N-[(2,4-Diamino-5-pyrimidinyl)methyl]-*n*-stearylamide (9).--5-Aminomethyl-2,4-diaminopyrimidine¹⁷ (0.1 g, 0.72 mmole) was mixed with 1 ml of pyridine and 1 ml of CHCl₈. A soln of stearoyl chloride (0.22 g, 0.72 mmole) in CHCl₈ (1 ml) was added over a period of 10 min with cooling. The reaction mixt was stored in a refrigerator for 3 days, and the solid was collected, washed with CHCl₈, and dried, mp 250-265° (0.15 g). It was mixed with about 5 ml of NaOH (1 *M*) and a few drops of EtOH and stirred for about 12 hr. The solid was collected and washed with Me₂CO: ϵ 7.55 \times 10³ at λ_{max} 285 m μ (abs EtOH); λ_{min} 256 m μ ; mp 168-169°. tlc, MeOH R_f 0.60. An anal. sample was prepared by recrystns from abs EtOH and 2-ethoxyethanol. *Anal.* (C₂₃H₄₃N₅O) C, H, N.

5-(1-Adamantyl)-4-hydroxy-2-mercaptopyrimidine (10).—A soln of ethyl formyl-(1-adamantyl)acetate³ (0.55 g, 2.2 mmoles in 5 ml of abs EtOH) was mixed with a soln of NaOEt (0.11 g of 50% oil dispersion of NaH, 2.32 mmoles in 5 ml of abs EtOH). After stirring 0.5 hr, thiourea (0.167 g, 2.20 mmoles) was added. The resulting soln was refluxed 7 hr, and the solvent was removed *in vacuo*. The residue was mixed with H₂O (25 ml), acidified with HCl, and extd with Et₂O. The Et₂O layer was concd, filtered, dried (MgSO₄), and evapd to dryness to give a yellow oil. Crystn was achieved by dissolving in hot THF and decolorizing with charcoal; yield, 155 mg (27%). The anal. sample was prepared by further recrystn from THF: mp 378°; λ_{max} (abs EtOH) 217, 276 m μ (ϵ_{276} 1.75 × 10⁴); λ_{min} 241 m μ ; tlc, EtOH–CHCl₂ (1:4), R_t 0.7. Anal. (C1₄H₁₈N₂OS) C, H, N.

5-(1-Adamantyl)-4,6-dihydroxy-2-mercaptopyrimidine (11) was prepd in the same manner as the mercaptopyrimidine 9 starting with NaH (0.17 g, 3.55 mmoles of 50% oil dispersion) in 7 ml of abs EtOH, ethyl (1-adamantyl)malonate³ (1.00 g, 3.40

mmoles), and thiourea (0.27 g, 3.56 mmoles). After evapn of the solvent, H₂O (50 ml) was added to the residue, and the pH was adjusted to 5.0 with 5 *M* HCl to give 0.64 g of the white product (68%). The anal. sample was prepared by dissolving 80 mg in aq NaOH, extng with Et₂O, and acidifying the aq phase with HCl. The solid was collected and washed with H₂O to give 60 mg: mp 262-265°; λ_{max} (0.1 *N* NaOH) 236, 285 mµ; λ_{min} 252 mµ; tlc, THF, *R_t* 0.87; THF-CCl₄ (1:1), *R_t* 0.50. *Anal.* (C₁₄H₁₈N₂O₂S) C, H, N.

5-(1-Adamantyl)-4-hydroxy-2-mercapto-6-methylpyrimidine (12) was prepd in the same manner as 9 starting with ethyl aceto-(1-adamantyl)acetate³ (1.10 g, 4.18 mmoles) in abs EtOH (5 ml) and thiourea (0.318 g, 4.18 mmoles). After 8 hr at reflux and 8 hr at room temp, a solid was collected, washed with EtOH and Et₂O, and dried (400 mg). A portion of this solid (200 mg) was dissolved in aq NaOH, and the soln was filtered and neutralized with HCl to ppt the product. Recrystn from *i*-PrOH afforded 20 mg of material: λ_{max} (abs EtOH) 277 m μ (ϵ 1.66 × 10⁴); mp 315° (darkens at 290°); tlc, THF-CHCl₃ (1:1), R_f 0.75. Anal. (C₁₅H₂₀N₂OS) C, H, N.

5-(1-Adamantyliminoacetamido)-2-amino-4-hydroxy-6-methylpyrimidine (12).—2-Amino-4-bromoacetamido-4-hydroxy-6methylpyrimidine⁴ (0.50 g, 1.92 mmoles) was dissolved in 5 ml of DMSO, and the yellow soln was stirred for 5 min. 1-Adamantylamine (0.4 g, 2.65 mmoles) was added, and the reaction mixt was stirred for about 18 hr and filtered. The filtrate was added to 30 ml of H₂O to ppt the product. The filtrate was added to 30 ml of H₂O to ppt the product. The filtry white solid was collected, washed with H₂O and THF, and dried (210 mg). The analytical sample was prepd by elution from a silica gel column with abs EtOH: mp 214–217°; tlc, MeOH, R_f 0.50; λ_{max} (abs EtOH) 228, 291 mµ. Anal. (C₁₇H₂₃N₅O₂·H₂O) C, H.

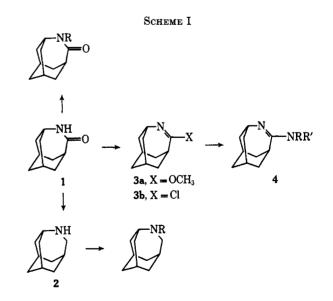
Derivatives of 4-Azahomoadamantane. Their Synthesis and Biological Evaluation

V. G. KEIZER AND J. G. KORSLOOT^{1*}

N. V. Philips-Duphar Research Laboratories, Weesp, The Netherlands

Received August 31, 1970

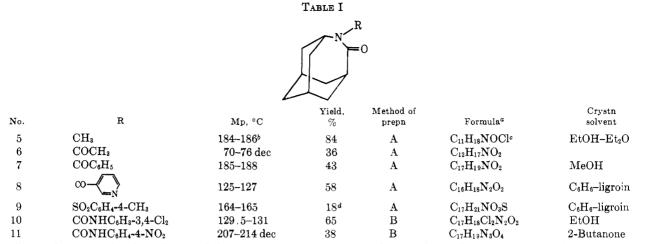
Several series of derivatives of 4-azahomoadamantane have been prepared from 4-azahomoadamantan-5-one. All compounds have been evaluated in a general pharmacological and antiviral screening. A number of the compounds exhibited blood pressure lowering and/or antiviral activities.

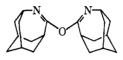

The introduction of the adamantane nucleus into a variety of drugs gave rise to compounds with outstanding biological properties, attributed to the lipophilic nature of the adamantane moiety.² The antiviral activities, especially, of several adamantane compounds are well known.³

In view of these facts we decided to utilize the previously described⁴ 4-azahomoadamantan-5-one (1) as the starting material for the synthesis of potentially biologically active compounds. In this paper the synthesis of these compounds as well as the results of a preliminary pharmacological and antiviral investigation are described.

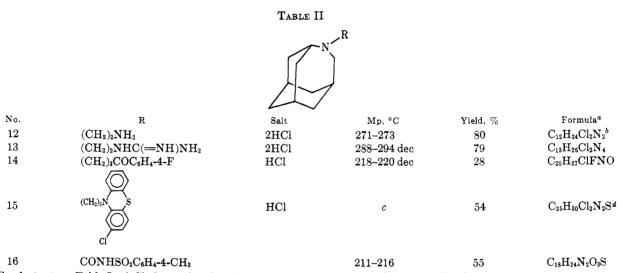
Chemistry.—The different types of derivatives of 4azahomoadamantan-5-one (1) were prepared for the greater part as outlined in Scheme I.

(3) (a) C. E. Hoffmann, R. F. Haff, and E. M. Neumayer, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 23, 387 (1964); (b) E. I. du Pont de Nemoura, Irish Patent Application 342/64, 1963; (c) N. V. Philips, Irish Patent Application 940/65, 1964.


(4) J. G. Korsloot, V. G. Keizer, and J. L. M. A. Schlatmann, Recl. Trav. Chim. Pays-Bas, **38**, 447 (1969).


Substitution at the N atom of 1 was effected by reaction of its Na salt with an alkyl or acyl halide (method A) or by reaction of 1 with an isocyanate (method B). General procedures for methods A and B are given in the Experimental Section; the compounds obtained are shown in Table I.

⁽¹⁾ Abstracted from the thesis of J. G. Korsloot, University of Groningen, Groningen, The Netherlands, 1969.


^{(2) (}a) K. Gerzon, E. V. Krumkalns, R. L. Brindle, F. J. Marshall, and M. A. Root, J. Med. Chem., 6, 760 (1963); (b) W. Korytnyk and G. Fricke, *ibid.*, 11, 180 (1968); (c) A. N. Voldeng, C. A. Bradley, R. D. Kee, E. L. King, and F. L. Melder, J. Pharm. Sci., 57, 1053 (1968).
(3) (a) C. E. Hoffmann, R. F. Haff, and E. M. Neumayer, Fed. Proc.,

^a All compds were analyzed for C, H, and N unless otherwise stated. ^b Hydrochloride. ^c N: calcd 6.50; found 5.87. ^d In addition, the previously described di(4-azatricyclo[4.3.1.1^{3,8}] undec-4-en-5-yl) ether^e was obtained in 16% yield.

^e J. G. Korsloot and V. G. Keizer, Tetrahedron Lett., 3517 (1969).

^a See footnote a, Table I. ^b Cl also analyzed. ^c Obtained as a foam. ^d Cl and S also analyzed.

Recently the reduction of 1 to the amine 2 was described.⁴ The alkylation of 2 was achieved by standard methods. The compounds prepared in this way are listed in Table II.

For the preparation of amidines 4 the lactam 1 was first converted into a reactive intermediate 3 which was treated with an amine. The lactim ether 3a was prepared from 1 with Me₂SO₄, according to the method of Benson and Cairns.⁵ The imidoyl chloride 3b, obtained as the hydrochloride from a reaction of 1 with COCl₂, was used without purification.

The amidines prepared are summarized in Table III. The reaction via the imidoyl chloride \cdot HCl (**3b**) (Table III, method D) was used, particularly when reaction with the lactim ether **3a** (Table III, method C) failed. General procedures both for method C and method D are given in the Experimental Section. The yield in the reactions of **3a** with amines, is decreased by the acid-catalyzed conversion of **3a** to the lactam **1**. Besides the derivatives outlined in Scheme I, some fused heterocyclics (Table IV) were prepared. When 1 was melted with an isatoic anhydride at 190° ,⁶ fused quinazolinones **39** and **40** were obtained. Reduction of **39** with LAH in Et₂O gave the dihydroquinazoline **41**, whereas a similar reaction in THF afforded the tetrahydroquinazoline **42**. A fused pyrimidine **43** was obtained by reaction of **17** with the Na salt of malonic ester.⁷

Biology.—For the pharmacological evaluation, the compounds were investigated in a general screening program which included neurotoxicity,⁸ acute lethal toxicity,⁹ coronary circulation,¹⁰ spasmolytic action,¹¹ po-

- (7) R. C. Glushkov and O. Yu. Magidson, J. Gen. Chem. USSR, **31**, 189 (1961).
- (8) E. A. Swinyard, W. C. Brown, and L. S. Goodman, J. Pharmacol. Exp. Ther., 106, 319 (1952).
 (9) LD₅₀ calculated according to the method of H. J. Horn, Biometrics, 12,
- 311 (1956).
 (10) O. Langendorff, Pflügers Arch. Gesamte. Physiol. Menschen Tiere, 61,
- (10) U. Langendorff, Pflugers Arch. Gesante. Physiol. Menschen Tiere, 61 219 (1895).
- (11) R. Magnus, ibid., 102, 123 (1904).

(5) R. E. Benson and T. L. Cairns, J. Amer. Chem. Soc., 70, 2115 (1948).

⁽⁶⁾ E. Späth and N. Platzer, Ber., 68, 2221 (1935).

N N												
NRR'												
			X									
		4										
No.	NRR'ª	Salt	Mp, °C	Yield, %	Method of prepn	$Formula^b$	Crystn solvent					
17	NH ₂	HNO3	195–198 dec	44	C	$C_{10}H_{17}N_3O_3$	Ac					
18	NHNH ₂	HCl	287–290 dec	70	Exp	$C_{10}H_{18}ClN_3$	A					
19	NHNHC ₆ H ₅	HCl	228 dec	50	C	$C_{16}H_{22}ClN_3$	A					
20	NHNHC ₆ H ₄ -4-OCH ₃	HCl	243 dec	29	Č	C ₁₇ H ₂₄ ClN ₃ O	Α					
21	NHNHCONH ₂	HCl	197.5-198.5	26	č	C11H19ClN4Od	Α					
22	NHC≡■N		239-242	76	C, Df,g	$C_{11}H_{15}N_{3}$	EtOH					
23	$\rm NHC(=NH)\rm NHC_6H_5$	2HCl	134-142 dec	50	h	$C_{17}H_{24}Cl_2N_4$ · EtOH	Α					
24	NHC ₆ H ₅	HCl	198-203	55	D	$C_{16}H_{21}ClN_2$	Α					
25	$\mathrm{NHCH}_{2}\mathrm{CH}_{2}\mathrm{N}(\mathrm{CH}_{3})_{2}$	2HCl	270-272 dec	57	С	$C_{14}H_{27}Cl_2N_3$	Α					
26	$\mathbf{NHCH}_{2}\mathbf{CH}_{2}\mathbf{N}(\mathbf{C}_{2}\mathbf{H}_{5})_{2}$	2HCl	275.5–278 dec	78	С	$C_{16}H_{31}Cl_2N_3$	Α					
27	$\rm NHCH_2CH_2CH_2N(CH_3)_2$	2HCl	$263-265 \operatorname{dec}$	54	С	$\mathrm{C_{15}H_{29}Cl_2N_3}$	Α					
28	NHCH ₂ CH ₂ N 0		142-144	50	C, D^i	$\mathrm{C_{16}H_{27}N_{3}O}\cdot\mathrm{H_{2}O^{\mathit{j}}}$	MeOH-H ₂ O					
29	NHCH ₂ CH ₂ NHC ₆ H ₅	HCl	218.5 - 220	48	С	$C_{18}H_{26}ClN_3$	Α					
30	$\rm NHCH_2CH_2N(CH_3)C_5H_5$	HCl	175.5 - 177.5	36	С	$C_{19}H_{28}ClN_3$	Α					
31	$\mathbf{NHCH}_{2}\mathbf{CH}_{2}\mathbf{N}(\mathbf{C}_{6}\mathbf{H}_{5})\mathbf{CH}_{2}\mathbf{C}_{6}\mathbf{H}_{5}$	HCl	249.5 - 251.5	41	С	$C_{25}H_{32}ClN_3$	Α					
32	$\mathbf{NHCH}_{2}\mathbf{CH}_{2}\mathbf{OC}_{6}\mathbf{H}_{5}$	HC1	172 - 173.5	40	D	$C_{18}H_{25}ClN_2O$	A					
33	NHCH ₂ CH ₂ OC ₆ H ₄ -2-OCH ₃	HCl	189 - 192	52	С	$\mathrm{C_{19}H_{27}ClN_2O_2}$	Α					
34	$\rm NHCH_2CH_2NHCOCH_3$	HCl	200-203	72	\mathbf{C}	$C_{14}H_{24}ClN_{3}O$	Α					
35	NHCH ₂ CH ₂ NHCOC ₆ H ₄ -4-OCH ₃	HCl	214 - 217	66	\mathbf{C}	$\mathrm{C_{20}H_{28}ClN_{3}O_{2}}$	Α					
36	$\rm NHCH_2CH_2NHCOCH_2-\alpha-naphthyl$	$(COOH)_2$	197.5 - 199	43	\mathbf{C}	$\mathrm{C}_{26}\mathrm{H}_{31}\mathrm{N}_{3}\mathrm{O}_{5}$	EtOH					
37	N	HCl	300-304 dec	55	D	$\mathrm{C_{14}H_{23}ClN_2}$	Α					
38	N/ SO2		210-212	33	D	$C_{17}H_{18}N_2O_3S$	CH2Cl2-MeOH					
30	**		210-212	00	D	0171118112030	0112012**1416011					
	Ĭ											
	Ô											

TABLE III^o

^a The amidines prepd from primary amines are arbitrarily shown with the double bond endo with respect to the homoadamantane molecule. ^b See footnote a, Table I. ^c A = EtOH-Et₂O. ^d N calcd 21.65; found 21.14. ^e No HCl added. ^f One equiv of Na₂CO₃ added; yield 53%. ^g When 22 was prepd from 17 with BrCN, also the isomer with the CN on the ring N was obtained. ^h Prepd by reaction of 22 with PhNH₃Cl in DMSO; see Experimental Section. ⁱ Yield 38%. ^j O also analyzed.

tentiating effect on hexobarbital narcosis,¹² anticonvulsive activity,¹³ analgetic action,¹⁴ antiinflammatory activity,¹⁵ and effects on the blood pressure in anesthetized dogs.

Antiviral activity against the viruses, influenza A Swine, A 2 Japan, B Johannesburg, and parainfluenza 1 (Sendai) was determined according to the haemadsorption method.^{16,17}

Results

The general pattern of biological activity encountered in these compounds was seen mainly in their effect on the blood pressure¹⁸ and in their antiviral activity. The test results of those compounds that showed one of these two activities, or both, are listed in Table V. In addition to these activities, **14** has a central depressive action (a potentiating effect on hexobarbital narcosis was found at an oral dose of 8.8 mg/kg). Other ac-

(12) D. W. Wylie, Proc. Soc. Exp. Biol. Med., 98, 716 (1958).

(13) F. M. Berger, J. Pharmacol. Exp. Ther., 112, 413 (1954).

(14) C. Bianchi and J. Franceschini, Brit. J. Pharmacol., 9, 280 (1954).
(15) C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol.

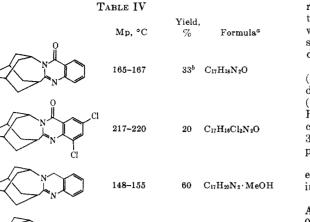
Med., 111, 544 (1962). (16) W. T. Goedemans, Thesis, University of Leiden, Leiden, The

Netherlands, 1967. (17) W. T. Goedemans and A. Peters, Arch. Gesamte Virusforsch., 23, 326 (1968).

 (18) It has since been shown that the blood pressure lowering effects of these compounds are caused by ganglion blockade. tivities are either absent or very weak and are not mentioned.

Experimental Section¹⁹

4-Azahomoadamantan-5-one (1).—Adamantanone oxime⁴ (68 g, 0.41 mole) was added with stirring over a period of 60 min to polyphosphoric acid (1200 g) at 125°. The temp was maintained at 125° for a further 30 min. After cooling to 95° the mixt was poured into 25% NH₄OH (1850 ml) with stirring and cooling in ice-salt. The soln was extd with CHCl₈ (five 300-ml portions). The combined exts were washed with H₂O (200 ml) and dried (Na₂SO₄). The soln was treated with charcoal and filtered, and the solvent evapd *in vacuo*; yield 39 g (57%), mp 304-311° (ligroin).

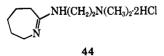

4-Azahomoadamantane HCl (2).—Compd 1 (5.0 g, 0.03 mole) was reduced with LAH (1.3 g, 0.03 mole) in boiling THF (100 ml) (reaction time 24 hr) and worked up in the usual way. The 4-azahomoadamantane obtained was converted into the hydrochloride; yield 3.6 g (64%), mp 374-378° (EtOH-Et₂O).

5-Methoxy-4-azahomoadamant-4-ene (3a).—Compd 1 (11.0 g, 66 mmoles), dissolved in dry C_6H_6 (35 ml), was treated with

⁽¹⁹⁾ Melting points were measured in closed capillary tubes in an electrically heated aluminum block. Temperature was indicated by a chromelalumel couple on a Philips G.M. 6020 tube voltmeter. Ir spectra were recorded on a Perkin-Elmer Model 337. Nmr spectra were measured on a Varian HA 100 spectrometer (MesSi). Mass spectra were obtained with an AEI-MS 9 mass spectrometer. Ir, nmr, and mass spectroscopic data are fully in accord with the structures proposed. Microanalyses were performed by A. Bernhardt, Microanalytisches Laboratorium, Elbach über Engelskirchen, West Germany. The compounds reported herein had analyses within $\pm 0.4\%$ of the theoretical values for the elements indicated unless otherwise noted.

No.

39


42 N 202-203.5 dec^c 92 $C_{17}H_{28}CIN_2^d$ 43 N 264-269 31 $C_{13}H_{16}N_2O_2 \cdot 3H_2O^d$

^a See footnote a, Table I. ^b When prepd from the lactim ether **3a** with anthranilic acid, the yield was 25%. ^c Hydrochloride. ^d N: calcd 9.63; found 10.10. ^e O and H₂O (Karl Fischer) also analyzed.

TABLE V

				TADDE (
			<i></i>				
			Influenza	Influenza	Influenza B	Para-	Lowering
	-LD5024a		A	A2	Johannes-	influenza	of blood
No.	ip	о	Swine	Japan	burg	Sendai	pressure ^c
1	56		+		-	-	
2	147		+	-	—		+
6		>320	+	+		+	-
13	75	>1000					+
14	56	>320					+
17	75						±
18	75	>320	+	_	_	_	+
19	56						+
20	56						+
25	178	>1000					+ d
26	178						+
27	100						±
29	56	>1000		+	+	-	-
30	56	>320					±
31		>320	+	+	+	+	_
33	56	>320	+	+	—	_	±
37	56						±
41			+	+	+	+	
^a mg/kg, in mice.			^b Conc	n used:	$10^{-4} M$: + = virus inhibi		

^a mg/kg, in mice. ^b Concn used: $10^{-4} M$; + = virus inhibition relative to the controls amounts to 20% or more; - = virus inhibition is less than 20% or completely absent. ^c Dose, 10 mg/ kg; + = the lowering of the mean blood pressure caused by this compd amounts to 15% or more and lasts longer than 2 hr; $\pm =$ the lowering lasts 1-2 hr; - = the lowering lasts less than 15% or is completely absent. ^d The analogous azacycloheptyl derivative 44 (prepd by Mr. J. R. Nienhuis according to procedure C (Exp Section), yield 76\%, mp 256.5-258°) lacks this property.

 Me_2SO_4 (8.3 g, 66 mmoles), which was added dropwise and with stirring. The mixt was refluxed for 22 hr and then cooled. A soln of K_2CO_3 (10 g) in H_2O (10 ml) was added cautiously with vigorous stirring. The aq layer was sepd and extd with Et_2O (10 ml). The combined org layers were dried and concd. The residue (11.8 g) was taken up in petr ether (bp $40-60^{\circ}$) (50 ml), treated with charcoal, and filtered (Hyflo Supercel). The solvent was removed *in vacuo* to give 10.6 g (89%) of a colorless oil which solidified on cooling. The hydrochloride had mp $312-315^{\circ}$ dec.

5-Chloro-4-azahomoadamant-4-ene \cdot HCl (3b).—A soln of 1 (7.7 g, 0.046 mole) in dry, EtOH-free CHCl₃ (15 ml) was added dropwise in 30 min to a soln of COCl₂ (6.3 g, 0.063 mole) in CHCl₃ (20 ml). The temp was maintained at 20–25° by cooling with H₂O. After the addn the mixt was stirred for 30 min and then concd *in vacuo* to dryness, with the temp being maintained below 30°. The hydrochloride thus obtained was used without further purification.

General Procedures.—Each method is illustrated by a specific example. The relevant data regarding each compd are recorded in the tables.

Procedure A. 4-Benzoyl-4-azahomoadamantan-5-one (7).--A mixt of 1 (3.1 g, 0.019 mole) and 50% NaH dispersion (Fluka, 0.96 g, 0.020 mole) in dry dioxane (30 ml) was heated under reflux for 90 min. The solvent was removed *in vacuo*, and to the residue was added dry C_6H_6 (15 ml). Then BzCl (2.81 g, 0.020 mole) dissolved in dry C_6H_6 (20 ml) was added and the mixt was refluxed overnight. After filtration the soln was washed with H_2O and concd *in vacuo* to 30 ml, whereupon 7 (2.1 g) crystd. The mother liquor was concd to dryness and the residue was extd with hot petr ether (bp 60-80°) (15 ml). On cooling, a second crop was obtained (0.76 g). The combined fractions were recrystd from MeOH (150 ml) to give 2.2 g (43%), mp 185-188°.

Procedure B. 4-(3,4-Dichlorophenylcarbamoyl)-4-azahomoadamantan-5-one (10).—A mixt of 1 (1.65 g, 0.01 mole) and 3,4dichlorophenyl isocyanate (1.88 g, 0.01 mole) in dry PhMe (20 ml) was refluxed with stirring for 24 hr. After being concd, the residue was crystd twice from EtOH, yielding 2.3 g (65%), mp $129.5-131^{\circ}$.

Procedure C. 5-[2-(2-Methoxyphenoxy)ethylamino]-4-azahomoadamant-4-ene \cdot HCl (33).—A mixt of 3a (1.80 g, 0.01 mole) and 2-(2-methoxyphenoxy)ethylamine \cdot HCl (2.02 g, 0.01 mole) in MeOH (15 ml) was refluxed with stirring for 24 hr and then concd to dryness under reduced pressure. The residue was dissolved in H₂O (15 ml), washed with Et₂O (10 ml), made alk, and extd with CHCl₃ (three 15-ml portions). These exts were combined, treated with charcoal, and dried, and then the CHCl₃ was evapd. The residue was dissolved in EtOH and the soln acidified (pH 4) with ethanolic HCl. The hydrochloride crystd upon addn of Et₃O. Recrystn from EtOH-Et₂O gave 1.84 g (52%), mp 189-192°.

Procedure D. 5-(1-Pyrrolidinyl)-4-azahomoadamant-4-ene-HCl (37).—A soln of **3b** (2.2 g, 0.01 mole) in dry, EtOH-free CHCl₃ (15 ml) was added with stirring over a period of 30 min to a soln of pyrrolidine (2.1 g, 0.03 mole) in CHCl₃ (15 ml). The mixt was kept at 20° for 1 hr and then heated at 45° for another hr. The solvent was removed and H₂O (15 ml) and 2 N NaOH (30 ml) were added to the residue. The mixt was extd with CHCl₃ (3 x 15 ml). The combined exts were dried, filtered, and coned to dryness. The residue was treated with ethanolic HCl and Et₂O to give **37**; yield 1.4 g (55%), mp (EtOH-Et₂O) 300-304° dec.

4-(2-Aminoethyl)-4-azahomoadamantane \cdot 2HCl (12).—A mixt of 2 (2.9 g, 19 mmoles), chloroacetonitrile (2.4 g, 32 mmoles), and Na₂CO₃ (1.6 g, 15 mmoles) in dry C₈H₆ (35 ml) was stirred at room temp for 23 hr and thereafter refluxed for 40 hr. After filtration, the soln was concd to dryness. The residue (3.5 g) was dissolved in dry Et₂O (10 ml) and reduced with LAH (1.5 g). The mixt was worked up as usual. The amine was converted into 12; yield 4.3 g (80%), mp 271–273°.

4-(2-Guanidinoethyl)-4-azahomoadamantane 2HCl (13). Compd 13 was prepared by reaction of 12 with H₂NCN in MeOH.²⁰

4-[3-(4-Fluorobenzoyl)propyl]-4-azahomoadamantane HCl (14).—A mixt of 2 (0.75 g, 5 mmoles), Na₂CO₃ (1.7 g, 16 mmoles), 4-chloro-4'-fluorobutyrophenone (1.5 g, 7 mmoles), and a few cryst of KI in dry PhMe (10 ml) was stirred and refluxed for 60 hr. A further 3.5 g of the butyrophenone was added in portions of 0.5 g every 8 hr. The mixt was allowed to cool to room temp. H_2O (25 ml) was added and the layers were sepd. The org layer was concd to dryness. The residue was dissolved in EtOH

⁽²⁰⁾ Philips' Gloeilampenfabrieken, Dutch Patent Application 64,04604; Chem. Abstr., 64, 11180a (1966).

Journal of Medicinal Chemistry, 1971, Vol. 14, No. 5 415

and treated with charcoal. The hydrochloride 14 was prepd and recrystd from EtOH-Et_2O to give 0.49 g (28%), mp 218-220° dec.

4-[3-(2-Chlorophenothiazin-10-yl)propyl]-4-azahomoadamantane · HCl (15) was prepd from 2 analogously to the method of Grogan, et al.²¹

4-p-Tolylsulfonylcarbamoyl-4-azahomoadamantane (16) was prepd from 2 according to the method described by Gerzon, et al.^{2a}

5-Hydrazino-4-azahomoadamant-4-ene \cdot HCl (18).—A mixt of 3a (2.7 g, 0.015 mole) and hydrazine hydrate (1.0 g, 0.02 mole) was stirred at room temp for 48 hr. Then CH₂Cl₂ (25 ml) was added, and the resulting soln was dried and evapd *in* vacuo. The residue was treated with ethanolic HCl and Et₂O to yield 18, 2.26 g (70%), mp 287-290° dec.

1-(4-Azahomoadamani-5-ylidene)-3-phenylguanidine · 2HCl (23).—A mixt of 22 (2.2 g, 11.6 mmoles) and PhNH₂ · HCl (1.5 g, 11.6 mmoles) in DMSO (25 ml) was heated on a steam bath for 17 hr and then concd to dryness. The residue was dissolved in a mixt of H₂O (50 ml) and 2 N HCl (6 ml). The soln was washed with Et₂O (3 × 15 ml). The aq layer was filtered (Hyflo Supercel), made alk, and extd with Et₂O (4 × 30 ml). These exts were combined, dried, and concd. The residue was treated with ethanolic HCl and Et₂O to give 23, yield 2.32 g (50%), mp 134– 142° dec. According to the nmr spectrum and the elemental analysis the compd contained 1 mole of EtOH.

4-Azahomoadamantano [5,4-b] quinazolin-4'(3'H)-one (39).— The lactam 1 (3.50 g, 21 mmoles) and isatoic anhydride (3.55 g, 22 mmoles) were mixed thoroughly and then heated in a metal bath to approx 160°. After melting, the mixt was kept at this temp for 10 min and then the temp was raised to 190° over a period of 5 min. After the evolution of CO₂ had ceased, the residue was cooled and dissolved in concd HCl (60 ml). This soln was treated with charcoal and filtered (Hyflo Supercel). The filtrate was made alk with 50% NaOH. The first few milliliters caused the sepn of some tarry material, which was discarded. Further addn of NaOH gave a white ppt which was filtered, washed with H₂O, and dried. Recrystn from EtOH-H₂O (1:1) yielded 1.89 g (33%), mp 165-167°.

(21) C. H. Grogan, R. Kelly, and L. M. Rice, J. Med. Chem., 9, 654 (1966).

6',8'-Dichloro-4-azahomoadamantano[5,4-b] quinazolin-4'-(3'H)-one (40).—A mixt of 1 (3.0 g, 18 mmoles) and 3,5-dichloroisatoic anhydride²² (4.5 g, 19 mmoles) was heated at 165° for 10 min. Then the temp was raised to 190°, and the mixt was kept at this temp for 45 min. After cooling, the residue was successively extd with 100, 25, and 25 ml of boiling EtOH. On cooling the combined exts yielded a ppt which was recrystd from EtOH; yield 1.17 g (20%), mp 217-220°.

4-Azahomoadamantano [5,4-b]-3',4'-dihydroquinazoline (41). —Compd 39 (3.7 g, 0.014 mole), dissolved in dry Et₂O (275 ml), was added slowly to a soln of LAH (1.4 g, 0.037 mole) in dry Et₂O (75 ml). After being refluxed for 7 hr the mixt was worked up in the usual way; yield, after recrystn from MeOH (50 ml), 2.38 g (60%), mp 148-155°. The product contained 1 mole of MeOH.

4-Azahomoadamantano[5,4-b]-1',2',3',4'-tetrahydroquinazoline HCl (42).—Compd 39 (5.9 g, 0.022 mole) was reduced with LAH (3.0 g, 0.080 mole) in boiling THF (50 ml) (reaction time 64 hr), and the reaction mixt was worked up as usual. The base [yield 5.2 g (92%), mp 132.5-135°] was converted into 42, mp 202-203.5° dec.

4'-Hydroxy-4-azahomoadamantano[4,5-a] pyrimidin-6'(1'H)one (43).—To a soln of Na (0.5 g, 0.022 g-atom) in EtOH (15 ml) were added diethyl malonate (1.8 g, 0.011 mole) and 17 ·HCl (2.01 g, 0.010 mole). The mixt was stirred and refluxed for 5 hr. After evapn of the solvent, H₂O (10 ml) was added, and the soln was acidified (pH 4) with 2 N HCl. The resulting ppt was filtered off and washed with H₂O. After recrystn from H₂O, 0.9 g (31%) of 43, contg 3 moles of H₂O, was obtained, mp 264-269°.

Acknowledgments.—The authors wish to thank Dr. C. A. de Bock and Dr. V. Claassen, and their coworkers, for the biological investigations, and Mr. F. W. van Deursen and Dr. P. K. Korver, and their coworkers, for the structure analyses.

(22) R. Dorsch, J. Prakt. Chem., 33, 45 (1886).

2-Alkylthioadenosines, Specific Coronary Vasodilators

M. HELEN MAGUIRE,* DENIS M. NOBBS, ROSEMARIE EINSTEIN, AND JOHN C. MIDDLETON

Smith Kline and French Research Institute, Department of Pharmacology, The University of Sydney, Sydney, 2006, Australia

Received September 8, 1970

2-Methylthio-, 2-ethylthio-, 2-n-propylthio-, and 2-isopropylthioadenosines were synthesized in almost quantitative yield from 2-chloroadenosine by nucleophilic displacement of Cl by the appropriate sodium alkylmercaptide in anhyd DMF. 2-Methylthioadenosine was also synthesized in 45% overall yield from 2-methylthioadenine by the chloromercuri procedure; 2-ethylthioadenosine was obtained similarly from 2-ethylthioadenine, and from 2-ethylthio-6-chloropurine by fusion with 1-O-acetyl-2,3,5-tri-O-benzoyl- β -p-ribofuranose. 2-n-Propylthioadenosine and 2-isopropylthioadenosine were also synthesized by the fusion method from 2-n-propylthio-6chloropurine and 2-isopropylthio-6-chloropurine, respectively. The four 2-alkylthioadenosines had coronary vasodilator activity in the dog of prolonged duration. The coronary vasodilator potency of the compounds increased with increasing length of the alkyl chain; the isopropylthio derivative was slightly less potent than 2-n-propylthioadenosine. Doses of the 2-alkylthioadenosines which caused coronary vasodilatation had no depressant effect on heart rate and contractility.

The effects of adenosine on the mammalian cardiovascular system, which were first described by Drury and Szent-Györgi in 1929, include a transient increase in coronary blood flow, a transient decrease in systemic blood pressure, sinus brachycardia, and arterioventricular block.¹ The dose of adenosine which slows the heart rate is greater than the dose which causes a threshold increase in coronary blood flow, but even low doses

(1) (a) A. N. Drury and A. Szent-Györgi, J. Physiol., 68, 213 (1929).
(b) M. M. Winbury, D. H. Papierski, M. L. Hemmer, and W. E. Hambourger, J. Pharmacol. Exp. Ther., 109, 255 (1953). (c) J. N. James, *ibid.*, 149, 233 (1965).

of adenosine may have a depressant effect on the heart.² The use of adenosine in cardiovascular therapy has been precluded both by the transitory nature of its vasodilator effects and by its toxic actions on the heart. It would seem feasible however that certain analogs of adenosine may be found which have the coronary vasodilatory activity of adenosine, but which have greater duration of action *in vivo* and which lack the cardiac depressant action of the parent compound. Clarke,