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T H E  D Y N A M I C A L  I N V E R S E  P R O B L E M  FOR A N O N - S E L F - A D J O I N T  
S T U R M - L I O U V I L L E  O P E R A T O R  

S. A.  A v d o n i n ,  M.  I. Be l i shev ,  a n d  Yu.  S. R o z h k o v  UDC 517.946 

An approach to the inverse problem (the so-called BC-method) based on boundary-control theory is developed. 
A procedure of reconstructing a nonsymmetric matrix-function (a potential) given on a semiaxis by a dynamical 
response operator is described. The results of numerical tests are presented. Bibliography: 6 titles. 

O. INTRODUCTION 

In the present paper, an approach to inverse problems (the so-called BC-method) based on bound- 
ary control theory [1, 2] is developed. It also gives a new interpretation of the local approach due to 
A. S. Blagoveshenskii [3]. The BC-method for a non-self-adjoint Sturm-Liouville operator is stated in [5] 
(see also [6]). In the present paper, a version of this method most suitable for numerical realization is 
considered. The results of numerical experiments are discussed. 

1. THE DIRECT PROBLEM. THE BOUNDARY-CONTROL PROBLEM 

1 .1 .  T h e  d i r e c t  p r o b l e m  
Let V(x) ,  x > O, be a real N x N matrix-function with continuously differentiable elements. Consider 

the initial boundary-value problem (Problem 1) 

~ , ~ - ~ = + v ( x ) ~ = o ,  (x , t )  e a +  x (0,T), T > 0 ,  (1) 

~(~,0) = ~,(~,0) =0 ,  (2) 

u(O, t) = f ( t ) .  (3) 

The solution of this problem is a vector-function u - u f (x ,  t) with values in R n. Sometimes, when using 
physical terminology, we call V, f ,  and u f a potential, a control, and a wave, respectively. 

Let a matrix-function w(x,  t) be a solution of the Goursat problem 

wtt - wx~ + V ( x ) w  = O, 

w(0,t) =0 ,  

O < x < t < T ,  

w(~ ,~ )  = - ~  V(s )ds .  
(4) 

It is known that  w(x, t) is twice continuously differentiable in the domain {(x, t) : 0 <_ x < t < T}. The 
following statement is easily verified. 

P r o p o s i t i o n  1.1. 
(a) I f  f e C2([O,T];R N) and f(O) = if(O) = O, then Problem 1 has a unique classical solution u = 

u f (x, t). In this case, the representation 

{ /' J ( x , t )  = : ( t -  ~) + w ( x , s ) f ( t  - s)ds, for ~ < t, 

0, for x > t, 
(5) 

is valid. 
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(b) For f E L2([0, T]; RN), the function uf  (x, t) defined by (5)satisfies Eq. (1) in the sense of distribution 
theory. 

In the latter case, we regard u I as a generalized solution of Problem 1 for controls of the classL2([0, T]; 
aN) .  By (5), for any fixed moment t = ~ we have 

supp u f ( . ,~ )  Cf)~, O < ~ < T ,  (6) 

where ~ := [0, [] is an interval of the O X  axis and the inclusion 

u / ( . , T )  E L2(f~T;RN), f e L2([O,T]);RN), (7) 

is valid. 
Let ~ be a delay operator: 

{ o, 
:= fr_ (t) :=  

where ~ is a parameter, ~ E (0,T); 
f, / := 0: 

0 < t < T - ~ ,  
(s) 

T - [ < t < T ,  

(9) 

The independence of the potential V(. ) from time leads to a known property of the solution uf: 

u ~ - '  ( . ,  T) = u q - ,  ~). (10) 

We note another property of the solution u/,  the so-called "localization principle," that is implied by the 
hyperbolicity of system (1)-(3). For any fixed ~ E ( 0, T/2), the values of the solution u/ix,  t) for (x, t), 
0 < x < ~, x < t < 2~ - x, are uniquely determined by the values V Ix_<~, and they axe independent of the 
behavior of V Ix>~- 

1.2. T h e  b o u n d a r y - c o n t r o l  p rob lem 
The statement of the boundary-control problem is as follows: given a 6 L2(~T; a N) , it is required to 

find f E L2([0, T]; R N) such that 
= a .  (11) 

This setting naturally follows from relations (6), (7). 

L e m m a  1.1. For any a E L2(~T; aN) ,  there exists a unique solution of problem (11). 

Proof. By (5), the above problem is equivalent to the solution of the equation 

/ *  T 

a(x) = f ( T  - x) +/~  w(x, s ) f (T  - s)ds, x E f~T. 

The latter is the Volterra equation of the second kind with respect to f ( T - x ) .  
equation implies the solvability of the boundary control problem. 

(12) 

The solvability of this 

2. A DYNAMICAL SYSTEM 

2.1. T h e  cont ro l  o p e r a t o r  

In this section, we endow Problem 1 with the attributes of a dynamical system, namely, with spaces and 
operators. The space of controls f T := L2([0, T]; a N) is called the outer space of dynamical system (1)- 
(3). The space 7-~ T :---- L2(~T; a N) is ca/led the inner one; at each instant of time t = ~, the wave uI( �9 , ~) 
belongs to ~.~T (see (6), (7)). The operator VV ~r : 9 rT ~-+ 7-~ T, 

w r f  = T), (13) 

is called the control operator of the system. 
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L e m m a  
isomorphism). 

The proof follows from Lemma 1.1. From (5) we obtain a representation of the operator wT:  

(wry)(x)  = f ( T -  ~) + w ( ~ , s ) f ( T  - s)ds, �9 e a r .  (14) 

The outer space .~r contains a family of subspaces .T T'~ formed by delay controls (see (8)-(10)): 

~'T'g:='T~T~'T= { f  E .~  T : suppf  C [ T - ~ , T ]  },  0_< ~_< T. (15) 

The set 
u~ := w T ~  r'~ (16) 

is said to be reachable (in an amount of time ~). 
Lemma 2.1 states that/A T = 7-/T. It is clear that  a similar relation is valid for any instant of time: 

u~ = ~, 0 < ~ < T ,  (17) 

where ~ is a subspace of the space ~T ,  

~-/~ :• { a �9 ~_/T : supp a C fig }. 

2.2. T h e  r e s p o n s e  o p e r a t o r  
The mapping "input-output" in our dynamical system is realized by a response operator R T : ~ T  ~_~ ~T; 

D o m a  r = { f �9 C2([0,T];RN):  f(0) = f '(0) = 0 } ,  

(n  r f )  (t) := uf(0,t), t �9 [0,T] 

It is well defined by Proposition 1.1. 

P r o p o s i t i o n  2.1. For any T > 0 ,  the following representation is valid: 

/o' (R T f )  (t) = - i f ( t )  + r(t - s)f(s)ds,  0 < t < T, (18) 

where r(t) is a continuously differentiable matrix-function for t > O. 

This statement follows from Proposition 1.1. 
The response operator will play the role of data in the inverse problem. 

2.3. T h e  dua l  s y s t e m  
A dynamical system of the form 

u u - u ~ z + Y # ( x ) u = 0 ,  (x,t)  � 9 2 1 5  T), T > 0 ,  

~(~, o) = ~ ( x ,  o) = o, ~(0, t) = g(t), 

with matrix-potential V # transposed to V is said to be dual to the initial system (1)-(3). Let u~ be a 

solution of it, and let W~ be the corresponding control operator: W~g = u~( . ,  T). Similarly to W T, the 
operator W~ is an isomorphism. 

The response operator of the dual system also admits a representation of the form (18): 

(R~ g)(t) := (u~)z(O,t) ---- --g'(t) + r # ( t -  s)g(s)ds. (19) 

It can be shown that  there is a simple relationship between the response operators of the initial and dual 
systems. 

2.1. For any T > O, the operator W T is bounded and boundedly invertible (i.e., W T is an 
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Propos i t ion  2.2. The matrix kernels r in (18) and r# in (19) axe mutually transposed: 

r#(t) =r#(t). (20) 

with an operator c T :  .T T ~-~ ~q', where C T := (W~)*W T. This operator is an isomorphism, because W~ 
and W T are isomorphisms. 

The operator C T is called the connecting operator, because it relates the metrics of the outer and inner 
spaces. 

The following fact is important for the inverse problem: the connecting operator is determined by the 
response operator. 

In order to formulate the results, we introduce auxiliary operators: 
the operator of odd extension S T : ~ T  ~_. :~Tt, 

f(t), 
( sTf ) ( t )  = - f ( 2 T -  t), 

the operator of separation of the  odd part Q2T : ~ T  t ~_~ ~Tt ,  

1 
(Q2r f ) ( t )  -~ -~ I f ( t )  -- f ( 2 T  - t)]; 

t h e  r e s t r i c t i o n  operator N 2T : .~Tt  ~-+ .~T, 

t h e  integration operator j 2 T  : .~T t t-* ~ T t ,  

We shall use the relation 

which is easily verified. 

N2T f -= f I[0,T]; 

(J2T f)(t) = f(s)ds, 0 < t < 2T. 

( s T )  * := 2 M T Q  2T, 

Let R 2T be the response operator corresponding to system (1)-(3) with final instant of time 2T. 

T h e o r e m  2.1. The following representations are valid: 

c T  = _ 1 ( s T ) .  fl2T R2T ST;  

(CTf)(t)  = f(t)  + [p(2T - t - s) - P ( I  t - s I)]f(s)es, 

where 

1 A p(t) := ~ r(s)ds. 
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0 < t < T ,  

T < t < 2T; 

(22) 

(23) 

(24) 

2.4. The  connec t ing  operator 
For arbitrary controls f ,  g E 9 ~'T and for the corresponding solutions u f and uS of Problems I and I#,  

we have 



Proof. For arbitrary functions f, g E C~([O,T];I~N), we put  f_  :---- sTf  and introduce the  function 

0 < s < 2 T ,  0 < t < T .  

Note tha t  f_ E Dom R 2T. We obtain the relations 

In the  last relation we use the fact t ha t  (u~)z(T,s) = ug~(T,t) --- 0 for f, g e C~([O,T];R N) (this easily 
follows from (5)). 

Thus,  the function w/9 satisfies the equation 

w~ ~ - 'w~ f~ = -(f_(s),(R~g)(t)) + ((R 2T f_)(s),g(t)); 

0 < s < 2 T ,  0 < t < T ,  (25) 

and the condition (see (2)) 
o) = o) = o. (26) 

Integrat ing (25), (26) in the domain (s, t) : 0 < t < T, t < s < 2T - t by the d 'Alember t  formula and 
put t ing  t -- s -- T, we obtain 

1 fT f2T-r~ 
w f g ( T , T ) = - ~ / ~  d~J, [<f_(~),(R~g)(~))-<(R2Tf_)(~),g(~))]d~. 

Since f :T-v f_ (~)d~ = O, we have 

I~T /2T-r~ 
w/a(T, T) = ~ d~ ((R2r f_)(~), g(~)>d~. (27) 

On the  other hand, 

j • 2 T - - v  (R2T f -) (~)d~ = (j2TR2T f_) (2T - ~) - (j2TR2T f_) (77) = - 2 ( Q  2T J2TR2T f-)(~). 

Taking into account (21), relation (27) takes the form 

By the  definition of w/g,  we obtain 
w/g(T,T) = (C T f ,g)7 r. (29) 

Comparing the r ight-hand sides of (28) and (29) and using the arbitrariness of f and g from C ~  ([0, T]; RN) ,  
we obtain representat ion (23). Taking into account (18), we derive (24) from (23). The  theorem is proved. 
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3. T H E  INVERSE PROBLEM 

3.1. T h e  G e l f a n d - L e v i t a n  e q u a t i o n  
We consider the boundary-control problem (see Sec. 1.2) with a special r ight-hand side, namely, as a we 

take the  function yT tha t  is the restriction of the  solution of the  Cauchy problem to f~T: 

- y " ( x )  + v ( x ) y ( ~ )  = 0, ~ > 0, (30) 

y(0) = ~, y'(0) = ~, (31) 

where a and/3 are arbitrary vectors from R N. Denote by z T a solution of the problem z T := (W T)-I yT. 
We prove that the function zT( �9 ) satisfies a linear equation both sides of which are expressed in terms of 
the data of the inverse problem. 

Put ~T(t) :: T - t, 0 < t < T, and consider elements of the space of controls of the form nTa, nTj. 

T h e o r e m  3.1. The function Z T E S T  is a unique solution of the equation 

c ~z  ~ = ~/~ - ( R ~ ) * ~ r ~  (32) 

Proof. For any g e C~~ we have 

( CTzT, g)~'T 

: 

---- - foT(T  -- t)[(a,  ( I~g)( t ) )  -- (~,g(t))]dt 

Comparing the beginning and the end of the above string of equalities, we obtain (32). Using Lemma. 1.1, 
we complete the proof of the theorem. 

Taking into account Proposition 2.2, it is easy to verify the relation 

i 
T 

whence 

jft 
T 

([R~]*~)(t)=-~+ T(s-t)(T-.)~s, 0<t<T. 

In addition to (34), we find a relation that  will be used for the solution of the inverse problem. Put t ing 
f -- z T in (14), we have 

T 

(WTz T) (X) -~- z T ( T - - x )  -k Ix  W(X's )zT(T--  s)ds --- y(x), x e f~. 

As x --* T - 0, we obtain 
z ~ (+0) = y(T).  (33) 
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3.2. Solution of  the  inverse problem 
The statement of the inverse problem is as follows: given a function r(t), 0 < t < 2T (or, equivalently, a 

response operator R 2T, see (18)), it is required to reconstruct a potential V(x),  x E ~T, by using r(t). 
Describe the process of solution of the inverse problem: 
(a) by the matrix-function r(t), 0 < t < 2T, using (18)-(20) and (23), we find the operators R r, R~, 

0 < T_< 2T, and C ~, 0 < T_< T. 
(b) Form a family of equations: 

C~ z ~ = ~ Z  - ( R ~ ) * ~  ~, (34) 

where a, /3 E R N, and the index v is a parameter, 7 E (0, T]. Each of Eqs. (34) is uniquely solvable in the 
respective space U~, and the solution z ~ of it is connected with the solution y of the Cauchy problem (30), 
(31) with given a and/3 by the relation z r = ( W ~ ) - l y  ~. We fix v and consider N equations of the form 
(34), where aj and/3j are chosen so that the vectors-columns 

/3j , j = I , . . . , N ,  

are linearly independent in R 2N. Find solutions of these equations z~ (t), t E [0, ~-]. 
(c) Using (33), by z~ (t) (0 < t < ~- < T) we reconstruct a solution yj(x) (x E ~t T) of the Cauchy problem 

(30), (31) with given aj and/3j: 

y j (x )=z~(+O) ,  0 < x < T ,  j = I , . . . , N .  (35) 

Having obtained the solution yj(x) for any x E 12 T, we find the second derivatives 

d 2 
y~'(x) = dx--~z~, 0 <_ x < T, j = 1 , . . . , N .  (36) 

(d) Fix x E ~t T and form the matrices Y(x )  and Y"(x)  with vectors (35) and (36) as columns. If the 
matrix Y(x)  is nonsingular, we reconstruct the potential Y(x)  by the formula Y(x)  = Y " ( x ) Y - l ( x ) .  At a 
finite number of points of singularity of Y(x) ,  we define V(x)  by continuity. The inverse problem is solved. 

4.  A N U M E R I C A L  E X P E R I M E N T  

4.1. A n  algor i thm 
The Gelfand-Levitan equation (32) and relation (33) underlie a numerical algorithm for solving the 

inverse problem: 
(a) for given T > 0, we specify a partition of the time interval [0, T] by a system of points 0 = 

~0 < ~1 < "-" < ~M --~ T. Consider the family of equations obtained from (32) for a = col{0, . . .  ,0}, 
/3 = col{l,... ,I}: 

C~Z -- ,~E (37) 

(~ = ~i,..- , ~M; E is the identity matrix, g~ -- ~ - t). Approximate solutions Z of these equations are 
sought in the form of matrix polynomials 

q 

Z(t) = E ( ~ -  t)k'A~k (~ = ~1,---,~M) (38) 
k=0 

with unknown A~. 
(b) The coefficients A~k are determined with the help of the optimization procedure 

min (I)~(A0~,... ,A~q)= min]lCe2-~eEFI 2. 
A~ A ~ 0 ~ " "  , q 
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In the ordinary way we obtain a system of equations 

oA--~=o (k=o,...,q). 
(c) By the methods of numerical differentiation, approximating values of the potential 

d s 

are found. 
The algorithm has the following input parameters:  
N is the dimension of the matr ix problem; 
T is a finite moment  of time; 
M is the number  of points ~ E [0, IF]; 
h is a step of partition, h = ~i - ~i-1 = T/M; 
q is the dimension of an approximating polynomial; 
r(t) is an N • N matrix-function given for t E [0, 2T]. 

4.2. P r o b l e m s  for  t e s t i n g  
As tests we considered the following problems in which the Gelfand-Levitan equations are solved in 

explicit form: 
1. N = 2 ; T - - 0 . 5 ; M = 2 0 ; h = 0 . 0 2 5 ; q = 3 ;  

r(t) = \ 0  ' , t e [0, 1]; 

(the diagonal case) 
2. N - - 2 ; T = 0 . 5 ; h f - - - - 2 0 ; h = 0 . 0 2 5 ; q = 3 ;  

r(t) = (3t' t ) 
\ t, 3t ' t e [ o ,  1]; 

(the nondiagonal symmetric  case) 
3. N = 2 ; T = 0 . 5 ; M = 2 0 ; h = 0 . 0 2 5 ; q = 4 ;  

r ( t )  ~_z_l_r,,j§ _ ~a(t)], - ~ ( t )  - -~ob(t)  ] , t e [0, 1], \ a l l  A L"r'o\ ~2 

where 
al l  -- 6; a12 = 3; a21 -- 5; a22 = 8; 

a b 
A1 = ; A s - -  ; A = A s - A 1 ;  

a12 a12 

i / a 2 2  _ a11~)2 a l l  + a12 ~ al2 �9 a21 -- 
a =  2 2 / 

b = a l l  -t- a12 a22 - a l l  
2 12 �9 asl - ~ ; {~ yYl(at),  a = V~, a > O, 

~ o ( t )  = 

- T i x ( s t ) '  ~ = ~ / ~ ,  a < 0; 

{ ~Jl(zt), ~ = ~ ,  b > o, 
~b(t)  = 

-~ I i (~ t ) ,  ~=X/r~, b<O, 

(the nondiagonal asymmetr ic  case). 
(Here J l ("  ) , / 1 ( .  ) are the Bessel functions of the first and second kind, respectively.) 
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4.3. R e s u l t s  
The results of numerical solution of the test inverse problems are shown in Figs. 1-3. The exact values 

of V ( x )  are drawn by a dotted line; the reconstructed values of ~'(x) are drawn by a solid line. 

. . !  r~ 0 

- 2 !~0 .  

�9 -..~ , ~0 .  

-~,~:~ �9 

-:$.DO - 

- 4  ; 00  �9 

- 6 . 0 ~ . .  

-'~0.~ ........ , ......... ~ .................................. ~ - , . ~  
D O 0  0 . 1 0  ( ]  ~I ~.~ , ~ . ~  ~..,*~ ] ~ . r ~  �9 

FIG. 1 FIG. 2 

In the process of reconstructing the potential, the determination of the matrix-function Y ( x )  = { y~ (x), 
. . .  , yN(X)  } (see (30), (31)) is of independent interest. As was mentioned above, this is concerned with the 
solution of a respective boundary-control problem (8). The values of Y(. ) determined by the algorithm are 
shown in Figs. 4-6. 

These results allow us to claim that  the algorithm works successfully in the case of sufficiently smooth 
matrix-functions r(t) .  Note that the precision of the reconstruction of V(x)  depends on the dimension q of 
the approximating polynomial (38). 
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