
Microbiological Hydroxylation as a Route to 5β-Androstan-1-one

By J. E. Bridgeman, P. C. Cherry, Sir Ewart R. H. Jones, and G. D. Meakins*
(Dyson Perrins Laboratory, South Parks Road, Oxford)

The methods for obtaining 1-oxo- 5α -steroids from trans-A/B-3-ketones¹ depend on the latters' propensity for enolisation towards position 2, and are therefore not suitable for the preparation of 1-oxo- 5β -compounds. As far as we know, the only 1-oxygenated 5β -steroids previously described are those from the naturally occurring acovenosigenin A, which has been degraded to derivatives of 1-hydroxy- and 1-oxo- 5β -etianic acid.² During our survey of the microbiological hydroxylation of 3-deoxyandrostanes³ there emerged a direct route to 5β -androstan-1-one (V) from a readily accessible 5α -steroid.

Incubation of 5α -androstane-6,17-dione⁴ (I; R=H) with Calonectria decora for two days gave, in 56% yield, the 1β -hydroxy-derivative (I; R=OH). Equilibration in refluxing methanolic potassium hydroxide afforded a mixture of the 1β -hydroxy- 5α -diketone (I; R=OH) and the 5β -compound (II) in a ratio of 3:2. [The somewhat greater stability of the 5α -isomer contrasts with the relationship of the 1,6,17-trioxoandrostanes, where the cis-A/B-compound is much the more stable.⁵] Huang-Minlon reduction of the 5β -compound (II) was accompanied by some reversion to the trans-system, but the mixture of

 5β - and 5α -androstan- 1β -ols (III and IV) so produced was readily separated by preparative layer chromatography. Oxidation of these alcohols with 8N-chromic acid gave 1-oxo- 5β -androstane [(V), m.p. $93-94^{\circ}$, $[\alpha]_{D}-122^{\circ}$] and 1-oxo- 5α -androstane (VI).

N.m.r. examination (see Table) shows that the influence of the 1-oxo-group on the position and

TABLE τ-Values, C-19 and C-18 protons, of 1-oxoandrostanes

			5α-Compound (VI)		5β -Compound (V)	
			19	18	19	18
CCl ₄			8.90	9.32	8.93	9.32
CDĈl ₃			8.83 a	$9.29 \ ^{b}$	8.86	9.32
C_6H_6			9.130	9.31^d	8.77	9.41
$\Delta \tau$ (CDCl ₃)		-0.38	-0.02	-0.22	+0.01	
Δ_1^3	• • •		+0.23	-0.01	-0.16	+0.09

 $\Delta \tau = \text{increase}$ in τ -value when the 1-oxo-group is introduced into the corresponding and rostane. Δ_1 ³ = $\tau(C_6H_6) - \tau(CCl_4)$ for a particular signal.

a-d Values recorded by D. H. Williams and N. S. Bhacca, *Tetrahedron*, 1965, **21**, 2021, are 8.83°, 9.31°, 9.13°, and

9.31d.

est Values calculated from Tables of R. F. Zürcher, Helv. Chim. Acta, 1963, 46, 2054, are 8.86° and 9.311.

solvent-dependance of the C-19 protons' signal is characteristic of the 5β - or 5α -configuration. In the mass spectrum of the 5x-ketone (VI) the molecular-ion is the base peak,6 and among the major fragments is one of m/e 124 with an abundance of 79% (relative to $M^+ = 100\%$), which

arises by fission at positions 9-10 and then 6-7. With the 5β -ketone (V) the base peak arises from the 124 fragment, and relative to this the molecular-ion has an abundance of 9%.

Received, April 14th, 1967, Com. 353.)

- C. Djerassi, D. H. Williams, and B. Berkoz, J. Org. Chem., 1962, 27, 2205; and references there cited.
 W. Schegel and Ch. Tamm, Helv. Chim. Acta, 1957, 40, 160; C. Djerassi, O. Halpern, V. Halpern, O. Schindler, and Ch. Tamm, ibid., 1958, 41, 250.
 - ³ P. C. Cherry, Sir Ewart R. H. Jones, and G. D. Meakins, Chem. Comm., 1966, 587.
- ⁴ A. Butenandt and L. A. Suranyi, *Chem. Ber.*, 1942, **75**, 591.
 ⁵ J. E. Bridgeman, P. C. Cherry, W. R. T. Cottrell, Sir Ewart R. H. Jones, P. W. Le Quesne, and G. D. Meakins Chem. Comm., 1966, 561.
 - ⁶ H. Powell, D. H. Williams, H. Budzikiewicz, and C. Djerassi, J. Amer. Chem. Soc., 1964, 86, 2623.