BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 49(1), 345-346 (1976)

The Chlorination of Norbornadiene by Various Chlorinating Agents

Akira Onoe, Sakae Uemura,* and Masaya Okano Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 (Received July 15, 1975)

Synopsis. The chlorination of norbornadiene by CuCl₂, TlCl₃·4H₂O, SbCl₅, SeCl₄, and VCl₄ in CCl₄ or CH₃-CN afforded mainly trans-3,5-(1) and exo-cis-3,5-dichloronortricyclene (2). In the reaction with PbCl₄, Cl₂, SO₂Cl₂, and PCl₅, appreciable amounts of exo-5-syn-7-(3) and/or exo-cis-5,6-dichloronorbornene (4) were obtained besides 1 and 2.

Concerning the chlorination of norbornadiene, the reactions with CuCl₂ (gas-phase), 1) Cl₂, 2) PhICl₂, 2) AuCl₃,3) and MoCl₅4) have so far been reported. We now give the results of chlorination by various other chlorinating agents. Among the chlorinating agents examined the following were found to be effective: Cu-Cl₂, TlCl₃·4H₂O, SbCl₅, SeCl₄, VCl₄, PbCl₄, SO₂Cl₂, and PCl₅. The products were two isomeric dichloronortricyclenes [trans-3,5-(1) and exo-cis-3,5-(2)] and two isomeric dichloronorbornenes [exo-5-syn-7-(3) exo-cis-5,6-(4)], the distribution of the products depending a great deal on the kind of chlorinating agent and the reaction conditions. The results are shown in the Table together with our previous data on MoCl₅.4)

The product distribution suggests that the chlorinating agents can be classified for convenience into three categories. The first class consists of CuCl₂, TlCl₃. 4H₂O, SbCl₅, SeCl₄, and VCl₄, which gave almost entirely 1 and 2. Although a radical mechanism has

been proposed for the formation of 1 and 2 by PhICl₂,²) it was found that the reactions by these metal chlorides were ionic since no effect was observed by the addition of radical scavengers such as m-dinitrobenzene (m-DNB) and oxygen, or even when the reactions were carried out under N2. Furthermore we have observed that the reaction of other olefins such as cyclohexene⁵⁾ and norbornene⁶⁾ with these metal chlorides proceeds by an ionic mechanism under nearly the same reaction contions. The ability of SeCl₄ and VCl₄ to chlorinate olefin, which was firstly found in the reaction with norbornene, 6) was also confirmed in this case (Runs 4 and 5), but no favorable exo-cis-addition by VCl₄ as observed in the case of norbornene⁶⁾ was found (Run 5).

The second class consists of PbCl₄, Cl₂, SO₂Cl₂, and PCl₅, which generally afforded a mixture of 1, 2, and 3. The reactions with SO₂Cl₂ and PCl₅ at higher temperature gave 4 as an additional product (Runs 9 and 11). It is evident that at least 4 is formed by a radical pathway,7) since the addition of m-DNB profoundly decreased the total yield of the products, affording none of 4. In contrast, in the reactions with chlorine (in the dark) the formation of 4 was only slight (Run 7) and m-DNB and bubbling oxygen gave no effect on product distribution, suggesting an ionic process. The ionic nature of PbCl₄ was previously reported in the chlorination of norbornene.6)

The mechanism for the formation of 1-3 might be essentially the same as that proposed by Winstein⁸⁾ in the bromination of norbornadiene. The attack of anion on C₃ and C₁ of a nonclassical chloronorbornyl cation

Table Chlorination of norbornadiene

Run	Norbornadiene (mmol)	Chlorinating agent (mmol)	Solvent (50 ml)		React temp	React time (hr)	Products Isomer distribution (%)				Yield (%)*)
					$(^{\circ}\mathbf{C})$		1	2	3	4	(/0) ′
1	25	CuCl ₂ ^{b)}	25	CH ₃ CN	80	2	49	50	1	0	82
2	25	TlCl ₃ ·4H ₂ O	12.5	CCl ₄	76	2	51	49	0	0	86
3	25	$SbCl_5$	12.5	CCl ₄	27	0.2	56	41	3	0	80
4	25	$SeCl_4$	2.8	CCl_4	7 6	12	40	55	5	0	28
5	20	VCl_4	3	CCl ₄	76	2	64	33	1	2	38°)
6	25	PbCl ₄	5	CH_2Cl_2	-40	2	49	22	29	0	78 ^d)
7	25	Cl_2	70	CCl ₄	-20	2	40	14	43	3	91
8	50	SO_2Cl_2	25	CCl ₄	20	20	63	25	12	0	36
9	50	SO_2Cl_2	25	CCl_4	76	2	39	18	29	14	95
10	50	PCl_5	25	CH_2Cl_2	40	5	46	24	29	1	89
11	25	PCl_5	12.5	CCl ₄	76	2	41	41	13	5	58
12°)	5	$MoCl_5$	2	CCl ₄	25	2	22	10	< 0.5	68	20

nortricyclyl chloride (0.2 mmol). norbornene (3.6 mmol). e) Ref. 4.

c) Other products; a) Based on the chlorinating agent. Determined by glc. b) LiCl (25 mmol) was added. d) Other products; nortricyclyl chloride (1.26 mmol) and exo-5-chloro-2-

To whom all correspondence should be addressed.

(A) gives a mixture of 1 and 2, and 3, respectively. However, the reason why only the chlorinating agents in this class give 3 is not yet clear. The attack on C_6 , which affords 4, might be sterically unfavorable.

The last class contains only MoCl₅ which gave mainly **4** probably by molecular *cis*-addition mechanism.⁴⁾

From a synthetic viewpoint chlorination by SbCl₅ is recommended for preparation of 1 and 2 because of its simplicity and high yields of the products. For 3 and 4, the reactions with PCl₅ (in CH₂Cl₂) and MoCl₅, respectively, should be employed, though it is necessary to use preparative glc for isolating each isomer in a pure state.

Experimental

All materials except PbCl₄ were commercial products and used without further purification. The reactions were usually carried out by mixing all the reagents at room temperature and then keeping the mixture at reaction temperature under the presence of atmospheric oxygen. In the case of VCl₄, a CCl₄ solution of VCl₄ was added to a CCl₄ solution of norbornadiene in order to avoid the polymerization of diene. In the case of Cl₂, chlorine gas was introduced to a CCl₄ solution of norbornadiene at -20 °C. The identification of each product, 1—4, was described previously.⁴) The product mixtures were analyzed by glc by the use of Shimadzu apparatus 5APTF and 4BMPF on both EGSS-X(15%)-Chromosorb-W (3 m) and PEG 6000 (25%)-Chromosorb-W (3 m) columns (carrier gas, N₂; bromobenzene or trans-dichlorocyclohexane as internal standard).

Reaction with PbCl₄. A solution of CH₂Cl₂ (50 ml) containing Pb(OAc)₄ (2.22 g, 5.0 mmol) was kept at -60 °C

and was introduced by HCl gas for $10 \, \mathrm{min.^9}$ To this solution was slowly added norbornadiene (2.3 g, 25 mmol) at $-40 \, ^{\circ}\mathrm{C}$ and the solution was stirred for 2 hr. After the usual work-up, the organic layer was evaporated to ca. 7 ml and analyzed by glc; exo-5-chloro-2-norbornene (3.6 mmol), nortricyclyl chloride (1.26 mmol), 1 (1.93 mmol), 2 (0.86 mmol), and 3 (1.13 mmol). The formation of the former two compounds by the reaction of norbornadiene with HCl has been reported. 10

Synthesis of 1 and 2. A CCl₄ (50 ml) solution of SbCl₅ (15 g, 50 mmol) was added to a CCl₄ (150 ml) solution of norbornadiene (9.2 g, 100 mmol) at 25 °C in ca. 1 min and the resulting clear solution was stirred for 10 min. To this solution was added water and the precipitated SbOCl was filtered and then CCl₄ layer was distilled to give 6.5 g (80% yield) of a mixture of 1 and 2 (1:2=58:42); bp 95—96 °C/22 mmHg. The NMR spectrum of both 1 and 2 (separated by preparative glc) was identical with the spectra reported.^{2,3)}

References

- 1) R. P. Arganbright and W. F. Yates, J. Org. Chem., 27, 1205 (1962).
- 2) S. Masson and A. Thuillier, Bull. Soc., Chim. Fr., 1969, 4368.
- 3) R. Hüttel, H. Reinheimer, and K. Nowak, *Chem. Ber.*, **101**, 3761 (1968).
- 4) S. Uemura, A. Onoe, and M. Okano, This Bulletin, 47, 3121 (1974).
- 5) S. Uemura, A. Onoe, and M. Okano, *ibid.*, **47**, 692 (1974).
- 6) S. Uemura, A. Onoe, and M. Okano, *ibid.*, **48**, 3702 (1975).
- 7) The radical nature of SO₂Cl₂ and PCl₅ at high temperature is well-known; e. g., a) M. S. Kharasch and H. C. Brown, J. Amer. Chem. Soc., **61**, 3432 (1939). b) E. S. Huyser, Synthesis, **1970**, 7.
 - 8) S. Winstein, J. Amer. Chem. Soc., 83, 1516 (1961).
- 9) P. W. Henniger, L. J. Dukker, and E. Havinga, Rec. Trav. Chim. Pays-Bas, 85, 1177 (1966).
- 10) L. Schmerling, J. P. Luvisi, and R. W. Welch, *J. Amer. Chem. Soc.*, **78**, 2819 (1956).