Notes UDC 581.19:582.288 ## Yoshio Hirose, Haruko Ueno, Motoko Iwashita, and Eiko Kawagishi*1: Studies on the Synthesis of Munjistin. II. Synthesis of 3-O-Methyldamnacanthal. (Faculty of Pharmaceutical Sciences, University of Kumamoto*1) In the previous paper, 1,2 it was reported that demnacanthal (1-methoxy-3-hydroxy-2-anthraquinonecarboxaldehyde) (I) was synthesized from damnacanthol (1-methoxy-2-hydroxymethyl-3-hydroxyanthraquinone) (II), and that nor-damnacanthal (1,3-dihydroxy-2-anthraquinonecarboxaldehyde) (III) and munjistin (1,3-dihydroxy-2-anthraquinonecarboxylic acid) (IV) were synthesized directly from lucidin (2-hydroxymethyl-1,3-dihydroxy-anthraquinone) (V). 3-O-Methyldamnacanthal (VI), m.p. $185\sim186^{\circ}$ was obtained as a pre-step product en route to 1,3-O-dimethylmunjistin (VII),** though the melting point of VI was reported to be 125° WI,** prepared from I by the methylation with dimethyl sulfate and potassium carbonate in acetone. It is therefore the purpose of this paper to ascertain the melting point of VI which was shown at $185\sim186^{\circ}$. When lucidin (V)^{4,5)} was repeatedly dissolved in 90% ethanol and either concentrated or refluxed for 6 hours, the substance of m.p. 180° (decomp.) was obtained. Since the substane of m.p. 180° (decomp.) could be synthesized to $2-\omega$ -O-ethyl-1,3-O-dimethyllucidin (IX),⁵⁾ m.p. $141\sim142^{\circ}$, which was derived from $2-\omega$ -O-ethyl-3-O-methyllucidin,⁵⁾ the structure of substance, m.p. 180° (decomp.), should be indicated to be $2-\omega$ -O-ethyllucidin (X). V was refluxed in acetic acid solution to afford its alcoholic acetate, $2-\omega$ -O-acetyllucidin (XI), m.p. $>300^{\circ}$ (decomp.), which was confirmed by methylation to $2-\omega$ -O-acetyllucidin (XII), m.p. $173\sim174^{\circ}$ as reported in the literature.⁵⁾ O OCH₃ $$-R$$ $$VI : R = -CHO$$ $$XVI : R = -CH_2OH$$ On selective acetylation by means of boro-triacetate and acetic anhydride, V gave $2-\omega$, 3-O-diacetyllucidin (XII), m.p. $152\sim153^\circ$, which was also confirmed by methylation to 1-O-methyl- $2-\omega$, 3-O-diacetyllucidin (XIV), m.p. $156\sim157^\circ$, as reported in the literature. On the other hand, V gave XII directly by the treatment with acetic anhydride. V was methylated directly to lucidin trimethyl ether (XV), m.p. 162° , which was confirmed to be identical with 2-methoxymethyl-1,3-dimethoxyanthraquinone, perpared from II. It was reported that XII gave 1,3-O-dimethyllucidin (XVI), m.p. 175° , 4,5) on hydrolysis with 3% methanolic sulfuric acid. On oxidation with active manganese dioxide, XVI gave 3-O-methyldamnacanthal (VI), m.p. $185\sim186^\circ$. Treatment of I by the method described in the literature 3 also afforded VI as a sole product. Infrared spectrum of VI in Nujol ^{*1} Oe-Machi, Kumamoto (広瀬良男, 上野治子, 岩下素子, 河岸栄子). ^{*2} Unpublished work. ¹⁾ Part. I. Y. Hirose: This Bulletin, 10, 985 (1962). ²⁾ Y. Hirose: Ibid., 8, 417 (1960). ³⁾ S. Nonomura: Ibid., 5, 366 (1957). ⁴⁾ L.H. Briggs, G.A. Nicholls: J. Chem. Soc., 1949, 1241, 1246. ⁵⁾ B.S. Joshi, N. Parkash, K. Venkataraman: J. Sci. Ind. Research (India), 14B, 87 (1955). mull showed the presence of aldehyde absorption at $1704\,\mathrm{cm^{-1}}$, and the corresponding absorption to the literature³⁾ was not observed at $1700{\sim}1710\,\mathrm{cm^{-1}}$ region assigned to C=O stretchings in free aldehyde. ## Experimental 2-ω-O-Ethyllucidin (X) — V (0.2 g.) was refluxed in 90% EtOH (100 ml.) for 6 hr. The solution was concentrated to separate crystalline solid which was repeatedly recrystallized from EtOH to pale yellow needles of m.p. 180° (decomp.). Its paper chromatogram using filter paper, Toyo Roshi No. 50, and BuOH saturated with 28% NH₄OH as a developing solvent showed Rf. 0.84. *Anal.* Calcd. for $C_{17}H_{14}O_5$: C, 68.45; H, 4.73. Found: C, 68.88; H, 4.32. 2-ω-O-Ethyl-1,3-O-dimethyllucidin (IX)——It was prepared from X by usual way, m.p. $141\sim142^{\circ}$. The identity of IX with that described in the literature⁵⁾ was established m.p. determination by admixture. Anal. Calcd. for $C_{19}H_{18}O_5$: C, 69.92; H, 5.56. Found: C, 70.04; H, 5.62. 2-ω-O-Acetyllucidin (XI)— V (0.6 g.) was refluxed in AcOH (60 ml.) for 1 hr. The solution was concentrated to separate crystalline solid which was repeatedly recrystallized from AcOH together with charcoal to yellow needles of m.p. $>300^{\circ}$ (decomp.). Anal. Calcd. for $C_{17}H_{12}O_6$: C, 65.38; H, 3.87. Found: C, 65.45; H, 3.81. IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 3370 (OH), 1730 (alcoholic acetate), 1663 (non-chelated C=O), 1638 (chelated C=O), 1600 and 1588 (phenyl). 2-ω-O-Acetyl-1,3-O-dimethyllucidin (XII)—A mixture of XI (1.2 g.), Ag₂O (6 g.), CH₃I (5 ml.) and Me₂CO (80 ml.) was refluxed for 10 hr. Recrystallization from EtOH in the presence of charcoal, afforded pale yellow needles of m.p. $173\sim174^{\circ}$, which was identified by mixed melting point, IR spectrum with that prepared by the method of Venkataraman⁵ from 2-bromorubiadin dimethyl ether. *Anal.* Calcd. for C₁₉H₁₆O₆: C, 67.05; H, 4.75. Found: C, 67.29; H, 4.45. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1728 (alcoholic acetate), 1674 (non-chelated C=O), 1583 (phenyl). 2-ω,3-O-Diacetyllucidin (XIII)—i) A mixture of V (1 g.), boroacetic anhydride (2.5 g.) and Ac_2O (10 ml.) was refluxed for 10 min. The crystalline precipitate separated after cooling was digested in H_2O . The resulted precipitate was recrystallized from dil. AcOH to yellow needles of m.p. $151\sim153^\circ$. Anal. Calcd. for $C_{19}H_{14}O_7$: C, 64.40; H, 3.98. Found: C, 64.05; H, 4.24. ii) A mixture of V (0.3 g.) and Ac_2O (30 ml.) was refluxed for 1 hr., and poured into H_2O . The precipitate seperated was recrystallized from dil. AcOH together with charcoal to yellow needles of m.p. $151\sim153^\circ$, which showed no depression by mixed melting point with that described above. *Anal.* Calcd. for $C_{19}H_{14}O_7$: C, 64.40; H, 3.98. Found: C, 64.80; H, 4.01. 1-O-Methyl-2-ω,3-O-diacetyllucidin (XIV)—A mixture of XII (0.5 g.), Ag₂O (2.5 g.), CH₃I (3 ml.) and Me₂CO (60 ml.) was refluxed for 10 hr. Recrystallization from MeOH added with charcoal afforded pale yellowneedles of m.p. $156\sim157^{\circ}$, which was established by mixed m.p. determination with an authentic sample.²⁾ Lucidin Trimethyl Ether (XV)—A mixture of V $(0.5\,\mathrm{g.})$, Me₂SO₄ $(2.5\,\mathrm{g.})$, K₂CO₃ $(10\,\mathrm{g.})$ and Me₂CO $(100\,\mathrm{ml.})$ was refluxed for 20 hr. Recrystallization from MeOH afforded pale yellow needles of m.p. 162° , which was established by mixed m.p. determination with an authentic sample.²⁾ 3-O-Methyldamnacanthal (VI)—i) A mixture of XVI (0.5 g.), active MnO_2 (2.5 g.) and AcOEt (150 ml.) was refluxed for 0.5 hr. Recrystallization from Me_2CO with charcoal afforded pale yellow needles of m.p. $185\sim186^\circ$. Anal. Calcd. for $C_{17}H_{12}O_5$: C, 68.91; H, 4.08. Found: C, 69.14; H, 4.40. IR ν_{max}^{Nujol} cm⁻¹: 1704 (Aryl-CHO), 1676 and 1663 (non-chelated C=O), 1580 (phenyl). ii) I was methylated with either Me_2SO_4 , K_2CO_3 and Me_2CO or Ag_2O , MeI and Me_2CO . The product was recrystallized from Me_2CO to yellow needles of m.p. $185{\sim}186^\circ$, the identity of which with that described above was established by a mixed m.p. determination and IR spectra in Nujol. *Anal.* Calcd. for $C_{17}H_{12}O_5$: C, 68.91; H, 4.08. Found: C, 69.04; H, 3.99. The authors express their gratitude to Prof. Y. Tanaka of this faculty for his mediation of elemental analyses and infrared spectra measurements. ## Summary Synthesis of 3-O-methyldamnacanthal (VI), m.p. 185~186°, was described. (Received June 7, 1962)