SHORT COMMUNICATIONS

INFRARED ABSORPTION OF SOME 3,4-DISUBSTITUTED PYRIDINES AND PYRIDINE 1-OXIDES*

By R. Alan Jones[†] and Ravindra Pratap Rao[†][‡]

During work in this department on the synthesis of 1,4,6-triazanaphthalenes,¹ 5-azaindoles,² and pyrazolo[4,3-c]pyridines,³ we measured the spectra of several 3,4-disubstituted pyridines and pyridine 1-oxides. In this paper we record and make tentative assignments for the absorption bands which are characteristic of these rings.

3,4-Disubstituted Pyridines

Ring CC and CN Stretching Vibrations in the 1620–1400 cm⁻¹ Region.—It has been established⁴ that the intensities of the bands due to ring stretching vibrations of substituted pyridines depend upon the electronic nature of the substituent, whereas the positions of the bands are relatively invariant. For the 3,4-disubstituted pyridines four bands are found in this region at 1617–1580 cm⁻¹ (50–500) [1594 \pm 10 cm⁻¹ (200 \pm 160)],§ 1580–1550 cm⁻¹ (15–190) [1566 \pm 9 cm⁻¹ (100 \pm 60)], 1525–1482 cm⁻¹ (30–270) [1516 \pm 6 cm⁻¹ (200 \pm 40) for compounds 1–6 and 1488 \pm 6 cm⁻¹ (60 \pm 30) for compounds 9–16], and 1404–1436 cm⁻¹ (25–125) [1416 \pm 10 cm⁻¹ (65 \pm 30)] (see Table 1).

The variations in the position and intensity of the bands with the change in substituent type are similar to the variations observed for the corresponding 3- and 4-monosubstituted pyridines.⁵ However, as expected, the substituent in the 4-position has a greater effect on the band positions and intensities compared with that of the 3-substituent (cf. Katritzky⁴) owing to the greater interaction between the ring and the substituent (particularly when it is electron-donating) in the 4-position. This is particularly noticeable with the third band. Compounds having electron-donating substituents in the 4-position absorb at c. 28 cm⁻¹ higher than those

* Manuscript received November 11, 1964.

† Department of Organic Chemistry, University of Adelaide.

‡ Present address: Department of Chemistry, University of Gorøkhpur, Uttar Pradesh, India.

§ Apparent extinction coefficients are enclosed in parentheses. The mean and standard deviations of the position and intensity of the bands are given in brackets.

¹ Clark-Lewis, J. W., and Singh, R. P., J. Chem. Soc., 1962, 3162.

² Badger, G. M., and Rao, R. P., Aust. J. Chem., 1964, 17, 1399.

⁸ Badger, G. M., and Rao, R. P., Aust. J. Chem., 1965, 18, 379.

⁴ Katritzky, A. R., J. Chem. Soc., 1958, 4162.

⁵ Katritzky, A. R., Hands, A. R., and Jones, R. A., J. Chem. Soc., 1958, 3165; Katritzky, A. R., and Gardner, J. N., J. Chem. Soc., 1958, 2198. SHORT COMMUNICATIONS

having electron-withdrawing substituents. Also, the intensity of this band is higher for those compounds having an electron-donating substituent.

	3,4-Disubstituted Pyridines												
1	NH ₂	NHMe ^a	1594	280	-		1525	180	$1432 \mathrm{sh}$	50			
2	NH_2	NH2 ^b	1580	m			1512	s	1432	m			
3	NHMe	NH_2	1586	150			1516	200	$\left\{ egin{smallmatrix} 1436 \mathrm{sh} \ 1422 \end{smallmatrix} ight.$	$\frac{40}{70}$			
4	NH_2	OEt	1587	170			1516^{+}	270	1436	95			
5	Me	NHMe	1602	450	1580	190	1521	180	1414	35			
6	${ m Me}$	NH_2	1598	160	1578	100	1507	180	1417	40			
7	NO_2	NHMe	1617	500	1567	190	1526^{h}	230	$1425^{ m h}$	130			
8	NO_2	NH_2^{b}	g		1557	\mathbf{m}	$1517^{ m h}$	s	1422	w			
9	NO ₂	OEt	1599	450	1563	140	1495	90	1416	25			
10	Me	Me	1599	90	1563	15	1496	4 0	1412	60			
11	${\rm Me}$	Cl	1584	75	1566	95	1483	120	1404	65			
12	\mathbf{Me}	-N=N-c	1585	120	1574	125	1482	50	1409	. 110			
13	${ m Me}$	NO_2	1607	50	1569	90	1484	4 0	1405	35			
14	CN	CN	1580	105	1550	35	1486	40	1407	125			
15	$\rm CO_2Me$	$\rm CO_2Me$	1593	65	1565	50	1490	30	1413	80			
16	$\rm CO_2Et$	$\rm CO_2Et$	1592	80	$\left\{ egin{smallmatrix} 1564 \ 1553 \mathrm{sh} \end{smallmatrix} ight.$	$50 \\ 45$	1488	35	1411	75			

3,4-Disubstituted Pyridine 1-Oxides

17	Me	NHMed	1632	s	1566	s	1486	s	1415	s
18	Me	Me	1620	35		<u> </u>	1489	210	1430	35
19	Me	Cl	1605	25			1474	240	1422	115
20	Me	-N=NO- ^{be}	1597	s			1477	s	1414	m
21	NHMe	NO_2^a	1616	520	1585	600	1495^{h}	220	1413	285
22	Me	NO_2	1606	210	1573	220	1477	100	1417	20
23	$-(CH_2)_2-$	NO2 ^{df}	1603	s	1567	VS	1465	s	1436	m
24	\mathbf{Br}	NO_2	1594	260	$1563 \mathrm{sh}$	200	1471	120	1427	110

^a Measured as 0 · 104_M solution. ^b Measured as a saturated solution. ^c 3,3'-Dimethyl-4,4'-azopyridine. ^d Measured as Nujol mulls. ^e 3,3'-Dimethyl-4,4'-azoxypyridine-1,1'-dioxide. ^f 4,4'-Dinitro-1,1'-dioxy-3,3'-dipicolyl. ^g Band obscured by stronger absorption. ^h Band considered to be superimposition of two peaks.

CH In- and Out-of-Plane Deformations.—By analogy with the CH deformation frequencies of 1,2,4-trisubstituted benzenes,⁶ we have assigned the bands in Table 2 to CH deformations. The band near 1000 cm⁻¹ is due to the ring breathing mode.

584

Substituent

4

3

$\label{eq:Table 1} Table \ 1$ ring stretching vibrations in the $1650{-}1400\ \text{cm}^{-1}$ region

 $\epsilon_{\mathbf{A}}$ values for compounds 12, 20, and 23 should be halved for comparison with other compounds. s, strong; m, medium; w, weak; sh, shoulder

cm⁻¹

 $\nu(CC)$

 $\nu(CN)$

¢д

 $\nu(CC)$

 $\nu(CN)$

 $\epsilon_{\rm A}$

cm⁻¹

 $\nu(CC)$

 $\nu(CN)$

€A

 cm^{-1}

 $\int v(CC)$

 cm^{-1}

 $\nu(CN)$

ŧA

	H)	¥э	135	s	125	90	120	100	105	s	06	85	110	95	190		55	40		tem-1	40)]	wheed for
	γ(C]	cm ⁻¹	813	812	817	804	814	820	814	824	812	823	[825		837		815	823	[[818±8 (100±	(100∃	ould be ha
	H)	¥∍	06	w	60	45	50	70	240	×	185	55		1	50	85	135	40	45) cm ⁻¹	35)]	value sh
INES	γ(C	cm ⁻¹	856	851	860	841	839	865	867*	854	854*	841]	857	843	843	840	840	$[848\pm^{\circ}$ (65 \pm	(65∄	+ 6.
ED PYRID	(H)	۶Ą	35	[25	25	10	10	-	w	105						1]		5 cm ⁻¹	[(0]]	sorntion
UBSTITUT	y(C	em ⁻¹	768	-	885sh	890	913	915	l	928	928^{*}			1	1		1	ļ	1	[911±1	$(20\pm$	de acordoa
DF 3,4-DIS	Ring	¥϶	1	м	1		35	35		1]	10		25	25	10	1			5 cm ⁻¹	=10]	ber of
UENCIES (em ⁻¹		986		1	994	966	1		1	1000		661	994	1005	1	1		∓966]	$(25\pm$	
NG FREQ	β(CH)	¥۶	110	M	35	40	105	30	45	M		40			100	40	10	75	130	7 cm ⁻¹	30)]§	
G BREATH		cm ⁻¹	1066*	1070	1083	1060 sh	1068	1079	1062	1075	-1	1070) - -	+	1054	1058	1050	1053	1051	1072 +	$(50\pm$	-
AND RING	β(CH)	εV	80	m	50	95	140	85	80	g	140	40	2	25	30	25	40	100	80	cm ⁻¹	4 0)]	
ORMATION		cm~1	1196	1191	1192	1187	1195	1192	1197	1198	1195	1195		0611	1189	1183	1187	1196	1180	11191	(<u>10</u> +	
CH DEF	lent	4	NHMe	NH.	NH.	OEt	NHMe	NH.	NHMe	NH.	OEt.	Me		G	-N=N-1	* ON	NO.	CO.Me	CO_Et			-
	Substit	m	NH。	NH.	NHMe	NH	Me	Me	NON	NO.	NO	Ma		Me	Me	Ma	NC	CO.Me	CO2Et			
			-	6	1 67	4	H LC	د	• •	• ∝		° •	2	11	61	1	71	11	16			- •

TABLE 2

SHORT COMMUNICATIONS

585

§ For electron-donating 4-substituent. For electron-withdrawing 4-substituent, 1053 \pm 3 cm⁻¹ (70 \pm 50). comparison with other compounds. With few exceptions all the remaining bands in the spectra with $\epsilon_A \ge 10$ were found to be characteristic of the substituents.

3,4-Disubstituted Pyridine 1-Oxides

With only five of the eight available compounds soluble in chloroform, it is not feasible to discuss in detail the absorption bands (Tables 1 and 3) characteristic

	TABLE 3										
\mathbf{CH}	DEFORMATION	AND	+N-O-	STRETCHING	FREQUENCIES	OF	3,4-disubstituted	PYRIDINE			
1-OXIDES											

Su	bstituent	$\nu(^+N-$	O-)	β(C	H)	β(C	H)	γ(C	\mathbf{H})	γ(C	\mathbf{H})
3	4	cm ⁻¹	ϵ_{A}	cm ⁻¹	εA	cm ⁻¹	٤A	cm ⁻¹	ϵ_{A}	cm ⁻¹	ε _A
Me	NHMe	1270		1151	s	1112	w	886	s	817	s
Me	Me	$\left\{ \begin{array}{c} 1292 \\ 1258 \end{array} \right.$	$\frac{210}{240}$	1150	65	1124	200	867	65	818	90
Мө	Cl	${1292 \\ 1252}$	$\frac{310}{240}$	1152	105	1130	20	866	95	817	100
Me	-N=N+-O-	${iggr{1}{1294}{1255}}$	vs vs	1157	s	1118	\mathbf{vs}	860	m	803	s
NHMe	NO_2	$\begin{cases} 1310 \\ 1244 \end{cases}$	33 0 660	1150	60	1125	50			824	180
Me	NO_2	$\begin{cases} 1307 \\ 1260 \end{cases}$	600 280	1155	30	1120	10	864	120	825	60
$(CH_2)_2$	$\rm NO_2$	$\begin{cases} 1300\\ 1270 \end{cases}$	vs vs	1142	m		. <u></u>	864	ŝ	840	m
Br	NO2	$\begin{cases} 1300 \\ 1255 \end{cases}$	$\frac{400}{100}$	1158	50	1123	70	858	110	824	50

of the 3,4-disubstituted pyridine 1-oxide ring. Assignments have been made by analogy with those for 3- and 4-monosubstituted pyridine 1-oxides,⁷ and 1,2,4-trisubstituted benzenes.

The majority of the remaining bands in the spectra with $\epsilon_{\rm A} \ge 10$ could be assigned to the substituent absorption. Notable exceptions were those at 1097 cm⁻¹ (300) for 3-methylamino-4-nitropyridine 1-oxide; 1091 (450) for 3-methyl-4-nitropyridine 1-oxide; 1082 cm⁻¹ (vs) for 4,4'-dinitro-1,1'-dioxy-3,3'-dipicolyl; and 1050 cm⁻¹ (300) for 3-bromo-4-nitropyridine 1-oxide. Bands of similar intensity and position have been observed, but not assigned, for other nitroheterocycles.⁸ It is probable, however, that the band is associated with the C–N stretching vibration coupled with a ring stretching mode (cf. Stephenson *et al.*⁹).

- ⁶ Randle, R. R., and Whiffen, D. H., "Molecular Spectroscopy." p. 111. (Institute of Petroleum: New York 1954.)
- ⁷ Katritzky, A. R., Beard, J. A. T., and Coats, N. A., J. Chem. Soc., 1959, 3680; Katritzky, A. R., and Gardner, J. N., J. Chem. Soc., 1958, 2192.
- ⁸ Katritzky, A. R., and Simmons, P., Rec. Trav. Chim. Pays-Bas, 1960, 79, 361.
- ⁹ Stephenson, C. V., Coburn, W. C., and Wilcox, W. S., Spectrochim. Acta, 1961, 17, 933.

Experimental

The spectra were measured for 0.208 m solutions in chloroform (unless stated otherwise) in 0.096 mm matched cells on a Perkin-Elmer Model 21 spectrophotometer with a sodium chloride prism and calibrated with a polystyrene film at 1601, 1028, and 907 cm⁻¹.

Compounds 1, 2, 3, 4, 7, 8, 9, and 21 were donated by Professor J. W. Clark-Lewis.^{1,10} 3,4-Dicanopyridine was prepared by Mr. B. Paul.

3,4-Lutidine 1-Oxide

3,4-Lutidine was oxidized in the usual way with peracetic acid to give 3,4-lutidine-1-oxide (42%), m.p. 128–130° (needles from acetone) (Found: N, 11·1. C_7H_9NO requires N, 11·4%). The picrate had m.p. 142–144° (Found: N, 15·9. $C_{13}H_{12}N_4O_8$ requires N, 15·9%).

All other compounds were prepared by methods described in the literature.

¹⁰ Clark-Lewis, J. W., and Singh, R. P., J. Chem. Soc., 1962, 2379.