Heterocyclic Syntheses with the Co-ordinated Ligand CN_2^{2-} ; Reactions of Bistrimethylstannyldiazomethane and Trimethylsilyldiazomethane

By M. F. LAPPERT* and J. S. POLAND

(The Chemical Laboratory, University of Sussex, Brighton, BN1 9QJ)

RECENTLY we reported the synthesis of the volatile organometallic diazomethanes Me₃MCHN₂ (M = Sn or Si), and showed that the tin compound, acting presumably as a 1,3dipole, formed an adduct with phenyl isocyanate.1 Similarly the silicon analogue reacts with acrylonitrile.2

We now present preliminary results (see Table) of a more extensive study of 1,3-dipolar reactions. Their significance is in that they provide a general synthesis for a variety of five-membered ring heterocycles, and also lead to a revision of the structure of the stannyldiazomethane.

The stannyldiazomethane, b.p. 64-67°/0·1 mm., ν_{max} 2000 cm.⁻¹ is (Me₃Sn)₂CN₂, while the silicon compound, b.p. $94-96^{\circ}/760$ mm., ν_{max} 2070 cm.⁻¹, is confirmed as Me₃SiCHN₂. The evidence, apart from analytical and spectral data, is as follows. (i) The products of reactions with 1,3-dipolarophiles AB usually (see Table) have molecular formulae (analysis and mass spectra) (Me₃Sn)₂CN₂,AB. (ii) The mass balance in these reactions and in another $[2\mathrm{Me_3SnNMe_2} + \mathrm{CH_2N_2} \rightarrow (\mathrm{Me_3Sn})_2\mathrm{CN_2} + 2\mathrm{Me_2NH}] \text{ is constant}$ sistent with the formula (Me₃Sn)₂CN₂ (iii) This formula also agrees with the volume of gas $(N_2 + CH_4 + C_2H_6 + C_3H_8)$ and its composition (g.l.c.) from hydrolysis1 of the stannyl-

The new heterocyclic syntheses comprise the use of the following consecutive operations: conversion of CH2N2 into (Me₃Sn)₂CN₂, reaction of the latter with a 1,3-dipolarophile

AB (see Table), and protodestannylation [it is found that the adducts $(Me_3Sn)_2CN_2$, AB are readily protodestanny lated to give the parent heterocycles H₂CN₂,AB in 5M-HCl]. For example, structures (I) and (II) are suggested for the adducts of $(Me_3Sn)_2CN_2$ and Me_3SiCHN_2 with $MeO_2C\cdot C : C\cdot CO_2Me$. As for the second step, (Me₃Sn)₂CN₂ is considerably more reactive than CH₂N₂; and in none of the reactions so far examined with the tin compound is loss of nitrogen observed [cf. (Table), CH₂N₂ and Me₃SiCHN₂]. It is possible that for AB = ArCN, there is analogy with Hoberg's observation³ of aluminium alkyl catalysis in the ArCN-CH2N2-AlR3 triazole synthesis; while it was proposed3 that the function of the aluminium compound was to behave as a Lewis acid and thereby to activate the nitrile by co-ordination, it is possible that an organoaluminium diazomethane is initially formed which then reacts with the nitrile.

It is clear (see Table; the new protic and metallic adducts shown were analytically pure) that the reactivity of the CN₂-ligand with respect to its 1,3-dipolar addition reactions is significantly governed by the nature of the groups attached to carbon. With (Me₃Sn)₂CN₂, the dipolar struc-

ture (Me₃Sn)₂C-N=N is probably particularly important as it may be stabilised by delocalisation of the negative charge on carbon.

The protodestannylation (cleavage of Sn-C and Sn-N bonds) of compounds such as (I) requires unexpectedly mild conditions, and is a much more ready process than the analogous protodesilylation of compounds such as (II). The ease of breaking Sn-CN2 bonds is further illustrated by conversion of (Me₃Sn)₂CN₂, by treatment at room temperature with an acidic hydrocarbon HY, e.g. HY = PhC:CH or C₅H₆, into Me₃SnY.

We thank the United States Army for financial support, through its European Office.

M.p.'s of heterocycles with yields in parentheses

1,3-Dipolarophile	Diazomethane reagent		
	CH_2N_2	Me,SiCHN,	$(\text{Me}_3\text{Sn})_2\text{CN}_2$
p-TolN=C=NTol-p PhNCS CS ₂ PhNCO PhCN	$161-162^{\circ}$ (33%) $172 \cdot 5^{\circ}$ Loss of N ₂ ^o Loss of N ₂ ^c No reaction ^e	$118-119^{\circ} (19\%)$ Loss of N ₂ Loss of N ₂ Loss of N ₂ No reaction	132° (96%) 124—125 (82%) 96 (80%) d
$MeO_2C\cdot C: C\cdot CO_2Me$	141 ^f	78—80 (decomp.) (75%)	120—125 (decomp.) (91%)
CH ₂ :CHCN	100 (decomp.)g	54—56 (73%)h	120—125 (decomp.) (70%)
CH ₂ : CMe·CN	$(decomp.)^{i}$	910(64%)	60 (decomp.) (61%)

^a H. v. Pechmann, Ber., 1895, **28**, 860; ^b R. Rotter and E. Schaudy, Monatsh., 1926, **47**, 493; ^c J. C. Sheehan and P. T. Izzo, J. Amer. Chem. Soc., 1948, **70**, 1985; 1949, **71**, 4059; ^d Insoluble, polymeric (?) material obtained; ^e See ref. 3; ^f H. v. Pechmann, Ber., 1899, **32**, 2299; ^g S. M. Gurvich and A. P. Terent'ev, Sbornik Statei Obshchei Khim., Akad. Nauk. S.S.S.R., 1953, **1**, 409; ^h See ref. 2; ^l D. Gotkis and J. B. Cloke, J. Amer. Chem. Soc., 1934, **56**, 2710.

(Received, December 5th, 1968; Com. 1663.)

M. F. Lappert and J. Lorberth, Chem. Comm., 1967, 836.
 D. Seyferth, A. W. Dow, H. Menzel, and T. C. Flood, J. Amer. Chem. Soc., 1968, 90, 1080. ³ H. Hoberg, Annalen., 1967, 707, 147.