Electron Spin Resonance Study of Radical Addition to Alkyl Isocyanides

By PETER M. BLUM and BRIAN P. ROBERTS*

(Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ)

Summary The e.s.r. spectra of a number of imidoyl radicals, generated in solution by radical addition to alkyl isocyanides, have been detected and the fragmentation of these radicals has been studied.

A NUMBER of α -addition reactions of alkyl isocyanides are thought to proceed by free-radical chain mechanisms, involving the formation of intermediate imidoyl radicals (I) [reactions (1) and (2)].¹ It has also been proposed² that

$$X \cdot + RN=C: \longrightarrow RN=\dot{C}$$
(1)
(I)
(I) + X-Y \longrightarrow RN=C(X)Y + X. (2)

the oxidation of t-butyl isocyanide to the isocyanate by t-butoxyl radicals involves β -scission of an intermediate imidoyl radical (II) [reactions (3) and (4)]. We have now

Bu^tO[•] + Bu^tN=C:
$$\longrightarrow$$
 Bu^tN=Ć (3)
(II)
(II)
 $\stackrel{k_4}{\longrightarrow}$ Bu^tN=C=O + Bu^t• (4)

confirmed that the imidoyl radical (II) is an intermediate in this oxidation, and further, established that a variety of free radicals add readily to alkyl isocyanides to produce imidoyl radicals, the structures and transformations of which may be studied using e.s.r. spectroscopy.

When a cyclopropane solution of t-butyl isocyanide and di-t-butyl peroxide (as a source of t-butoxyl radicals) was irradiated with high intensity u.v. light whilst the sample was in the cavity of the spectrometer, a strong spectrum $[a(^{13}C_{\alpha})$ was determined without isotopic enrichment] of the imidoyl adduct (II) was detected at low temperatures (*ca.* 180 K). At higher temperatures the spectrum of (II) was less intense and, in addition, the spectrum of the t-butyl radical was apparent. The spectrum at 263 K is shown in the Figure.

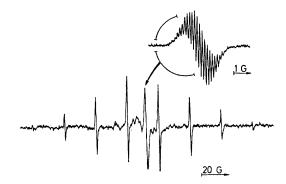


FIGURE. E.S.r. spectrum obtained during u.v. irradiation of a solution of t-butyl isocyanide and di-t-butyl peroxide in cyclopropane at 263 K. The signal from the imidoyl radical (II) is shown on an expanded scale; the remaining lines are due to the t-butyl radical.

When $C_4D_9^{t}OOC_4D_9^{t}$ was employed as a source of perdeuterio-t-butoxyl radicals, only perdeuterio-t-butyl radicals and no t-butyl radicals were detected as β -scission products of the labelled (II) at 270 K. In addition, tbutoxyl radicals add readily to methyl isocyanide and the resulting imidoyl radical undergoes β -scission to give t-butyl radicals at a similar rate to that for fragmentation of (II). The rate constant for reaction (4) was determined relative to that for self-reaction of t-butyl radicals, using the technique described previously.³ In cyclopropane the

TABLE

E.s.r. parameters for imidoyl radicals (I) generated by addition of X to alkyl isocyanides in cyclopropane solution

R in RNC	Addendum radical X•	T/K	g-Factor	$a(N_{\beta})$ H	[yperfine sp $a({}^{13}C_{\alpha})$	olittings /G Others
$\mathbf{Bu^t}$	ButO	180	2.0016	a	108.0	b
But	[² Hg]-Bu ^t O•	185		a		C
Me	Bu ^t O•	190	2.0013	≪0·2ª		0.75(3H); 0.13(9H)
But	Me _a SiO [•] e	188	2.0013	f	116.0	g
Bu^t	Bu ^t S•	188	2.0014	$5 \cdot 0$		
$\mathbf{Bu^t}$	CF ₃ S·	187		5.8		
But	Et _a Si•	178	2.0014	8.6	32h	
${ m Me}$	Et _a Si•	171	2.0011	8.0	—	
But	(EtO) ₂ PO	175	2.0014	7.5		127·4 (1P) ^g
Bu ^t	$(OCMe_2CH_2O_{-})_2\dot{P}$	197	2.0016	8.6	41.5	147·9 (1P) ^g

^a Probably $a(N_{\beta}) \leq 0.3$ G. ^b Spectrum appeared as a multiplet of at least 20 lines, approximately equally spaced by 0.15 G. It seems likely that $a(OC_4H_9^t) = 0.15$ G and that the protons of the N-t-butyl group give rise to resolvable splitting which must be a multiple of the line spacing. ^c Spectrum appeared as a multiplet of at least 9 lines, approximately equally spaced by 0.3 G. ^d MeN= $\dot{OOC}_4D_9^t$ showed a 1:3:3:1 quartet with no further resolution and a peak-peak line-width of 0.4 /G. ^e Fragmentation of Bu^tN= \dot{OOSiMe}_8 was undetected even at 273 K. ^f Unresolved; peak-peak line-width 1.6 G. ^g Some poorly resolved further splitting was apparent, probably arising from the N-t-butyl protons. ^h Only one line of the spectrum of Bu^tN= $^{19}\dot{CSiEt}_3$ could be clearly identified.

temperature-dependence of $(k_4/2k_t)$ between 216 and 253 K may be expressed by equation (5), where $\theta = 2.303RT$ kJ mol-1.

$$\log_{10}[(k_4/2k_t)/\text{mol } l^{-1}] = 1 \cdot 1 - 34 \cdot 2/\theta$$
(5)

Taking⁴ the rate constant for self-reaction of t-butyl radicals $(2k_t)$ as $1 \cdot 1 \times 10^{10} \, \mathrm{l \, mol^{-1} \, s^{-1}}$ at 250 K and assuming an activation energy of $8 \text{ kJ} \text{ mol}^{-1}$, we obtain equation (6), whence $k_4 = 5 \times 10^3 \text{ s}^{-1}$ at 243 K.[†]

$$\log_{10}(k_4/s^{-1}) = 12.8 - 42.2/\theta \tag{6}$$

The radical (II) was also generated by abstraction of hydrogen from Bu^tN=C(H)OBu^t (prepared by the addition of t-butyl alcohol to t-butyl isocyanide catalysed by CuO⁵). Photolysis of bis(trimethylsilyl) peroxide[‡] in the presence of ButN=C(H)OBut gave rise to a strong e.s.r. spectrum of the radical (II), identical to that produced by addition of t-butoxyl radicals to the isocyanide.

The spectra of several other types of imidoyl adduct have been detected during the reactions of photochemically generated sulphur-, silicon-, and phosphorus-centred radicals with alkyl isocyanides, and representative examples are given in the Table.

There appears to be an increase in the deviation from linearity at C_{α} [as judged by the magnitude of $a({}^{13}C_{\alpha})$] as the electronegativity of the substituent X in (I) increases, and the magnitude of $a(N_{\beta})$ is also markedly dependent upon the nature of X.

The radical (I; $R = Bu^{t}$, $X = SCMe_{2}Et$) undergoes β -scission to give t-butyl isothiocyanate and the t-pentyl radical is detectable by e.s.r. spectroscopy at 170 K [equation (7)], whereas the radical (I; $R = Bu^t$, $X = SiEt_a$) undergoes rapid C-N cleavage [equation (8)] even at low temperatures (170 K) to give t-butyl radicals and, presumably, triethylcyanosilane.

$$Bu^{t}N=CS-\zeta-CMe_{2}Et \longrightarrow Bu^{t}N=C=S + Me_{2}EtC$$
(7)

$$\operatorname{Bu}^{t} - \langle -N = \dot{C}\operatorname{SiEt}_{3} \longrightarrow \operatorname{Bu}^{t} + N \equiv \operatorname{CSiEt}_{3}$$
 (8)

(Received, 14th April 1976; Com. 420.)

[†] The spectrum of the radical $Bu^tN = \dot{C}Bu^t$ was not detected in these experiments, and even methyl radicals do not add sufficiently rapidly to t-butyl isocyanide to give a detectable adduct spectrum. The spectra of such imidoyl radicals, generated by hydrogen abstraction from imines, have been reported previously (W. C. Danen and C. T. West, *J. Amer. Chem. Soc.*, 1973, 95, 6872).

[‡] The use of this peroxide removes any possible ambiguity which might arise if di-t-butyl peroxide were employed.

- ¹ For a review see T. Saegusa and Y. Ito in 'Isonitrile Chemistry,' ed. I. Ugi, Academic Press, New York, 1971, ch. 4.
 ² L. A. Singer and S. S. Kim, *Tetrahedron Letters*, 1974, 861.
 ³ D. Griller and B. P. Roberts, *J.C.S. Perkin II*, 1972, 747.
 ⁴ J. E. Bennett, J. A. Eyre, C. P. Rimmer, and R. Summers, *Chem. Phys. Letters*, 1974, 26, 69.
 ⁵ T. Scarraz, Y. Ho, S. Verbarreki, N. T. Fache, and K. Summers, *Chem. Phys. Letters*, 1974, 26, 69.

- ⁵ T. Saegusa, Y. Ito, S. Kobayashi, N. Takeda, and K. Hirota, *Tetrahedron Letters*, 1967, 1273.