Vibrational Analyses and Barrier to Internal Rotation of

1,1-Dichloroethane and 1,1-Dichloroethane- d_4

by J. R. Durig,* A. E. Sloan, and J. D. Witt

Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208 (Received June 15, 1972)

The infrared spectra of gaseous and solid 1,1-dichloroethane and 1,1-dichloroethane- d_4 have been recorded from 140 to 4000 cm⁻¹. The corresponding Raman spectra of the gases and liquids have also been recorded and depolarization values have been measured. All spectra have been interpreted in detail and the 18 normal vibrations have been characterized on the basis of the band contours, isotopic shifts, depolarization values, and normal coordinate calculations. The internal torsional mode was observed at 196 cm⁻¹ in the infrared spectrum of solid CD₈CDCl₂. The threefold barrier to rotation was calculated to be 4.77 kcal/mol. This value is compared to those reported for other chloroethanes.

Introduction

Since bromine and chlorine substitution appears to affect the barriers to internal rotation in ethane derivatives more than any of the other halogens, it would appear that a comparison of the theoretical and experimental barriers of several bromo- or chloro-substituted ethanes would provide a rather critical test of both empirical and theoretical barrier predictions. Most of the accurately determined barriers have been obtained by the microwave technique but this method does not readily lend itself to the study of multiple bromine or chlorine substitution because of the quadrupole splittings. Recently we reported the methyl torsional frequencies of 290 and 304 cm⁻¹ for methylchloroform¹ and methylbromoform,² respectively, which gave barriers of 5.5 and 6.08 kcal/mol. It has been postulated in the past that after the initial substitution of fluorine, chlorine, or bromine for a hydrogen atom on "one end" of an ethane molecule, that the barrier height to methyl rotation would not be drastically affected by substitution of the second and third halogen on the "same" end. Thus, the recent data for CH₃CCl₃, CH₃CBr₃, as well as that for $CH_3CF_2Cl^3$ indicate that this view may not be correct.

There is considerable conflict as to the effect of the addition of a second chlorine atom to the "same" end of ethane. A band assigned as the torsional frequency was reported at 239 cm⁻¹ in the Raman spectrum of the liquid by Daasch, et al.,⁴ but in a more recent Raman study by Allen, et al.,⁵ the 239-cm⁻¹ band could not be confirmed. Instead the latter authors report a weak band at 222 cm⁻¹. The absence of other bands in this region of the Raman spectrum and the complete absence of bands below 274 cm⁻¹ in the infrared spectrum of 2-mm thick liquid films led Allen, et al., to tentatively assign the torsional mode to the 222-cm⁻¹ Raman line. The heat capacity of 1,1-dichloroethane has been measured⁶ and a comparison of the statistical and experimental entropy resulted in a barrier height

of 3550 ± 450 cal/mol. It is interesting to note that in the heat capacity report the authors state that an unpublished infrared spectrum of liquid 1,1-dichloroethane showed a weak band at 240 cm⁻¹ which was compatible with the thermodynamic barrier. Wulff⁷ has calculated a barrier height of 3490 \pm 200 cal/mol from thermal data on the solid phase.

We recently investigated¹ the far-infrared spectrum of 1,1-dichloroethane and reported the torsional mode at 231 and 232 cm^{-1} for the vapor and solid, respectively. However, we could find no indication of the reported Raman bands. About the same time as our paper appeared, a neutron inelastic scattering study of 1,1-dichloroethane was reported by Brier, et al.⁸ These authors reported bands at 290 and \sim 230 cm⁻¹ with the higher frequency one being more intense and tentatively assigned to the torsional mode for the gas. This value did not differ significantly from the 293 \pm 10 cm⁻¹ torsional frequency which Brier⁹ reported earlier for the liquid. Brier, et al., suggested that the $\sim 230 \text{ cm}^{-1}$ might be a hot band transition, $\nu = 2 \leftarrow 1$, of the anharmonic torsion but pointed out that it should only be about 12 cm^{-1} lower than the fundamental. They concluded that further work on this molecule is required. Thus, we have investigated the infrared and Raman spectrum of the corresponding deuterium com-

- (1) J. R. Durig, S. M. Craven, K. K. Lau, and J. Bragin, J. Chem. Phys. 54, 479 (1971).
- (2) J. R. Durig, S. M. Craven, C. W. Hawley, and J. Bragin, *ibid.*, 57, 131 (1972).
- (3) C. Graner and C. Thomas, *ibid.*, 49, 4160 (1968).
- (4) L. W. Daasch, C. Y. Liang, and J. R. Nielson, *ibid.*, 22, 1293 (1954).
- (5) G. Allen, P. N. Brier, and G. Lane, Trans. Faraday Soc., 63, 824 (1967).
- (6) J. M. Li and K. S. Pitzer, J. Amer. Chem. Soc., 78, 1077 (1956).
- (7) C. A. Wulff, J. Chem. Phys., 39, 1227 (1963).
- (8) P. N. Brier, J. S. Higgins, and R. H. Bradley, Mol. Phys., 21, 721 (1971).
- (9) P. N. Brier, J. Mol. Struct., 6, 23 (1970).

The Journal of Physical Chemistry, Vol. 76, No. 24, 1972

Experimental Section

 CH_3CHCl_2 was obtained from Columbia Organic Chemicals and purified by vapor-phase chromatography. CD_3CDCl_2 was prepared by the addition of PCl_5 to acetaldehyde- d_4 which was obtained from Merck & Co., Inc., of Canada. The resulting product was distilled and further purified by vapor-phase chromatography using a Carbowax column at 60°.

The far-infrared spectra were recorded from 33 to 350 cm⁻¹ with a Beckman Model IR-11 spectrophotometer. The atmospheric water vapor was removed from the instrument housing by flushing with dry air. The instrument was calibrated by using atmospheric water vapor.¹⁰ Single beam energy checks were made periodically to ensure the energy transmission was at least 10-15% at all times. A low-temperature cell similar to one described earlier¹¹ was employed to record the spectra of solid samples. Modifications have been made to allow the circulation of cold nitrogen liquid through a hollow brass cold finger. A wedged silicon window was used for the solid film support plate. Conventional vacuum deposition techniques were used to obtain the solid film on the silicon substrate with the additional precaution that the samples were allowed to sublime slowly onto the silicon plate from the solid phase. The silicon substrate was held at -190° during deposition. The solid films were then annealed until there was no change in the spectrum.

The Raman spectra were recorded on a Cary Model 82 Raman spectrophotometer¹² equipped with an argon ion laser source with a frequency of 5145 Å for excitation. The spectra of gas samples were recorded using a multipass gas cell, and the spectra of the liquids were obtained with the samples contained in sealed capillary tubes.

The mid-infrared spectra were recorded from 4000 to 350 cm^{-1} with a Perkin-Elmer Model 620 spectrophotometer. A low-temperature cell equipped with a CsI window was employed to record the spectra of solid samples. Again, conventional vacuum techniques were used to obtain the solid film on the CsI substrate. A 20-cm gas cell with CsI windows was employed to record the spectra of the gaseous samples.

Vibrational Assignment

Assuming C_s molecular symmetry, the 18 fundamental modes of 1,1-dichloroethane may be divided into 11a' and 7a'' vibrations. The a' vibrations have polarized Raman bands, and may have B, C, or B/C hybrid contours in the infrared spectrum. The a''

Figure 1. (A) Raman spectrum of CH_3CHCl_2 in the gas phase. (B) Raman spectrum of CD_3CDCl_2 in the gas phase.

vibrations have depolarized Raman lines and type A band contours in the infrared spectrum.

For the calculation of the infrared band contours, the moments of inertia for the "light" molecule were assumed to be 219.26, 154.17, and 79.31 amu Å²; the moments for the "heavy" molecule were 234.88, 159.80, and 97.34 amu Å². The resulting P–R separations for type A, B, and C contours were 15.8, 10.8, and 18.0 cm⁻¹, respectively, in the "light" molecule, and 15.2, 8.7, and 22.8 cm⁻¹, respectively, in the "heavy" compound.

The Raman spectra of the gases are shown in Figure 1. The polarized lines were characterized by strong Q branches whereas the depolarized lines were usually quite broad with considerably weaker Q branches. By using the Raman depolarization measurements along with the characteristic infrared band contours, a complete vibrational assignment is proposed. The frequencies for the observed bands along with the vibrational assignment are summarized in Tables I and II, for the light and heavy molecules, respectively.

The infrared spectrum of gaseous CH_3CHCl_2 shows (see Figure 2) a type C band at 3015 cm⁻¹ which is partially overlapped, with a type A band centered at 2995 cm⁻¹. The 3015-cm⁻¹ band has a polarized Raman counterpart, and it is assigned as the C-H stretch, ν_1 . With deuteration this band shifts to 2168 cm⁻¹. A polarized Raman band appearing at 2997 cm⁻¹ in the gas phase might be considered to be the counterpart of the 2995-cm⁻¹ infrared band. However, the 2995-cm⁻¹ band has a type A contour, and, therefore, is unequivocally assigned as an a'' vibration. Since the polarized band at 2997 cm⁻¹ is due to an a' motion, we assign the

(11) F. G. Baglin, S. F. Bush, and J. R. Durig, *ibid.*, 47, 2104 (1967).
(12) This instrument was purchased with funds from the National Science Foundation through Grant No. GP-28068.

 ⁽¹⁰⁾ R. T. Hall and J. M. Dowling, J. Chem. Phys., 47, 2454 (1967);
 52, 1161 (1970).

	nan $\Delta \nu$, cm ⁻¹		n -1	Calculated		
Gas	Liquid	Gas	Solid	values		Assignment and approximate descriptions
3017	3009 m, p	3015 m, C	2999	3025	$\nu_1(a')$	C-H stretch (97%)
2997	2991 m, p	3001 w	2990	3003	$\nu_2(a')$	CH_3 antisymmetric stretch (97%)
	2990 m, dp	2995 m, A	2980	3004	$\nu_{12}(a'')$	CH_3 antisymmetric stretch (99%)
2947	2936 s, p	2946 m, B	2931	2949	$v_3(a')$	CH_3 symmetric stretch (100%)
2879	2864 w. p	2876 w, B	2864		$2\nu_4 = 2$	896
2749	2740 w		2738		$2\nu_5 = 2$	762
1448	1442 m, dp	1446 m, C	1441	1450	$v_4(a')$	CH_3 antisymmetric deformation (92%)
	, ,	,	1435	1450	$\nu_{13}(a'')$	CH_3 antisymmetric deformation (92%)
1387	1380 vw, p	1381 m, B/C	1376	1367	$\nu_5(a')$	CH_3 deformation (100%)
1284	1278 w, p	1280 m, B	1283	1297	$\nu_6(a')$	CH symmetric bend (78%), C-C stretch (18%)
			1278			• • • • • • • • • • • • • • • • • • • •
1232	1227 vw, dp	1229 s, A	1208	1219	$\nu_{14}(a'')$	CH antisymmetric bend (87%)
1089	1087 w, p	1091 w, ?	1088	1056	$\nu_7(a')$	CH ₃ in-plane rock (60%), C–C stretch (21%)
1067	1055 vw. dp	1058 s. A	1044	1051	$v_{15}(a'')$	CH_3 out-of-plane rock (66%), CH bend (13%)
984	979 m, p	982 B	978	970	$\nu_8(a')$	C-C stretch (50%), CH ₃ in-plane rock (22%),
					. ,	CH symmetric bend (20%)
967					$\nu_{16} + \nu_{17}$	1
707	689 m, dp	704 s, A	680		$\nu_{16}(a'')$	CCl_2 antisymmetric stretch (55%), CCl_2 twist
						(27%), CH ₃ rock $(16%)$
652	643 vs, p	650 m, B	641	654	$\nu_9(a')$	CCl ₂ symmetric stretch (71%), CCl ₂ scissor
						(14%)
636					?	
405	406 s, p	405 w, B		399	$\nu_{10}(a')$	CCl_2 wag (60%), CCl_2 stretch (16%)
	319 m, dp		324	317	v17(a'')	CCl_2 twist (60%), CCl_2 antisymmetric stretch
						(40%)
275	276 s, p		280	269	$v_{11}(a')$	CCl_2 scissor (70%), CCl_2 stretch (10%)
			274	277	v ₁₈ (a'')	$CH_3 ext{ torsion } (98\%)$

Table I: Observed Vibrational Frequencies for 1,1-Dichloroethane^a

^a Abbreviations used are as follows: vw = very weak, w = weak, m = medium, s = strong, vs = very strong, bd = broad, p = polarized; dp = depolarized; A, B, C refer to characteristic band contour types observed in the infrared spectrum of the gas phase.

2997, 2995 cm⁻¹ pair as the approximately degenerate antisymmetric CH₃ stretches, ν_2 and ν_{12} . In the heavy compound, these vibrations shift to 2253 and 2248 cm⁻¹ with the higher frequency one being depolarized. The symmetric CH₃ stretch, ν_3 , is assigned to the strong, polarized Raman bands at 2947 and 2128 cm⁻¹ in the light and heavy molecules, respectively.

The a' component of the antisymmetric CH_3 deformation, ν_4 , is assigned to a sharp Q branch in the infrared spectrum at 1446 cm⁻¹ which shifts to 1047 cm⁻¹ for the heavy molecule. The a'' component, ν_{13} , is not obvious in the spectrum of the gas, although two bands at 1441 and 1435 cm⁻¹ are clearly visible in the spectrum of the low-temperature solid. The symmetric CH₃ deformation, ν_5 , is assigned to a weak Q branch at 1381 cm⁻¹ (apparently, the center of a B/C hybrid contour) which shifts to 1013 cm⁻¹ in 1,1-dichloroethane- d_4 .

Between 1200 and 1300 cm⁻¹, there are two infrared bands which are due to the CCH bending vibrations. A type B contour centered at 1280 cm⁻¹ on the infrared is assigned as ν_6 , the in-plane C-H bending motion. The out-of-plane bend, ν_{14} , is assigned to a strong infrared band of type A contour centered at 1229 cm⁻¹. Deuteration results in a shift to 964 cm⁻¹ for ν_{14} . The assignment for the in-plane bend is less certain because of the strong mixing with the symmetric CD₃ deformation. However, ν_6 is tentatively assigned to a polarized Raman band near 772 cm⁻¹ in the deuterated molecule.

The in-plane and out-of-plane CH₃ rocks, ν_7 and ν_{15} , are assigned to bands at 1091 and 1058 cm⁻¹, respectively. The 1091-cm⁻¹ band is featureless in the infrared, but has a weak polarized Raman counterpart. The 1058-cm⁻¹ band has a well-defined type A contour which is indicative of an a'' mode. The type B band centered at 982 cm⁻¹ with a polarized Raman counterpart is assigned as ν_8 , the C-C stretch. Normal coordinate calculations reveal a strong mixing of CH₃ rock/C-C stretch in both ν_7 and ν_8 .

In the heavy compound, a type A band in the infrared spectrum at 829 cm⁻¹ is assigned as the out-ofplane CH₃ rock, ν_{15} . Location of the in-plane CH₃ rock is more difficult because of greater mixing of the normal modes in the deuterated molecule. However, for completeness, the band at 933 cm⁻¹ is assigned as ν_7 . A weak, polarized Raman band with a strong infrared counterpart of type B contour at 1150 cm⁻¹ is assigned as predominantly the C-C stretching motion for the deuterated molecule on the basis of the normal coordinate calculations.

The symmetric and antisymmetric CCl_2 stretches, ν_9 and ν_{16} , are assigned to bands at 650 and 704 cm⁻¹,

Ramar Gas	$\Delta \nu$, cm ⁻¹ Liquid	Gas	solid	Calculated values		Assignment and approximate descriptions
9395	\$7337				?	-
2311	2298 w. p		2298		2.110	
2307	22 00 (1, p				228	
2253	2248 s. dp	2256 m. C	2243	2248	¥19(8")	CD ₂ antisymmetric stretch (98%)
2248	2242 s, p	2248 m, A	2238	2245	$\nu_2(a')$	CD_3 antisymmetric stretch (67%). CD stretch (30%)
	/ 1	· · · ·	2193		1045 +	1149 = 2194
2168	2158 s, p	2165 w, B	2156	2230	$\nu_1(a')$	CD stretch (68%), CD ₃ antisymmetric stretch (31%)
2128	2118 vs, p	2125 w, B	2116	2124	$\nu_3(a')$	CD_3 symmetric stretch (98%)
2105	(shoulder)				?	
2081	2072 m, p	2084 w, B	2078		$2\nu_{4,18} =$	2094
2073						
2025	2022 w, p		2020		$2\nu_5 = 2$	028
	1380 w, p				$\nu_{10} + \nu_{\tilde{v}}$	= 1387
	1276 w, p				$2\nu_{16} = 1$	284
1150	1150 w, p	1151 s, B	1149	1172	$\nu_8(a')$	C-C stretch (70%), CD ₈ symmetric deformation (23%), CD bend (20%)
	1045 w, dp	1047 m, C	1045	1045, 1045	v4,13(a', a'')	CD_3 antisymmetric deformation (92%), CD_3 anti- symmetric deformations (95%)
1013	1015 m, p	1014 m, B	1016	1025	$\nu_5(\mathbf{a'})$	CD_3 symmetric deformation (67%), CD bend (21%)
957 bd	957 w, dp	964 vs, A	943	1010	$\nu_{14}(a'')$	CD antisymmetric bend (43%), CD ₃ rock (26%), CCl ₂ stretch (21%)
			937		?	
933	933 m, p		932	872	$\nu_7(a')$	CD_8 in-plane rock (45%), CD bend (21%)
818 bd	829 w, dp	829 m, A	819	797	$\nu_{1\tilde{o}}(a^{\prime\prime})$	CD_3 out-of-plane rock (32%), CD bend (56%)
772	774 m, p	775 m, B	776	749	$\nu_6(a')$	CD in-plane bend (45%), CD ₈ rock (21%), C-C stretch (18%)
649 bd	649 m, dp	650 s?	637	602	<i>v</i> ₁₆ (a'')	CCl ₂ antisymmetric stretch (47%), CD ₃ rock (36%), CCl ₂ twist (10%)
594	601 vs, p	600 m, B	597	595	$\nu_9(\mathbf{a'})$	CCl_2 symmetric stretch (64%), CD_3 rock (22%), CCl_2 scissor (10%)
$484 \mathrm{bd}$	483 vw. n				?	
369	372 s, p	368	366	365	v10(a')	CCl_2 wag (59%), CCl_2 stretch (12%)
358	/ x				"Hot ba	und"
342					"Hot ba	und"
272	275 m, dp (shoulder)		283	292	$\nu_{17}(a'')$	CCl_2 twist (62%), CCl_2 stretch (32%)
264	271 s, p		276	267	v11(a')	CCl_2 scissor (71%)
	/ A		196	198	$\nu_{18}(a'')$	CD_3 torsion (98%)
^a Abbreviations used in this table are identical with those in Table I.						

Table II: Observed Vibrational Frequencies for 1,1-Dichloroethane-d4^a

respectively. The 704-cm⁻¹ band has a distorted type A contour, whereas the 650-cm⁻¹ band gives rise to a very strong polarized Raman line. These bands are shifted to 594 and 650 cm⁻¹ in the spectrum of the heavy molecule. There are three other low lying vibrational modes expected for the CCl₂ group; these are the CCl₂ wag (a'), the CCl₂ twist (a''), and the CCl₂ scissor (a'). The two a' modes, ν_{10} and ν_{11} , are readily identified from the Raman spectrum as strong bands at 405 and 275 cm⁻¹, respectively. The twisting motion, ν_{17} , is assigned to a depolarized line of medium intensity at 319 cm⁻¹. On deuteration, ν_{10} shifts to 369 cm⁻¹, while ν_{11} shifts to 264 cm⁻¹. The CCl₂ twist, ν_{17} , is assigned to a band at 272 cm⁻¹ which appears as a high-frequency shoulder on ν_{11} for the heavy compound.

With this vibrational assignment along with that given for the torsional mode in the next section, the Teller-Redlich product rule was found to be satisfied within 3.5% for the a'' symmetry species and 6% for the a' symmetry species. The difference between the experimental and calculated values for the a'' modes is consistent with that expected due to anharmonicity. However, the difference for the a' modes is larger than expected from this effect and may be due to Fermi resonance for which no corrections have been made.

Torsional Mode and Barrier

An inspection of Figure 3B shows a broad, well-defined peak at 196 cm⁻¹ in the spectrum of solid CD₃-CDCl₂. Since the spectrum was taken at such a low temperature, it is clear that it is not a difference band. Similarly it cannot be ascribed to a lattice mode or a two-phonon process because the band did not show the expected broadening or frequency shift with temperature that is observed for such modes. Thus, it is concluded that this band is the torsional mode since the

Figure 2. (A) Infrared spectrum of solid CH_3CHCl_2 . (B) Infrared spectrum of gaseous CH_3CHCl_2 . (C) Infrared spectrum of solid CD_3CDCl_2 . (D) Infrared spectrum of gaseous CD_3CDCl_2 .

three low-frequency bending modes are confidently assigned to other bands and no other intramolecular fundamental is expected in this frequency range.

From the expected shift factor of 1.414 with deuteration, one predicts the torsional frequency to fall at 277 cm^{-1} in the light compound. Unfortunately, this is very nearly the frequency for the CCl₂ scissor which gives rise to a relatively strong infrared band (see Figure 3A). However, there is evidence for a shoulder on the low-frequency side of this CCl₂ scissoring mode which was measured to be approximately 274 cm^{-1} . The obscurity of this shoulder would certainly account for the fact that the torsional mode has appeared very elusive in previous studies.^{4,5} This assignment is then consistent with the recent inelastic neutron work⁸ on both the liquid and solid in which the torsional mode was assigned to a band at 293 \pm 15 cm⁻¹. Since the neutron study is dependent on the density of states, the agreement is quite satisfactory.

This assignment of the torsion leaves unexplained the band at 232 cm⁻¹ previously reported in both the infrared³ and neutron studies.⁸ Since this band was reported in both the infrared spectrum of the gas and low-temperature solid, it cannot be ascribed to a difference tone. Also, it is doubtful that it could have arisen from water vapor leaking into the cell and condensing on the cold silicon plate. The most reasonable explanation seems to be that it arose from an impurity in the sample used in the previous investigations.

Figure 3. (A) Far-infrared spectrum of solid CH₃CHCl₂. (B) Far-infrared spectrum of solid CD₃CDCl₂.

To calculate the torsional barrier, we have assumed a cosine type potential of the form

$$V(\alpha) = \frac{1}{2}V_3(1 - \cos 3\alpha)$$

with all terms higher than threefold being considered negligible. The barrier was calculated according to the procedure outlined by Fateley and Miller.¹⁸ The periodic barrier calculated for CD_3CDCl_2 was 4.77 kcal/mol for the solid state.

With this new value of 4.77 kcal/mol for the barrier it is interesting to reconsider the effect of adding chlorine atoms to one "end" of ethane. The addition of one chlorine atom raises the barrier in the solid by 1.24 kcal/mol. The addition of a second chlorine atom *further* raises the barrier in the solid by 0.37 kcal/mol. The addition of a third chlorine atom again raises the barrier by about 0.64 kcal/mol. Although not following a linear relationship the barriers do seem to follow a trend of increasing restriction of the methyl rotation as the chlorine atoms are added. If one assumes nearly equal intermolecular effects for the three chlorine-containing compounds, then it appears that the second chlorine has the smallest effect. This trend is different from that found for the corresponding fluorides where

The Journal of Physical Chemistry, Vol. 76, No. 24,1972

⁽¹³⁾ W. G. Fateley and F. A. Miller, Spectrochim. Acta, 17, 857 (1961).

the addition of the second and third fluorines to one end of ethane actually lowers the barrier. However, the trend is very similar to the one found for the substitution of a methyl group (see Table III) to one end of ethane. It is not possible to compare the bromide series since the barrier for the 1,1-dibromoethane molecule has not been reported.

 Table III:
 Torsional Barriers (kcal/mol) for Some Chloro-,

 Fluoro-, and Methyl-Substituted Ethanes

Molecule	Gas	Solid	Refer- ence
CH ₃ CH ₃	2.928	3.24	a, b
$CH_{3}CH_{2}Cl$	3,71	4.48	c, d
$CH_{3}CHCl_{2}$		4.77	e
$\mathrm{CD}_3\mathrm{CDCl}_2$		4.84	e
$CH_{3}CCl_{3}$	5.10	5.49	f
$CD_{3}CCl_{3}$	5.05	5.41	f
$CH_{3}CH_{2}F$	3.33		g
$\mathrm{CH}_3\mathrm{CHF}_2$	3.18		ĥ
CH ₃ CF ₈	3.1	3.29	f
$CH_{3}CH_{2}(CH_{3})$	3.33	3.96	i, j, k
$CH_3CH(CH_3)_2$		3.94	l
$CH_{3}C(CH_{3})_{8}$		4.3	m

^a R. R. Getty and G. E. Leroi, 24th Symposium on Molecular Structure and Spectroscopy, Ohio State University, Columbus, Ohio, Sept 1969, Paper Q-7. ^bS. Weiss and G. E. Leroi, J. Chem. Phys., 48, 968 (1968). ^cC. M. Player, private communication. d R. H. Schwendeman and G. D. Jacobs, J. Chem. Phys., 36, 1245 (1962). 'This work. / Reference 1; J. R. Durig, M. M. Chen, and Y. S. Li, J. Mol. Struct., in press. ^g G. Sage and W. Klemperer, J. Chem. Phys., 39, 371 (1963). ^h O. R. Herschbach, J. Chem. Phys., 25, 358 (1966); W. G. Fateley and F. A. Miller, Spectrochim. Acta, 17, 857 (1961). ⁱ L. H. Scharpen and V. W. Laurie, Symposium on Molecular Structure and Spectroscopy, Ohio State University, Columbus, Ohio, June 1965. i E. Hirota, C. Matsumura, and Y. Morino, Bull. Chem. Soc. Jap., 40, 1124 (1967). * P. M. Grant, R. J. Pugmire, R. C. Livingston, K. A. Strong, H. L. McMurry, and R. M. Brugger, J. Chem. Phys., 52, 4424 (1970). ¹ J. R. Durig, S. M. Craver, and J. Bragin, *ibid.*, 53, 3850 (1970). ^m J. R. Durig, S. M. Craven, and J. Bragin, *ibid.*, 52, 2046 (1970).

Recently Abraham and Parry¹⁴ calculated the internal rotational barriers for a series of halogenated ethane molecules by the summation of all steric and electrostatic interactions between nonbonded atoms plus a torsional term which was directly related to the intrinsic barrier to rotation in ethane. For example, they calculated barriers of 3.78, 4.56, and 5.89 kcal/ mol for 1-chloro-, 1,1-dichloro-, and 1,1,1-trichloroethane, respectively. These results agree well with the latest experimental values of 3.71, 4.5, and 5.1 kcal/mol for these respective molecules (See Table III) for the vapor state. It would seem that a similar treatment for the bromo and methyl series would also provide barrier heights in agreement with the experimentally determined values.

Normal Coordinate Analysis

As an aid in making the vibrational assignment, a normal coordinate analysis of CH₃CHCl₂ and CD₃-CDCl₂ was undertaken. The calculations were carried out by using the Wilson GF matrix method¹⁵ with computer programs written by Schachtschneider.¹⁶ The G matrix was calculated using assumed structural parameters.¹⁷ Frequencies were given the weight $(1/\lambda)$ in the least-squares procedure. Initial force constants for the CH₃-C group were taken from the published values of Duncan¹⁸ and force constants for the -CHCl₂ group were estimated from the work of Dempster and Zerbi.¹⁹ Twelve force constants were adjusted to fit 34 observed frequencies, and the final force field of 18 constants is shown in Table IV. The calculated and observed frequencies for CH₃CHCl₂ and CD₃CDCl₂ are listed in Tables I and II, with an average error of 0.82 and 2.37%, respectively.

Table IV: Internal Force Constants for CH₃CHCl₂^a

Force con- stant	Group	This work	CH;C group
Kr	C-H ₃ stretch	4.86 ± 0.04	4.86
$K_{ m R}$	C–C stretch	4.28 ± 0.20	4.45
$F_{\rm r}$	CH ₃ str./CH ₃ str.	0.07 ± 0.03	0.04
$K_{ m d}$	CH stretch	4.99 ± 0.04	
H_{α}	∠HCH bend	0.53 ± 0.01	0.55
H_{β}	∠HCC bend	0.64 ± 0.03	0.64
$F_{R\beta}$	C–C str./ \angle HCC bend	0.25^{b}	0.30
F_{β}	$\angle HCC \text{ bend} / \angle HCC$	-0.02^{b}	-0.02
	bend		
H_{γ}	∠CCH bend	0.64 ± 0.04	
$H_{ heta}$	∠HCCl bend	0.61 ± 0.01	
Η	∠CCCl bend	1.46 ± 0.13	
H_{δ}	∠CICCl bend	1.05 ± 0.17	
H_{τ}	CH_3 torsion ^c	0.016^{b}	
Ky	CCl stretch	2.50 ± 0.13	
$F_{\mathbf{X}}$	CCl/CCl stretch	0.67 ± 0.13	
$F_{X\delta}$	$\operatorname{CCl} \operatorname{str.} / \angle \operatorname{CCl}_2$ bend	0.25^{b}	
F_{RX}	CC str./CCl str.	0.40^{b}	
$F_{\mathbf{X}\boldsymbol{\theta}}$	$\operatorname{CCl}\operatorname{str.}/\operatorname{\angle}\operatorname{HCCl}\operatorname{bend}$	0.20^{b}	

^a Stretching force constants in millidynes per ångström; bending constants in millidyne ångström per square radian; stretchbend interaction constants in millidynes per radian. ^b Fixed during perturbation cycle. ^c Torsional coordinate is defined as the sum of three trans torsions about the C-C bond.

(14) R. J. Abraham and K. Parry, J. Chem. Soc. B, 539 (1970).

(15) E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, "Molecular Vibrations," McGraw-Hill, New York, N. Y., 1958.

(16) J. H. Schachtschneider, "Vibrational Analysis of Polyatomic Molecules. V and VI," Tech. Rep. No. 231-64 and 57-65, respectively, Shell Development Co., Emeryville, Calif.

(17) Geometry used in CH₃CHCl₂ calculations: C-H = 1.09 Å, C-Cl = 1.76 Å, \angle Cl-C-Cl = 112°, and \angle C-C-Cl = 110°. Tetrahedral values were assumed for the \angle H-C-H and \angle C-C-H angles. (18) J. L. Duncan, Spectrochim. Acta, 20, 1197 (1964).

(19) A. B. Dempster and G. Zerbi, *ibid.*, 39, 1 (1971).

THE CRYSTAL STRUCTURE OF 2,4,6-TRINITROANILINE

Acknowledgment. The authors gratefully acknowledge the financial support given this research by the National Science Foundation by Grant No. GP-20723.

The Crystal Structure of 2,4,6-Trinitroaniline

by James R. Holden,* Charles Dickinson,

Naval Ordnance Laboratory, White Oak, Maryland 20910

and Charles M. Bock

Air Force Rocket Propulsion Laboratory, Edwards Air Force Base, California 93523 (Received March 22, 1972) Publication costs assisted by the Naval Ordnance Laboratory

The crystal structure of 2.4.6-trinitroaniline, $C_{6}H_{4}N_{4}O_{6}$, has been determined

The crystal structure of 2,4,6-trinitroaniline, $C_6H_4N_4O_6$, has been determined by X-ray diffraction. The unit cell is monoclinic (a = 6.137, b = 9.217, c = 15.323 Å, $\beta = 99.67^{\circ}$), space group $P2_1/c$ with four molecules per cell. The 2-, 4-, and 6-nitro groups are rotated 22.5, 4.0, and 8.5°, respectively, out of the plane of the benzene ring. This noncoplanarity and the type of intermolecular hydrogen bonding found in the structure of trinitroaniline are different than in the previously reported structures of diaminotrinitrobenzene and triaminotrinitrobenzene.

Introduction

The crystal structure of 2,4,6-trinitroaniline (TNA) has been determined by single-crystal X-ray diffraction techniques as part of a study of the molecular conformations and hydrogen bond networks present in nitroaromatic amines. The structure completes the set of primary amines of sym-trinitrobenzene, because of 1,3-diamino-2,4,6-trinitrobenzene the structures and (DATB)¹ 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)² have been reported. These two compounds crystallize as planar molecules joined by intermolecular hydrogen bonds in which an amine group bonds to both oxygen atoms of the same nitro group of an adjacent molecule.

In contrast, 4-nitroaniline³ and 2,3,4,6-tetranitroaniline (TENA)⁴ form intermolecular hydrogen bonds in which the amine group is bound to oxygen atoms from two different molecules.

The cell dimensions and space group of 2,4,6-trinitroaniline have been reported as a = 6.02, b = 9.30, c = 15.3 Å, $\beta = 99.2^{\circ}$ (converted from kX units), $P2_1/c^5$ and the density as 1.762 g/cm³.⁶ The values obtained in this study agree adequately with these early reports.

Experimental Section

Suitable crystals of 2,4,6-trinitroaniline were grown from a commercial sample⁷ by evaporation of an ethyl acetate solution. Cell dimensions and reflection intensities were determined from the same $0.30 \times 0.40 \times$ 0.49 mm crystal. After preliminary examination by Weissenberg and precession methods, this crystal was aligned on a Picker FACS-1 computer-controlled automatic diffractometer equipped with a lithium fluoride monochromator. The following monoclinic cell dimensions were obtained from a least-squares fit of the diffraction angles of 12 strong reflections using 0.70926 Å as the wavelength of Mo K α radiation: $a = 6.137 \pm$ $0.003, b = 9.217 \pm 0.007, c = 15.323 \pm 0.007$ Å, $\beta =$ $99.67 \pm 0.02^{\circ}$. These values give a calculated density

- (1) J. R. Holden, Acta Crystallogr., 22, 545 (1967).
- (2) H. H. Cady and A. C. Larson, *ibid.*, 18, 485 (1965).
- (3) K. N. Trueblood, E. Goldish, and J. Donohue, *ibid.*, 14, 1009 (1961).
- (4) C. Dickinson, J. M. Stewart, and J. R. Holden, *ibid.*, 21, 663 (1966).
- (5) E. Hertel and G. H. Romer, Z. Phys. Chem. Abt. B, 22, 267 (1933).
- (6) F. M. Jaeger, Z. Kristallogr., 40, 113 (1905).
- (7) Eastman Organic Chemicals, Rochester, N. Y.

The Journal of Physical Chemistry, Vol. 76, No. 24, 1972