Über Chalkogenolate. LVIII¹)

Untersuchungen über Thioameisensäuren 6. Cyandithioameisensäure und Azidodithioameisensäure 1)

Von R. ENGLER²) und G. GATTOW

Mit 1 Abbildung

Inhaltsübersicht. Polymere Cyandithioameisensäure kann durch Umsetzung einer Lösung von Na[NCCS₂] · 3 DMF mit HCl(aq) hergestellt werden. In der Gasphase liegt [NCCS(SH)]_x mit x = 1 und 2 vor.

Die instabile kristalline Azidodithioameisensäure entsteht bei der Reaktion einer Lösung von $Na[N_3CS_2]$ mit HCl(aq). In der Gasphase konnte nur die monomere Einheit $N_3CS(SH)$ nachgewiesen werden.

Abstract. Polymeric cyanodithioformic acid has been prepared by interaction between a solution of $Na[NCCS_2] \cdot 3$ DMF and HCl(aq). In the gaseous state there exists $[NCCS(SH)]_x$ with x = 1 and 2.

The instable crystalline acidodithioformic acid is formed on reaction of $Na[N_3CS_2]$ with HCl(aq). In the gaseous state there exists the monomeric acid $N_3CS(SH)$.

Im Zusammenhang mit unseren Untersuchungen über die freie Monothioameisensäure³) und Dithioameisensäure⁴) wird im folgenden kurz über zwei substituierte Thioameisensäuren, über die Cyandithioameisensäure und Azidodithioameisensäure berichtet.

In den letzten Jahren waren 1,1-Dithiolate häufig Gegenstand von Untersuchungen⁵). Während die Aminodithioameisensäure (= Dithiocarbamidsäure) ausführlich charakteri-

¹⁾ LVII. bzw. 5. Mitteilung: R. Engler, G. Gattow u. M. Dräger, Z. anorg. allg. Chem. **390**, 64 (1972).

²⁾ Teil der Dissertation R. ENGLER, Mainz 1971.

³⁾ R. ENGLER u. G. GATTOW, Z. anorg. allg. Chem. 388, 78 (1972).

⁴⁾ R. Engler u. G. Gattow, Z. anorg. allg. Chem. 389, 145 (1972).

⁵) Vgl. die Übersichtsartikel: M. DRÄGER u. G. GATTOW, Angew. Chem. 80, 954 (1968); Angew. Chem., int. Edit. 7, 868 (1968). D. COUCOUVANIS, Progress inorg. Chem. 11, 233 (1970). R. EISENBERG, Progress inorg. Chem. 12, 295 (1971).

siert worden ist⁶), ist über die Azidodithioameisensäure etwas und über die Cyandithioameisensäure relativ wenig bekannt.

I. Cyandithioameisensäure

Cyandithioformiate [NCCS₂] wurden erstmals von Bähr und Schleitzer?) hergestellt. Es gelang die Darstellung des Natrium-, Kalium-, Thallium- und einiger Tetraalkylammoniumsalze?)⁸) sowie von Estern?)⁸), die später charakterisiert wurden ¹⁰). Die freie Cyandithioameisensäure wird als polymer beschrieben ¹¹).

Die Darstellung der Cyandithioameisensäure erfolgte in Anlehnung an die Methode von Bähr und Schleitzer¹¹) durch Umsetzen des Natriumsalzes mit Salzsäure.

Arbeitsvorschrift $[NCCS(SH)]_x$: Zu einer Lösung von Na $[NCCS_2] \cdot 3$ DMF 12), hergestellt nach dem Verfahren von Bähr und Schleitzer⁷), in Methanol wird langsam konz. HCl hinzugefügt. Die ausgeschiedene Substanz wird abfiltriert, mit H_2O , Methanol, Äther gewaschen und im Vakuum über P_2O_5 getrocknet. — Analysen siehe bei 11). Cyandithioformiat kann quantitativ als $[(C_6H_5)_4As][NCCS_2]$ gefällt und bestimmt werden.

Die polymere Cyandithioameisensäure ist eine schwach rosa gefärbte, röntgenamorphe Substanz, die sich bei etwa 110°C zersetzt. Ohne Zersetzung löst sie sich in keinem gebräuchlichen Lösungsmittel; sie ist in Laugen unter Bildung von [NCCS₂]- löslich.

Im Massenspektrum (Elektronenstoß) der polymeren Cyandithioameisensäure treten die Peaks der dimeren und monomeren Molekülionen auf: $[NCCS(SH)]_2^+$ (relative Häufigkeit: 12%), $NCCS(SH)^+$ (25%). Ab m/e > 55 werden noch hauptsächlich folgende Fragmente bzw. Rekombinationsprodukte unterschiedlicher Häufigkeit (>10%) beobachtet 13): $C_2NS_3H^+$, C_2NS^+ , CS_2^+ , $HSCN^+$ sowie S_x^+ mit x=2,3,4,5,6,7,8.

Im IR-Spektrum (Bereich: $526-4000 \text{ cm}^{-1}$), das in Abb. 1 wiedergegeben ist, zeigt $[\text{NCCS}(\text{SH})]_x$ Absorptionsbanden mit Maxima bei folgenden Wellenzahlen $(\text{cm}^{-1})^{12}$):

⁶⁾ G. Gattowu. V. Hahnkamm, Z. anorg. allg. Chem. **364**, 161 (1969); **365**, 70 (1969); **368**, 127 (1969); **375**, 221 (1970).

⁷⁾ G. Bähr u. G. Schleftzer, Chem. Ber. 88, 1771 (1955).

⁸⁾ G. Bähr, Angew. Chem. 68, 525 (1956); G. Bähr, G. Schleitzer u. H. Bieling, Chem. Techn. 8, 597 (1956); vgl. auch H. E. Simmons, D. C. Blomstrom u. R. D. Vest, J. Amer. chem. Soc. 84, 4756 (1962).

⁹⁾ J. Fabian, H. Viola u. R. Mayer, Tetrahedron [London] 23, 4323 (1967).

¹⁰) M. Dräger u. G. Gattow, Z. anorg. allg. Chem. 387, 281, 300 (1972).

¹¹) G. BÄHR u. G. SCHLEITZER, Chem. Ber. **90**, 438 (1957).

¹²) Über die zugeordneten IR-Spektren von [NCCS₂]- und NCCS(SCH₃) sowie über die Gitterdimensionen von Na[NCCS₂] · 3 DMF vgl. ¹⁰).

¹³) Das Molekülion Dimercaptomaleodinitril tritt zu etwa 2% auf.

 $^{^{14}}$) Es bedeuten: s = schwach, m = mittel, st = stark. — Die Banden von Wasser sind nicht aufgeführt.

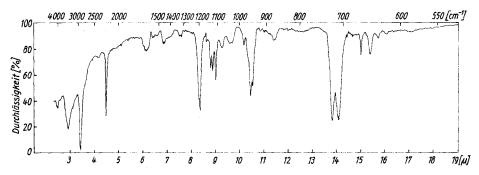


Abb.1. IR-Spektrum von [NCCS(SH)]_x

2910 (st), 2250 (st), 1630 (s), 1452 (s), 1202 (m), 1194 (st), 1136 (s), 1123 (s), 1105 (m), 1077 (s), 1036 (s), 981 (s), 956 (st), 948 (m), 878 (s), 724 (st), 711 (st), 666 (s), 649 (s).

Die ausgeprägte Bande bei 2250 cm⁻¹ ($\nu_{C=N}$) beweist, daß die Polymerisation über die C=S-Gruppe wie bei der Dithioameisensäure⁴) erfolgt.

Von den Cyandithioformiaten haben wir lediglich das bekannte Tetraäthylammoniumcyandithioformiat ⁷)⁸) sowie das Tetraphenylarsoniumcyandithioformiat röntgenographisch untersucht ¹²).

Das in gelben Nadeln kristallisierende $[(C_2H_5)_4N][NCCS_2]$ (Schmelzpunkt: 133°C) hat mit Z=4 Formeleinheiten in der Elementarzelle rhombische Symmetrie. Die Gitterdimensionen betragen:

$$\begin{split} a &= 7,715 \,\pm\, 0,005 \, \text{Å}, \quad b = 13,945 \,\pm\, 0,005 \, \text{Å}, \quad c = 12,255 \,\pm\, 0,005 \, \text{Å}, \\ V &= 1318,4 \, \text{Å}^3; \quad d_R = 1,169 \, \text{g/ml}; \quad d_4^{20} = 1,167 \,\pm\, 0,008 \, \text{g/ml}. \end{split}$$

Charakteristische Raumgruppen: $Pbc2_1-C_{2v}^5$ (Nr. 29) und $Pbcm-D_{2h}^{11}$ (Nr. 57). $[(C_2H_5)_4N][NCCS_2]$ ist wahrscheinlich mit Tetraäthylammonium-dithioformiat 15) isostrukturell.

Bei der Umsetzung wäßriger Lösungen von $[NCCS_2]^-$ mit $[(C_6H_5)_4As]Br$ fällt das gelbbraune $[(C_6H_5)_4As][NCCS_2]$ quantitativ aus, das sich bei Zimmertemperatur langsam unter Abgabe von HCN bzw. $(CN)_2$ zersetzt. Die Substanz kristallisiert tetragonal mit

$$a = 12.53 \pm 0.002 \text{ Å}, \quad c = 8.32 \pm 0.02 \text{ Å},$$

$$V = 1305.65 \text{ Å}^3, \quad d_R = 1.233 \text{g/ml}, \quad d_4^{20} = 1.249 \pm 0.008 \text{ g/ml}$$

und Z = 2 Formeleinheiten in der Elementarzelle; charakteristische Raumgruppen: I4–C₄⁵ (Nr. 79), I $\overline{4}$ –S₄² (Nr. 82) und I4/m–C₄⁵ (Nr. 87). Die Verbindung ist mit [(C₆H₅)₄As][HCS₂]¹⁵) und [(C₆H₅)₄P][HCS₂]¹⁵) sowie mit [(C₆H₅)₄As][HCOS]³) und [(C₆H₅)₄P][HCOS]³) isostrukturell.

¹⁵⁾ R. Engler, G. Gattow u. M. Dräger, Z. anorg. allg. Chem. 388, 229 (1972).

II. Azidodithioameisensäure

Die Synthese von Azidodithioformiaten $[N_3CS_2]^-$ gelang erstmals Sommer¹⁶). Diese Verbindungsklasse wurde später ausführlich untersucht¹⁷); Angaben über die freie Säure existieren¹⁸). Nach IR-spektroskopischen Untersuchungen¹⁹) soll die Azidodithioameisensäure als 1, 2, 3, 4-Thiotriazolin vorliegen.

Die Azidodithioameisensäure wurde in Anlehnung an die Methode von Smith et al. 18) hergestellt.

Arbeitsvorschrift N_3 CS(SH): Zu einer gekühlten wäßrigen Lösung von $Na[N_3$ CS $_2]$ wird langsam konz. HCl hinzugefügt. Die ausgefallene Substanz wird in der Kälte abfiltriert und mit kaltem Wasser gewaschen.

Die Azidodithioameisensäure ist eine schwach gelblich gefärbte, feinkristalline Substanz, die sich bereits bei 0°C explosionsartig zersetzen kann. Sie ist in den meisten organischen Lösungsmitteln gut und in Wasser wenig löslich. — Zum IR-Spektrum von N₃CS(SH) vgl. ¹⁹).

Im Massenspektrum (Elektronenstoß) der Azidodithioameisensäure werden außer dem Molekülpeak der monomeren Säure (relative Häufigkeit: 86%) noch die Peaks von CS_2^+ (100%) und S_2^+ (98%) beobachtet. Mit geringer relativer Häufigkeit (<9%) treten noch die Fragmentionen CHNS $_2^+$ und CNS $_2^+$ sowie S_x^+ mit x=3,4,5,6 auf. Die Massenspektren geben keine Auskunft darüber, daß $N_3CS(SH)$ als 1,2,3,4-Thiotriazolin 19) vorliegt.

Versuche, z. B. das Tetraphenylarsoniumazidodithioformiat, das in Wasser schwer löslich ist, zu isolieren, schlugen fehl, da sich der Niederschlag sofort nach der Fällung unter heftiger Gasentwicklung zersetzt.

Für die uns zur Verfügung gestellten Hilfsmittel danken wir sehr der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Mainz, Institut für Anorganische Chemie und Kernchemie der Universität.

Bei der Redaktion eingegangen am 17. Dezember 1971.

Anschr. d. Verf.: Dr. R. ENGLER und Prof. Dr. G. GATTOW Inst. f. Anorg. Chemie u. Kernchemie d. Univ. Mainz BRD-65 Mainz, Johann-Joachim-Becher-Weg 24

¹⁶) F. Sommer, Ber. dtsch. chem. Ges. 48, 1833 (1915).

¹⁷) Vgl. z. B. G. B. L. SMITH et al., J. Amer. chem. Soc. 52, 2806 (1930); 56, 1116, 2380 (1934); 58, 1479 (1946). Weitere Literaturhinweise bei diesen Zitaten.

¹⁸) G. B. L. SMITH, F. WILCOXON u. A. W. BROWNE, J. Amer. chem. Soc. 45, 2604 (1923).

¹⁹) E. Lieber, J. org. Chemistry 22, 1750 (1957).