Replacement of a Chlorine with a Methylsulfonyl Group in the Metabolism of Propachlor (2-Chloro-*N*-isopropylacetanilide)

J. E. BAKKE, V. J. FEIL and C. E. PRICE

Metabolism and Radiation Research Laboratory,

Agriculture Research Service, United States Department of Agriculture, Fargo, North Dakota 58102, U.S.A.

(Received 11 March 1976)

Abstract—Urine from rats and sheep given single oral doses of $[^{14}C]$ propachlor contained ^{14}C metabolites in which the chlorine of propachlor was replaced by a methylsulfonyl group. Methylsulfonyl-containing metabolites were also isolated from the urine of rats given an intraperitoneal dose of the cysteine conjugate of $[^{14}C]$ propachlor; this indicated that the methylsulfonyl-containing metabolites resulted from metabolic reactions subsequent to the mercapturic acid pathway.

Introduction

LAMOUREUX and Davison¹ have shown the mercapturic acid pathway to be important in the metabolism of propachlor by rats (Scheme 1). We have isolated and identified rat and sheep urinary metabolites from propachlor in which the chlorine was replaced by a methylsulfonyl moiety.

Experimental

ANIMAL EXPERIMENTS

A ewe and rats were dosed orally with 2-chloro-*N*isopropylacetanilide that was uniformly labeled with ¹⁴C in the ring ([¹⁴C]propachlor). The ewe (54.8 kg) was given 20 mg kg⁻¹ of [¹⁴C]propachlor as a single oral dose. The dose contained 0.5 mCi of ¹⁴C. Rats (10; average weight 200 g) were each given 10 mg of [¹⁴C]propachlor by stomach tube. Each rat received 2μ Ci of ¹⁴C. Rats (10; average weight 215 g) were each given 2.1 mg of the cysteine conjugate of [¹⁴C]propachlor by intraperitoneal injection (physiological saline). Each rat received 0.7 μ Ci of ¹⁴C. The [¹⁴C]cysteine conjugate was isolated from sheep urine by the methods outlined in Fig. 1.

METABOLITE ISOLATION AND DERIVATIZATION

The methylsulfonyl-containing metabolites from both rat and sheep urine and the cysteine conjugate of propachlor were isolated by the methods outlined in Fig. 1. Column A was a $1.9 \text{ cm} \times 150 \text{ cm}$ column of water-equilibrated Sephadex LH-20 (Pharmacia). Samples (4 ml) were applied to the column, and the radioactivity was eluted with water. Column B was prepared by first pouring water-equilibrated LH-20 to form a 0.9 cm \times 110 cm column. The column was then equilibrated with two column volumes (approx. 50 ml) of 0.06 M (NH₄)HCO₃. Samples (1–2 ml) were applied to the column and the ¹⁴C was eluted from the column with 0.06 M (NH₄)HCO₃. Porapak Q (Waters Assoc.) was slurried with methanol and poured to form a 1 cm \times 10 cm column. The column was washed with water, the sample applied in water and the column eluted with three column volumes of water. The radioactivity was eluted with methanol.

Before gas chromatography (g.l.c.), metabolites 1, 2 and 3 were treated with bis-(trimethylsily)trifluoroacetamide containing 1 % trimethylchlorosilane (BSTFA) at room temperature for 18 h (TMS derivatives). Diazomethane was used to prepared methyl derivatives of 1 (CH₃-1) and 3 (CH₃-3).

Aglycons from sheep urine glucuronides were obtained by hydrolysis with glucuronidase.²

INSTRUMENTATION

For g.l.c. we utilized a $6 \text{ ft} \times \frac{1}{8}$ in. i.d. glass column packed with 3% SE-30 on 60/80 mesh Chromasorb W in a Perkin-Elmer 801 gas chromatograph fitted with an effluent splitter. Ten percent of the column effluent went to the flame ionization detector and 90% was trapped in glass tubes for radioactivity detection and/or instrumental analysis. The carrier gas was helium at a

SCHEME 1. Metabolism of propachlor to the cysteine and mercapturic acid conjugates.¹

FIG. 1. Flow diagram of the methods used for the isolation of propachlor metabolites from sheep and rat urine.

flow rate of 30 ml per min. The oven temperature was programmed at 10 °C per min from 100–250 °C. The injector was maintained at 200 °C. The detector was located in the column oven.

Mass spectra were obtained using the solid sample inlet probe of a Varian MAT CH-5 DF mass spectrometer equipped with a peak matching unit.

Nuclear magnetic resonance spectra were taken with a Varian A-60A spectrometer in either $CDCl_3$ or acetone- d_6 . Melting points were taken with a Thomas– Hoover capillary melting apparatus and are uncorrected.

SYNTHESIS OF METHYLSULFONYLACETAMIDES

N-Isopropylanisidines were prepared by the procedure used by Young *et al.*³ for the preparation of *N*-isopropyl-*o*-toluidine. Distillation at reduced pressure yielded mixtures of the desired compounds and diisopropyl anisidines. These were not separated because purification was more easily accomplished after subsequent reactions.

Methylthioacetic acid was prepared by slowly adding sodium methanethiolate (16 g methylmercaptan and 33.7 g of 57 % sodium hydride in 200 ml of 1:1 tetrahydrofuran + dimethylformamide) to chloroacetic acid (31.5 g in 100 ml of 1:1 THF + DMF). Normal workup yielded material distilling at 108–112 °C at 15 Torr (Lit.⁴ 107 °C at 0.5 Torr) which was oxidized by alkaline potassium permanganate⁴ to yield methylsulfonylacetic acid, m.p. 112–115 °C from ethyl acetate + hexane (Lit.⁴ m.p. 115 °C).

The method of Chan and Wong⁵ was modified for the preparation of methylsulfonylacetamides. Silicon tetrachloride (0.17 g) was stirred into a solution of 0.09 g of aniline and 0.14 g of methylsulfonylacetic acid in 10 ml of dry pyridine. After the silicon tetrachloride

was added, the mixture was stirred at 100 °C for 3 h. then cooled and poured into ether. The solid was removed by filtration and the solvents were removed at reduced pressure. The product was recrystallized from ether + hexane to yield 2-(methylsulfonyl)acetanilide. m.p. 125-127 °C. The following compounds were prepared by this method (m.p. in parentheses): 2'-methoxy-2-(methylsulfonyl)acetanilide (120-122 °C), 3'-methoxy-2-(methylsulfonyl)acetanilide (114-117 °C), 4'-methoxy-2-(methylsulfonyl)acetanilide (147-149 °C), 2'-methoxy-N-isopropyl-2-(methylsulfonyl) acetanilide 3'-methoxy-N-isopropyl-2-(methylsulfonyl)-(liquid), acetanilide (liquid), 4'-methoxy-N-isopropyl-2-(methylsulfonyl)acetanilide (69-72°C). Appropriate infrared absorptions were found for carbonyl (1640-1680) cm^{-1}) and sulfonyl (1115–1155 and 1305–1335 cm^{-1}) groups.⁶ The ¹H n.m.r. absorptions were at δ 3.16–3.19 for SO₂CH₃, 3.69 for isopropyl-N-CO-CH₂-SO₂, and 4.10-4.34 for H-N-CO-CH₂-SO₂.

Results and discussion

In addition to the mercapturic acid and cysteine conjugates of propachlor (Scheme 1),¹ radioactive methylsulfonyl-containing metabolites (1, 2, 3 and 4, seebelow) were isolated from the urine excreted by a

(-	\mathbf{D} =1 int (9/)	Fragment ion	m /a	D alint (%)	Fragment ion
m/e	Kel. Int. $(/_0)$		<i>m/e</i>	Kei. Int. (/ _o)	
					TMS-2
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	343 (343.12649)	0.5	[ <b>M</b> ] [‡]
	(CH3)3Si-0	O )→N-cch₂so₂ch₂	328.10302	9	$[M - CH_3]^+$
			286.09295	10	$[M - C_3H_5O]^+$
			264	5	$[M - S(O)_2 CH_3]^+$
		1 M S-1	240.06938	70	$[M - (CH_3)_3 SiOCH_2]^+$
343.12708	50	[M] [‡]	214.05507	9.5	
328	6	$[M - CH_3]^+$	213.14755	8.5	$[M - (CH_3)_3 SiOCH = CHCH_3]^{\ddagger}$
301.08048	41	$[M - CH_2 = CH - CH_3]^{\ddagger}$	192	1.5	
264.14319	23	$[M - S(O_2)CH_3]^+$	190	1.5	
222.13093	17	$[M - C(O)CH_2S(O)_2CH_3]^{+}$	1/4	9	
222.09414	22	$[301 - S(0)_2 CH_3]^{+}$	102	3	
208	33	$[301 - CH_2S(O)_2CH_3]$	130	12	$[C H - NH - CHCH ]^+$
200	28	$TMS = O = C H = N = CH1^+$	120.06091	14	$\begin{bmatrix} C_6 n_5 - Nn - CnCn_3 \end{bmatrix}$
192.08455	13	$[(CH), Si = O = C, H = N = C = O]^+$	93	5	
182	43		91	8	
181	18		79	8	[S(O),CH,] ⁺
180	16		77	10	$[\mathbf{C}_{c}\mathbf{H}_{s}]^{+}$
162	15		75	8	L - 0 51
137	22		73	70	[(CH ₃ ) ₃ Si] ⁺
120.04426	12	$[HO-C_6H_4-N\equiv CH]^{\ddagger}$			2. 0.0 2
79	5	$[S(O)_2CH_3]^+$			_
75	18				Хн
73	100	[(CH ₃ ) ₃ Si] ⁺	1	сн₃о( С	$) - N - C_{H_2} SO_2 CH_3$
				<u> </u>	2 O
	C				
		~;~;~;~;~;~;~;~;~;~;~;~;~;~;~;~;~;~;~;			CH ₃ -3
		$) - n - cch_{so_{so_{s}}} ch_{so_{s}}$	243	100	[M] [‡]
	0.30	//	228	3	$[M - CH_3]^+$
			164	41	$[M - S(O)_2CH_3]^+$
		CH ₃ -1	150	8	$[M - CH_2S(O)_2CH_3]^+$
205	52	[ <b>N</b> /] ⁺	149	14	
285	32	[M]	136	38	$[HNC(O)CH_2S(O)_2CH_3]^+$
243	48	$[\mathbf{M} - \mathbf{CH}_3]$ $[\mathbf{M} - \mathbf{CH}_3]^{\dagger}$	135	4	
206	45	$[M - S(O)_{\alpha}CH_{\alpha}]^{+}$	134	7	
164	90	$[243 - S(O)_2CH_3]^+$	133	13	
163	10		132	8	
162	40		123	85	$[CH_3O-C_6H_4-NH_2]$
150	100	$[243 - CH_2S(O)_2CH_3]^+$	122	42	
149	50		121	22	(CH O- C H 1 ⁺
148	20		05	09 26	$[CH_{3}O - C_{6}H_{4}]$
136	75	$[NH-C(O)-CH_2-S(O)_2CH_3]$	93	16	
135	20		79	23	[S(O),CH,] ⁺
134	95	$[CH_{3}O-C_{6}H_{4}-N\equiv CH]$			
133	20				
124	40	$[CH, O - C, H, \dots, NH]^+$			н
123	83 55	$[CH_3O-C_6H_4-NH_2]$		$\langle \bigcirc \rangle$	-N-CCH2SO2CH3
122	28				Ö
121	20				
108	45				4
107	22		213	42	[M] [‡]
95	25		134	1.3	$[M-S(O)_2CH_3]^+$
92	38		133	0.8	
91	50		121	2.5	
79	70	$[S(O)_2CH_3]^+$	120	0.8	
			119	1.0	
	(CH_)_Si_O_(		106	1	
	(01.3/301 0-(	······································	104	1	$[C H - NH ]^{+}$
		$\overline{\mathbf{x}}$	79	10	$[\mathbb{S}(\Omega)] \subset \mathbb{H} ]^+$
		) )Ń-CCH2SO2CH3	77	10	$[C_{2}C_{13}]^{+}$
	$\sim$			10	L~6**5J

TABLE 1. Mass Spectra

sheep or rats given single oral doses of [¹⁴C]propachlor. The O-methyl derivatives of 1 and 3 ( $CH_3$ -1 and  $CH_3$ -3) and metabolite 4 gave mass spectra (Table 1) and infrared spectra identical to the spectra obtained from the synthesized standards. Comparison of the mass spectra from the TMS derivatives of metabolites 1 and 2 (Table 1) indicated that they were isomeric. Failure to react with diazomethane proved that metabolite 2 was not a phenol and suggested that the site of oxidation was the N-isopropyl group. The TMS derivative of metabolite 2 yielded an [M-103]⁺ ion at m/e 240 {[M - (CH₃)₃SiOCH₂]⁺}; this suggested the presence of a TMS ether of a primary alcohol.⁷ The ion at  $m/e 213 ([M - TMSOCH = CH - CH_3]^+)$  provided further evidence that the TMS ether was located on the *N*-isopropyl group. The ions at m/e 79 ([SO₂CH₃]⁺) and 264 ( $[M - SO_2CH_3]^+$ ) supported the presence of the methylsulfonyl moiety. No attempt was made to synthesize 2.

Compounds 1 and 2 were isolated from the glucuronidase hydrolyzate of a radioactive fraction separated from sheep urine; compounds 2, 3 and 4 were isolated from radioactive fractions from rat urine (Fig. 1). These methylsulfonyl metabolites accounted for 10-17% of the dose given to the sheep and 30-35% of the dose given to rats. Therefore, these compounds resulted from a major route of metabolism in both the sheep and rat. Because the mercapturic acid pathway is important in the rat metabolism of propachlor,¹ we thought that these methylsulfonyl metabolites probably resulted from further metabolism of the mercapturic acid or cysteine conjugates of propachlor. To test this possibility, rats were given intraperitoneal doses of the cysteine conjugate of [¹⁴C]propachlor. Twenty percent of the dose was present in the urine as 2 and 3 which showed that the cysteine conjugate was metabolized to methylsulfone-containing metabolites. This metabolic pathway will be investigated with ³⁵S labeled cysteine conjugate to establish the source of the sulfur in these methylsulfonyl metabolites.

#### REFERENCES

- Lamoureux, G. L.; Davison, K. L. Pest. Biochem. Physiol. 1975, 5, 497.
- 2. Paulson, G. D.; Zehr, M. V. J. Agric. Food Chem. 1971, 19, 471.
- Young, W. G.; Caserior Jr., F. F.; Brandon Jr., D. D. J. Am. Chem. Soc. 1960, 82, 6163.
- Mellander, A. Sven. Kem. Tidskr. 1934, 46, 99; Chem. Abstr. 1934, 28, 5408.
- 5. Chan, T. H.; Wong, L. T. L. J. Org. Chem. 1969, 34, 2766.
- Bellamy, L. J. The Infra-red Spectra of Complex Molecules, 2nd edn. Wiley: New York. 1958, pp. 205 and 350.
- Pierce, A. E. Silylation of Organic Compounds. Pierce Chemical Co.: Rockford, Illinois. 1968, pp. 36–39.

Reference to a company or product name does not imply approval or recommendation of the product by the U.S. Department of Agriculture to the exclusion of others that may be suitable.