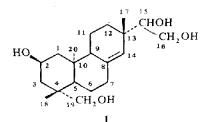
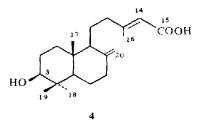
DARUTOSIDE, A DITERPENOID FROM SIEGESBECKIA PUBESCENS AND ITS STRUCTURE REVISION


JAE HOON KIM*. KOO DONG HAN*, KAZUO YAMASAKI† and OSAMU TANAKA†


* Natural Products Research Institute, Scoul National University, Scoul 110, Korea; † Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, Kasumi, Hiroshima-shi, 734 Japan

(Received 14 September 1978)


Key Word Index—Siegesbeckia pubescens; S. orientalis; Compositae: ¹³C NMR: ent-pimarane-type glucoside; darutoside.

From Siegesbeckia pubescens (Compositae), which is an Asian folk medicine 'Hi-cheom', several *ent*-kaurane-type diterpenes and an *ent*-pimarane-type diterpene (1) have been isolated [1-3]. In addition, a diterpene gluco-side (2), $C_{26}H_{44}O_8 \cdot H_2O$, mp 225-226°, $[\alpha]_D - 48^\circ$ (MeOH; c 1.0) which gave an aglycone (3), $C_{20}H_{34}O_3$, mp 163°, $[\alpha]_D - 10^\circ$ (MeOH; c 1.0) by hydrolysis with β -D-glucosidase, was also isolated and the structures 2a and 3a were tentatively proposed for this glucoside and its aglycone, respectively [3].

2	OGlc*	Н	ห้
2a	Н	OGle	Н
2b	OH	Н	Gle
3	OH	Н	Н
3a	Н	OH	Н

Table 1.	¹³ C-Chemical	shifts (δ_c) for	1, 2. 3 (in	C_5D_5N and 4			
$(in CDCl_3)$							

	Compounds				
Carbon No.	1	2	3	4*	
1	49.2	36.9	37.5	37.1	
2	63.9	23.9	28.5	27.8	
2 3 4	45.5	85.1	78.2	78.9	
4	39.7	38.5	39.5	39.2	
5	55.5	54.8	54.7	54.7	
6	22.6	22.5	22.8	24.0	
7	36.7	36.3	36.5	38.2	
8	138.0	138.1	138.5	147.7	
9	51.3	50.6	51.0	56.0	
10	40.9	37.9	38.3	39.5	
11	19.0	18.6	18.8	21.7	
12	32.7	32.7	32.9	40.0	
13	37.9	37.8	37.6	163.7	
14	129.7	129.3	129.6	114.9	
15	76.5	76.5	76.7	171.4	
16	63.9	63.8	64.0	19.2	
17	23.2	23.2	23.3	14.6	
18	28.2	28.8	29.0	28.3	
19	64,8	14.7	14.9	15.4	
20	16,9	17.1	16,6	106.9	
Glc-1		102.2			
2		74.9			
3		77,9			
4		71.8			
5		78.3			
6		63.0			

* Quoted from ref. [8].

The assignments of 13 C NMR spectra of pimaranetype diterpenes have been reported [4-7]. Referring to these results, we assigned the carbon resonances of 1, reconfirming the structure proposed by Murakami et al. [2]. On the basis of these assignments, the spectrum of 3 was compared with those of the 3 β -(equatorial)hydroxy-labdane-type diterpene (4) [8] and the 3 β -(equatorial)-hydroxy-triterpenes [9]. As shown in Table 1, signals due to the A-ring carbons (C-1, -2, -3, -4 and -5) of 3 were found at almost the same positions as those of 4, and a signal at δ 22.8 (triplet) of 3 must be attributable to the unsubstituted methylene group of C-6. It follows that the former proposal of the allocation of the third hydroxyl group of 3 at C-6 must be revised to be located at C-3 (equatorial).

The stereochemistry of carbon signal displacements of both aglycone and sugar moieties of glycosides has been reported [10]. On going from 3 to 2, a β -D-glucoside of 3, a signal due to C-3 was deshielded by +6.9

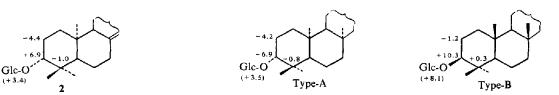


Fig. 1. β -D-Glucosylation NMR chemical shifts. Each value indicates the glucosylation shift ($\Delta \delta = \delta_{glucoside} - \delta_{aglycone}$). Values in parentheses indicate the glucosylation shift of anomeric carbon ($\Delta \delta = \delta_{glucoside} + \delta_{\beta-glucose}$). Glc = β -D-Glucopyranosyl.

ppm and signals attributable to C-2 and C-4 were displaced upfield by -4.2 and -0.8 ppm, respectively, while other carbon signals including C-15 and C-16 remained almost unshifted. Comparison of the magnitude of these displacements with those of β -D-glucopyranosides, types-A and -B (Fig. 1) [10] led to the conclusion that in the structure of 2, the β -D-glucosyl linkage must be located at the 3-equatorial hydroxyl group and the chirality of this hydroxyl group should be represented by the R configuration. This means that the absolute configuration of 3 should be the ent-type, the same as for type-A. With regard to the carbon resonances of the sugar residue, the spectrum of 2 exhibited signals corresponding to a β -D-glucopyranosyl molety at almost the same positions as those of type-A. It should be noted that the anomeric carbon signal of type-B appears at a remarkably higher field than that of type-A [10]. Consequently, the structure of 2 can be now formulated as illustrated.

Previously, Diara et al. [11] isolated a glucoside named darutoside from Siegesbeckia orientalis, for which the structure 2b was proposed. Direct comparison of the 13 C NMR spectrum, mp and optical rotation of 2 with those of an authentic sample of darutoside definitely indicated the identity of both glucosides, leading to the revision of the structure of darutoside from 2b to 2.

EXPERIMENTAL

 13 C NMR spectra were recorded on a JEOL PFT-100 spectrometer, equipped with EC-6 computer, operating at 25.15 MHz (pulse flip angle of 90°, at pulse interval of 1–2 sec). Samples were studied as 0.2–0.5 M soln in C₅D₅N with TMS as internal standard; 500-15000 accumulations with 8192 data points for 4 KHz were used.

Acknowledgement—We are grateful to Dr. P. Potier, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France, for his kind supply of the sample of darutoside.

REFERENCES

- 1. Canonica, L., Rindone, B., Scolastico, C., Han, K. D. and Kim, J. H. (1969) Tetrahedron Letters 4801.
- Murakami, T., Isa, T. and Satake, T. (1973) Tetrahedron Letters 4991.
- Han, K. D., Kim, J. H. and Oh, S. J. (1975) J. Pharm. Soc. Korea 19, 129.
- Matsuo, A., Uto, S., Nakayama, M., Hayashi, S., Yamasaki, K., Kasai, R. and Tanaka, O. (1976) *Tetrahedron Letters* 2451.
- Wenkert, E. and Buckwalter, B. L. (1972) J. Am. Chem. Soc. 94, 4367.
- Polonsky, J., Baskevitch, Z., Bellavita, N. C., Ceccherelli, P., Buckwalter, B. L. and Wenkert, E. (1972) J. Am. Chem. Soc. 94, 4369.
- Cambic, R. C., Burfitt, I. R., Goodwin, T. E. and Wenkert, E. (1975) J. Org. Chem. 40, 3789.
- 8. Brawn, S. and Breitenbach, H. (1977) Tetrahedron 33, 145.
- 9. Asakawa, J., Kasai, R., Yamasaki, K. and Tanaka, O. (1977) Tetrahedron 33, 1935.
- Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, O. (1977) Tetrahedron Letters 175.
- Diara, A., Asselineau, C., Laszlo, P. and Pudles, J. (1963) Bull. Soc. Chim. Fr. 99.