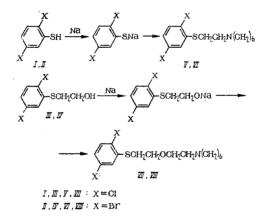
SYNTHESIS AND INVESTIGATION OF BACTERICIDAL ACTIVITY OF HEXAMETHYLENIMMONIUM DERIVATIVES OF 2,5-DIHALOTHIOPHENOLS


UDC 615,281:547,522,2

A. M. Kuliev, F. Yu. Rachinskii, O. D. Shapilov, K. Z. Guseinov, F. N. Mamedov, V. T. Osipyan, and T. G. Potapenko

During the continued investigation in the field of synthesis of hexamethylenimine with a potential bactericide activity we have obtained a series of hexamethylenimmonium compounds.

The starting products were 2,5-dichloro- and 2,5-dibromothiophenols (I and II) and also β -hydroxyethylmercapto-2,5-dihalobenzenes obtained based on I and II. Thiophenols were obtained by the reduction of the corresponding sulfochlorides [1] with zinc dust in the presence of mineral acids [2]. The reaction of 2,5-dihalothiophenols with ethylenechlorohydrin in the presence of sodium hydroxide aqueous solution yielded the corresponding β -hydroxyethylmercapto-2,5-dichloro- and β -hydroxyethylmercapto-2,5dibromobenzene (III and IV).

The reaction of thiophenolates or alcoholates of the compounds cited above with $N-(\beta-chloroethyl)-hexamethylenimine yielded the corresponding compounds (V, VI, or VII, VIII):$

These sulfur-containing tertiary amines represent viscous liquids readily decomposed when distilled in vacuo (1 mm). Subsequent alkylation of these amines with haloalkyls or with monochloroacetates yielded quarternary ammonium compound soluble in water and alcohol.

The data in Tables 1 and 2 show that the group of compounds under study revealed more defined bactericidal activity with respect to <u>St. aur</u>. than with respect to <u>B</u>. <u>coli</u>. The replacement of an alkyl residue with a monochloroacetate residue affected in a complex way the bactericidal activity of compounds. Dichloro- and dibromo- compounds of thiophenol revealed approximately equal bactericidal effect. An increase in the distance between the nitrogen atoms of hexamethylenimine and thiophenol sulfur increased in most cases the bactericidal activity of compounds (compounds IX and XIX, X and XX, XIV and XXIV, XV and XXV). At the same time it was found that compound XII, in which the distance between

Institute of Chemistry of Additives, Academy of Sciences of the Azerbaidzhan SSR, Baku. S. M. Kirov Military-Medical Academy, Leningrad. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 5, No. 9, pp. 11-14, September, 1971. Original article submitted December 22, 1969.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Quaternary Ammonium Salts of Compounds V and VI

 $\left| \underbrace{\int_{-\infty}^{x} s - cH_{1}cH_{1}-\overset{h}{H}(cH_{1})_{h}}_{R} \right| = V$

tration th of er nm										
The lowest concentra leading to the death task-microbes under exposition for 30 mm	St. aur.	1:3 200	1:3 200	1:3 200	1:25 600	1:12800	1:1 600	1:1 600	1:6 400	1:6 400
The lowe leading to task-micn exposition	B. coli	1:400	1:1 600	1:400	1:6 400	1:400	1:200	1:400	1:800	1:800
d ² 0	s	6,10	5,79	5,26	5,95	5,65	5,22	4,99	5,10	4,89
Calculated, %	z	2,67								
	halo- gen	15,21	_			_	_	_	_	
Empirical formula		C24H 40BrCl2NS	C ₂ ⁶ H ⁴ ⁴ BrCl ₂ NS	C ₃₀ H ₅₂ BrCl ₂ NS	C _{2.6} H _{4.2} Cl ₃ NO ₂ S	C28H46CI3NOS	C _{2.4} H 40Br ₃ NS	C ₂₆ H ₄₄ Br ₃ NS	C ₂ ,H ₄ ,Br ₂ CINO ₂ S	C28H48Br2CINO2S
Found, %	s	6,25	6,58	5,39	5,62	5,50	5,45	5,30	5,31	4,80
	z	2,42	2,38	2,80	2,82	2,50	2,45	2,30	2,50	2,37
	halo- gen*	15,63	14,30	13,42	6,28	6,10	12,70	12,20	6,10	5,80
Solubility in Water g/100g		0,5	0 2 2	0,5	0,5	0,5	0,5	1,0	2,5	2,0
Melting point	170-2					250(decomp)				
Å	Br	Br	Br	ฮ	IJ	Br	Br	ö	IJ	
×	C ₁₀ H ₂₁	C, H.,	C _{in} H _{3.3}	CH,COOC,H,	CH,COOC,H.	CnH., T	C,H.	CH.,COOC,,H.,	CH_COOC12H25	
×	ū	_{IJ}	U	ö	ฮ	Br	Br	Br	Br	
Com- pound	IX	×	XI	XII	XIII	XIV	XV	XVI	XVII	

*In an ionic state.

 $\left| \left(\sum_{i=1}^{X} -\operatorname{sch}_{i}\operatorname{ch}_{i}\operatorname{och}_{i}\operatorname{och}_{i}\operatorname{ch}_{i}^{h}(\operatorname{ch}_{i})_{h} \right| = \frac{1}{h} \right|_{H^{1}}$ TABLE 2. Quaternary Ammonium Salts of Compounds VII and VIII

concentration	he death of es under or 30 mm st. aur.	1:6 400 1:12 800 1:12 800 1:12 800 1:12 800 1:12 800 1:12 800 1:12 800 1:12 800
The lowest concentrati	leading to the death of task-microbes under exposition for 30 mm B. coll St. aur.	1:3 200 1:5 200 1:5 400 1:3 200 1:3 200 1:1 600 1:1 600 1:1 600
0/0	S	0050052024 0050050 0050050 005005 0050
	z	2,22,22,22,24,46 2,22,22,22,24,46 2,00,2,22,22,24,46 2,00,2,22,22,24,46 2,00,2,22,22,24,46 2,22,22,24,46 2,22,22,24,46 2,22,22,24,46 2,22,24,46 2,22,24,46 2,22,24,46 2,22,24,46 2,22,24,46 2,22,24,46 2,24,462,24,46 2,24,4662,24,466 2,24,466 2,24,4662,24,466 2,24,4662,24,466 2,24,466 2,24,4662,24,466 2,24,466 2,24,466 2,24,4662,24,466 2,24,466 2,24,4662,24,466 2,24,4662,24,466 2,24,4662,24,466 2,
Calculated	halo- gen	$\begin{array}{c} 14.76\\ 14.76\\ 13.37\\ 5.08\\ 12.68\\ 12.68\\ 12.68\\ 12.68\\ 5.28\\ 5.07\\ 5.07\end{array}$
A A MANY THE THE THE THE AND A MANY	Empirical formula	C ₃₄ H ₄₀ BrCl ₃ NOS C ₃₇ H ₄₀ BrCl ₃ NOS C ₃₈ H ₄₈ BrCl ₃ NOS C ₃₈ H ₄₆ Cl ₃ NOS C ₃₈ H ₄₆ Cl ₃ NO ₃ S C ₃₈ H ₄₀ Br ₃ NOS C ₃₈ H ₄₀ Br ₃ NOS C ₃₈ H ₄₆ Br ₃ NOS C ₃₈ H ₄₆ Br ₂ CINO ₃ S C ₃₉ H ₅₀ Br ₂ CINO ₃ S
	S	4,450,000,000,000,000,000,000,000,000,00
d ₀	N	22,230 23,230 23,2300 23,23000 23,23000 23,23000 23,23000 23,230000000000
Found	halo- gen*	$\begin{array}{c} 13,18\\ 13,81\\ 5,40\\ 5,40\\ 5,1$
	VilliduloS Vaterg/L0	
	>	20044400
	۲	C ₆ H ₁ T C ₁₀ H ₂₁ C ₁₀ H ₂₁ C ₁₀ H ₂₁ C ₁₀ H ₂₁ CH ₂ COCC ₁₀ H ₄₁ C ₁₀ H ₂₃ C ₁₀ H ₂₃ C ₁₀ H ₂₃ C ₁₂ H ₂₅ C ₁₂ H ₂₅ CH ₂ COCC ₁₂ H ₂₃
	×	0000044444
	Compound	NXX NXX NXX NXX NXX NXX NXX NXX NXX NXX

* Calculation of percentage content based on halogen in the ionic state.

>

the nitrogen and sulfur atoms is the smallest, revealed a fairly high bactericidal effect with respect to both <u>B</u>. <u>coli</u> and <u>St. aur</u>.

EXPERIMENTAL

<u>N-(β -2,5-Dichlorophenylmercaptoethyl</u>)-hexamethylenimine (V). Metallic sodium, 0.1 g atom, was added, gradually with stirring, to 0.1 mole of I in 30 ml of dry benzene. Upon dissolving the sodium, a solution of 0.1 mole of N-(β -chloroethyl)-hexamethylenimine in benzene was added to the reaction mixture at room temperature with stirring. The reaction mass was then heated on a boiling water bath for 8 h; after cooling, the resulting sodium chloride was filtered off. The resulting tertiary amine, a yellow-brown viscous liquid, failed to distill in vacuo at 1 mm. Yield, 50%. Found %: N 4.80; S 9.80; Cl 23.80. C₁₄H₁₉Cl₂NS. Calculated %: N 4.60; S 10.54; Cl 23.30.

Similarly, N-(β -2,5-dibromophenylmercaptoethyl)-hexamethylenimine (VI) was obtained.

 β -(2,5-Dichlorophenylmercapto)- β ¹-(hexamethylenimino)diethyl ester (VII). To 0.1 mole of III (bp 120-121° (0.35 mm), n_D²⁰ 1.6205, d₄²⁰ 1.4148) in 80 ml of dry benzene, 0.1g-atom of metallic sodium was added, gradually with stirring. Upon dissolving the sodium, 0.1 mole of N-(β -chloroethyl)-hexamethyl-enimine in benzene was added to the reaction mixture at room temperature with stirring. The reaction mass was heated on a boiling water bath for 12 h, cooled, and filtered off the sodium chloride. The resulting tertiary amine, a dark brown liquid, failed to distill in vacuo at 1 mm. Yield 48%. Found %: N 4.10; S 8.80; Cl 19.62. C₁₆H₂₃Cl₂NOS. Calculated %: N 4.02; S 9.20; Cl 20.36.

Similarly from IV [bp 141-142° (0.32 mm), mp 57-58°], β -(2,5-dibromophenylmercapto)- β '-(hexa-methylenimine)-diethyl ester (VIII).

 $(N-\text{Decyl}-N-\beta-2,5-\text{dichlorophenylmercaptoethyl})-hexamethylenimmonium bromide (IX). A mixture of 0.01 mole of V and 0.01 mole of decyl bromide in 25 ml of isopropyl alcohol was refluxed for 20 h, the solvent was removed in vacuo, and the residue treated with dry ether and held in a vacuum desiccator for 5-6 h. Yield 80%.$

Other quaternary derivatives of hexamethylenimine were obtained in a similar way.

LITERATURE CITED

- 1. Ch. S'yuter, Chemistry of Organic Compounds of Sulfur [in Russian], Part 2 (1951), p. 28.
- 2. A. M. Kuliev and K. Z. Guseinov, Zh. Organ. Kim., 3, 105 (1967).