.02                                                                    | 3.82               | 2.38             | 1660     |  |  |  |
| 2f      | 3.07                                                                    | 3.96               | 2.55             | 1665     |  |  |  |

a triplet.

sodium sulfate, the benzene is removed on a rotary evaporator, and the resulting residue is distilled under reducing pressure (Table 1).

## 2-Aryl-1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium Bromides (2a-f)

N-Bromosuccinimide (10 mmol, recrystallized from glacial acetic acid) was added in small portions over a period of  $\sim 30$  min to a stirred solution of compound 1 (10 mmol) dissolved in dry 1,2-dimethoxyethane (30 ml). The temperature of the mixture increased spontaneously to 35–40° during the course of the addition. A white precipitate began to form almost immediately. After the addition was complete, the mixture was stirred at room temperature for one hour. The reaction was conducted under a nitrogen atmosphere to protect it from moisture. The solid was collected on a filter, washed quickly with 1,2-dimethoxyethane followed

by dry ether, and then recrystallized from anhydrous methanol (Table 2). Compounds 2a-e are rather hygroscopic; the nitro derivative (2f) is not.

Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

Received: July 8, 1975

<sup>&</sup>lt;sup>b</sup> quintet.

<sup>&</sup>lt;sup>1</sup> D. J. Brown, R. F. Evans, J. Chem. Soc. 1962, 4039.

<sup>&</sup>lt;sup>2</sup> D. J. Brown, R. F. Evans, J. Chem. Soc. 1962, 527.

<sup>&</sup>lt;sup>3</sup> I. Perillo, S. Lamdan, J. Heterocyclic Chem. 10, 915 (1973).

<sup>&</sup>lt;sup>4</sup> S. Dunstan, H. B. Henbest [J. Chem. Soc. 1957, 4905] have reported the use of N-bromosuccinimide to degrade tertiary amines to aldehydes and secondary amines.

<sup>&</sup>lt;sup>5</sup> Obtained from Ames Laboratories, Milford, Conn.