higher than would be expected from a homogeneous reaction governed by the presented kinetics or any other investigated homogeneous kinetics system. While the rate constants given here may be somewhat affected by this process, early inflection points should not be altered.

 B^{11} Nuclear Magnetic Resonance Spectrum of Benzyldecaborane.—The B^{11} n.m.r. spectrum of benzyldecaborane prepared from $NaB_{10}H_{13}$ and benzyl chloride has been obtained at 12.8 mc. and is comparable to that of the benzyldecaborane prepared from a Grignard synthesis.⁴ This spectrum can be interpreted since the B^{11} n.m.r. spectrum of decaborane has been assigned.¹²

Related work reveals that the substitution of an alkyl group for a hydrogen atom upon a boron atom not only collapses that doublet (C¹² has no nuclear spin) but in all cases thus far observed, the B¹¹ chemical shifts are to lower field. The degree of chemical shift appears to be more a function of the specific boron atom substituted than the size or spatial arrangement of the alkyl group. Examples of this shift to lower field have been observed in the alkyldiboranes,¹³ 2,4-dimethylenetetraborane, ¹-and 2-alkylpentaborane, ²-alkyldecaborane and others. The B¹¹ resonances in triethylboron and tripropylboron are also found at the lowest field of some fifty boron containing compounds thus far observed.¹⁴

- (12) Robert E. Williams and I. Shapiro, J. Chem. Phys., 29, 677 (1958).
- (13) R. E. Williams, H. D. Fisher and C. O. Wilson, J. Phys. Chem., **65**, in press (1961).
- (14) T. P. Onak, H. Landesman, R. E. Williams and I. Shapiro, ibid., 63, 1533 (1959).

In consideration of the above information it is apparent that the spectrum recently published for benzyldecaborane prepared *via* the Grignard method is identical to that prepared from decaboranylsodium and decaborane is substituted at either the one or six positions. Such a spectrum would be expected if one quarter of the 1,3 and 6,9 doublet of the decaborane spectrum were collapsed and shifted to lower field by substitution of an alkyl group (Ref. 4, Fig. 2). Conversely, the one quarter collapse of the 5, 7, 8, 10 doublet would have created a different spectrum and the shift to low field would be more than twice as great as any "alkyl shift" to lower field thus far observed.

The 6-position is preferred to the 1-position for several reasons. Attack of an electron donor upon the 6,9-positions most easily explains the deuteration of decaborane in D₂O-dioxane. Substitution at the 6-position could, as mentioned above, deactivate the decaborane molecule at one end allowing three protons (in addition to the bridge protons) to be readily exchanged. In the products of Lewis base attack upon decaborane, *i.e.*, in B₁₀H₁₂-(NCCH₃)₂ the Lewis base (acetonitrile) is attached to the 6- and 9-positions. It should be noted that small amounts of other space isomers, if they are present, could not be detected by n.m.r. analysis.

Acknowledgments.—We wish to acknowledge the many constructive suggestions received during the course of this work from Dr. George W. Schaeffer and Dr. Manny Hillman.

(15) J. van der Mass Reddy and W. N. Lipscomb, J. Am. Chem. Soc., 81, 754 (1959).

[Contribution from the John Harrison Laboratory of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania]

The Preparation and Properties of Silyl Methyl Ether¹

By Burt Sternbach and Alan G. MacDiarmid² Received January 9, 1961

Gaseous SiH₄ and gaseous CH₃OH have been found to react at room temperature in the presence of copper metal catalyst to give methoxysilanes. Reaction occurred in the absence of catalyst if liquid CH₃OH was present. The new compound, SiH₃OCH₃, has been prepared from SiH₃I·N(CH₃)₃ and CH₃OH, and its physical properties and a number of its chemical properties have been studied. Using B_2H_6 as a reference Lewis acid, SiH_3OCH_3 has been found to be a weaker Lewis base than $(CH_3)_2O$. Diborane was not a sufficiently strong Lewis acid to differentiate between the relative base strengths of SiH_3OCH_3 and $(SiH_3)_2O$.

In a previous paper³ it was shown that gaseous CH_3OH would combine with gaseous SiH_4 at room temperature in the presence of copper metal catalyst to yield a mixture of methoxysilanes. No methoxysilane (silyl methyl ether), SiH_3OCH_3 , was obtained. In one experiment CH_3OH and SiH_4 were found to combine in the absence of catalyst. The present investigation was carried out for the purpose of determining the exact conditions of reaction of CH_3OH with SiH_4 and for the purpose

of preparing and studying SiH_3OCH_3 —particularly its base strength with respect to the Lewis acid, B_2H_6 .

Experimental

Apparatus.—All work was carried out in a Pyrex glass vacuum system. Melting points were determined by a magnetic plunger apparatus.⁴ All temperatures below 0° were measured by an iron-constantan thermocouple, standardized by the National Bureau of Standards. Temperatures above 0° were measured by a mercury-in-glass thermometer standardized by the National Bureau of Standards.

Methanol.—Analytical grade methanol was used. Its purity was checked by means of a vapor pressure determination at 0° (found, 30.0 mm., literature value⁵ 29.7 mm.).

⁽¹⁾ This report is based on portions of a thesis to be submitted by Burt Sternbach to the Graduate School of the University of Pennsylvania in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

⁽²⁾ Alfred P. Sloan Research Fellow.

⁽³⁾ B. Sternbach and A. G. MacDiarmid, J. Am. Chem. Soc., 81, 5100 (1959)

⁽⁴⁾ A. Stock, "Hydrides of Boron and Silicon," Cornell University Press, Ithaca, N. Y., 1933, p. 184.

⁽⁵⁾ B. Pesce and V. Evdokimoff. Gazz. chim. ital., 70, 712 (1940).

Silane.—This was prepared from SiCl₄ and LiAlH₄. Its purity was checked by measuring its molecular weight (found 32.0, calcd. 32.1) and by comparison of its infrared spectrum with that of a published infrared spectrum.

Silyl Iodide.—This was prepared from SiH₄ and HI.⁷ Its purity was checked by means of a vapor pressure determination at 0° (found, 124.2 mm., literature value, 123.9)

mm.).

Diborane.—Commercial diborane was purified in the vacuum system and its purity was checked by measuring its vapor pressure at -130.4° (found, 48.0 mm., literature value⁸ 48.7 mm.). Its infrared spectrum was identical with a spectrum of pure B2H6 furnished by the National Bureau of Standards.

Boron Trifluoride.—Commercial BF3 was purified in the vacuum system, and its purity was checked by measuring its vapor pressure at -111.8° (found, 306.3 mm., literature value 306.5 mm.). Its infrared spectrum was identical with a spectrum of pure BF3 furnished by the Harshaw Chemi-

cal Company.

Dimethyl Ether.—Commercial (CH₃)₂O was purified in the vacuum system, and its purity was checked by measuring its vapor pressure at -78.6° (found 34.0 mm., literature value¹⁰ 34.4 mm.).

Interaction of Silane with Methanol. A.—SiH₄ (0.0356

g.) and CH_3OH (0.0341 g.) were combined in a 500-ml. vessel. No liquid phase was present and after 5 days at room temperature no $\rm H_2$ had been produced. After the addition of more $\rm CH_3OH~(0.5281~g.)$ to ensure the presence of liquid phase and after an additional 39 hr. at room temperature, 38.3 ml. of H₂ (S.T.P.) had been formed. SiH₄ (0.009 g., identified by infrared spectrum⁶) and a mixture of methoxysilanes and CH₃OH (0.5-0.6 g.) was isolated. Its infrared spectrum indicated the presence of (CH3O)4Si8 and HSi(OCH₃)₃.3

B.—SiH₄ (0.0396 g.), CH₃OH (0.0351 g.) and clean³ electrolytic dust grade Cu powder (0.4232 g.) were combined in a 500-ml. vessel. After 15 minutes at room temperature, the copper had turned dark brown in color and 39.7 ml. H2 (S.T.P.) had been produced. After an additional 35 minutes a further 0.39 ml. of H₂ was formed, but during the next 40 minutes no more hydrogen was liberated. liquid phase was present at any time during the reaction. Inquid phase was present at any time during the reaction. After removal of unreacted SiH₄ (0.0119 g.) there was isolated H₂Si(OCH₃)₂ (0.0054 g., mol. wt. found, 92.3, caled., 92.2; infrared spectrum identical with that of pure material³), HSi(OCH₃)₃ (0.0263 g., mol. wt. found, 122, caled., 122.2; vapor pressure at 0°, found, 18.9 mm., literature value, ³ 18.7 mm.; infrared spectrum identical with that of pure material3) and a mixture of HSi(OCH3)3 and $(CH_3O)_4Si$ (0.0015 g. identified by infrared spectrum³). 65% of the starting materials used in the reaction were removed as volatile products. From the darkening in color of the copper catalyst, from experiment C below and from the fact that SiH₈OCH₈ is slowly decomposed by Cu metal, it appears that the remainder of the material underwent complex decomposition.

C.—SiH₄ (0.856 mole) was placed in the reaction vessel

used in B, which still contained the Cu catalyst. After 7 days at room temperature, H₂ (6.76 ml., 0.0003 mole) was formed.

Preparation of SiH₃OCH₃. (A).—The reaction of SiH₃I with varying quantities of CH₃OH was investigated in a number of experiments. On all occasions as the reactants warmed from liquid nitrogen temperatures, vigorous reaction accompanied by violent effervescence commenced at approximately -60° and continued up to room temperature. Large quantities of H_2 were evolved and a polymeric film remained in the reaction vessel on removal of volatile materials. Polymeric films also formed in traps in the vacuum system during distillations. Volatile mixtures which could not be identified were obtained in addition to a trace of SiH₃OCH₃ which subsequently was identified by comparison of its infrared spectrum with that of the pure compound prepared in experiment B below.

(B).—Since C2H5OH has been reported to react with SiH₃Cl · N(CH₃)₃ to give what was presumed to be SiH₃O-C2H5,11 the analogous reaction involving CH3OH was investigated.

A slight excess of (CH3)3N was mixed with SiH3I (3.5567 g.) in a 500-ml. bulb at -196° and after warming to room temperature, the excess $(CH_3)_3N$ was distilled from the solid $SiH_3I \cdot N(CH_3)_3$. $CH_3OH (0.3694 g.)$ then was added and the reaction vessel was held at -78° for 9 hr., materials volatile at this temperature being continuously removed by pumping. After an additional 30 minutes at room temperature a further small quantity of volatile material was formed. The volatile material consisted of H_2 (4.7 ml., formed. The volatile material consisted of H_2 (4.7 im., S.T.P.), SiH₄ (0.027 g., identified by infrared spectrum⁶) in addition to SiH₂OCH₃ which condensed in a -134° trap and distilled slowly from a -112° trap (0.198 g., mol. wt., found 62.3, calcd., 62.15). The SiH₂OCH₃ was analyzed by hydrolyzing a sample (0.0710 g., vapor pressure at -58.9°, found, 91.0 mm., calcd., 91.2 mm.) in 35% causeus NoOH for two days at room temperature. Silicon at -58.9°, found, 91.0 mm., carca, 91.2 mm., a 60.70 aqueous NaOH for two days at room temperature. Silicon was determined as SiO₂, 12 found 45.4%, calcd., 45.21%. Another sample (0.0635 g., mol. wt. found, 62.1, calcd., 62.15; vapor pressure at -60.9°, found 79.6 mm., calcd., 79.8 mm.) yielded upon hydrolysis under similar conditions, 67.83 ml. H₂ (S.T.P.), calcd., 68.64 ml. A portion of the SiH₃OCH₃ used in the vapor pressure study below melted sharply at $-98.5 \pm 0.1^{\circ}$.

Vapor Pressure of SiH3OCH3.—The vapor pressures of SiH_3OCH_3 , at a number of temperatures were measured by a mercury manometer. They are recorded in Table I.

TABLE I VAPOR PRESSURE OF SiH2OCH2

Thi ok I knobokh of biligo cili		
T, °C.	P (expt.), mm.	P (calcd.), mm.
-90.2^{a}	7.7^{a}	8.1°
-89.3	8.3	8.7
-87.1	10.3	10.6
-85.5	11.7	12.3
-77.7	23.1	23.3
-72.2	35.7	35.7
-68.2^{a}	47.8^{a}	47.8^{a}
-67.8	50.3	49.3
-65.5	58.0	58.0
-59.1^{a}	89.6°	90.0^{a}
-59.0	90.9	90.5
-57.6	98.9	99.2
-56.9^a	104.1°	104.1°

a Results of measurements on a different sample.

The data for SiH₃OCH₃ are represented by the equation

$$\log P_{\text{mm.}} = (-1320/T) + 8.1196$$

which gives an extrapolated boiling point of $-21.1\pm0.2^\circ$, a molar heat of vaporization of 6.04 kcal. and a Trouton's constant of 23.9.

Chemical Properties of SiH3OCH3.—All experiments on the chemical properties of SiH₃OCH₃. In Caperinical on the chemical properties of SiH₃OCH₃ were performed on material of the following purity: mol. wt. found, 62.3, calcd., 62.15; vapor pressure at -69.2°, found, 44.3 mm., calcd., 44.6 mm.

(A) SiH₃OCH₃ and CH₃OH.—SiH₃OCH₃ (0.0667 g.)

and CH₈OH (0.0463 g.) were combined in a 500-ml. vessel and after 15 hr. at room temperature, no hydrogen had been evolved and an infrared spectrum of the mixture showed only the presence of the original reactants. No liquid phase was present. Additional CH₃OH (0.3419 g.) was added to the reaction vessel to ensure the presence of liquid phase and after 23 hr. at room temperature 11.2 ml. H₂ (S.T.P.) had been produced. Fractionation of the materials yielded SiH_3OCH_3 (0.0484 g., identified by infrared spectrum) and a mixture of CH_3OH and methoxysilanes (0.3845 g.) which could not be separated into its constituents. An infrared spectrum indicated the presence of HSi(OCH₃)₃ with smaller quantities of H₂Si(OCH₃)₂ and (CH₃O)₄Si.³

⁽⁶⁾ J. W. Straley and H. H. Nielsen, Phys. Rev., 62, 161 (1942).

⁽⁷⁾ H. J. Emeléus, A. G. Maddock and C. Reid, J. Chem. Soc., 353 (1941).

⁽⁸⁾ H. E. Wirth and E. D. Palmer, J. Phys. Chem., 60, 911 (1956). (9) E. Pohland and W. Harlos, Z. anorg. Chem., 207, 242 (1932).

⁽¹⁰⁾ O. Maass and E. H. Boomer, J. Am. Chem. Soc., 44, 1712 (1922).

⁽¹¹⁾ H. J. Emeléus and N. Miller, J. Chem. Soc., 819 (1939).

⁽¹²⁾ I. M. Kolthoff and E. B. Sandell, "Textbook of Quantitative Inorganic Analysis," The Macmillan Co., New York, N. Y., 1943, p.

(B) SiH₂OCH₃ and H₂O.—SiH₂OCH₃ (0.0674 g.) and distilled H₂O (0.2 g.) were combined in a 500-ml. vessel and after 1 hr. at room temperature there was isolated (SiH2)2O (0.0424 g., vapor pressure at -64.9° found, 59.9 mm., literature value¹⁸ 59.0 mm.; mol. wt. found, 78.1, calcd., 78.2; infrared spectrum identical to published spectrum¹⁴) and CH₂OH (0.193 g.; vapor pressure at 0°, found, 30.5 mm., literature value, 29.7 mm.). Yield of (SiH₁)₂O

(C) Thermal Stability of SiH₃OCH₃.—SiH₂OCH₂ (0.0579 g.) was allowed to stand for three days at room temperature in a 500-ml. bulb; its infrared spectrum was unchanged. Half the sample was distilled slowly from a trap at -116° Vapor pressure measurements on the two portions at -64.4° were 62.9 and 63.2 mm. (calcd., 62.8 mm.); 0.0578 g. of

the SiH₃OCH₃ was recovered.
(D) SiH₃OCH₃ and HgI₂.—SiH₃OCH₃ (0.0521 g.) and "Analyzed Reagent" grade HgI₂ (0.1782 g.) were allowed to stand in a 500-ml. vessel for 22 hr. at room temperature. No liquid phase was present. There was recovered SiH₃-OCH₂ (0.0510 g., mol. wt. found, 62.0, calcd., 62.2) and SiH₂(OCH₃)₂ (0.003 g., identified by infrared spectrum³)

(E) SiH₂OCH₂ and Cu Metal.—SiH₃OCH₂ (0.930 mmole) and electrolytic dust grade Cu metal³ (0.7 g.) were allowed to stand in a 500-ml. container for four days at room temperature after which time H₂ (0.208 mmole) had been formed. The Cu metal darkened considerably during this period. An infrared spectrum of the remainder of the material showed it to be pure SiH₃OCH₃.

(F) SiH₃OCH₃ and I₂.—SiH₃OCH₂ (0.0717 g.) and reagent grade I₂ (0.1215 g.) were held in a 250-ml. flask for 10 minutes at room temperature. At the end of this time all the iodine had been consumed and a colorless liquid remained. No hydrogen was evolved. On removing the volatile materials from the reaction vessel a solid glassy material remained. The volatile materials could not be completely separated into pure constituents although one fraction appeared to consist chiefly of SiH₃I (0.1138 g., mol. wt. found 134, calcd., 158; vapor pressure at 0°, found, 123.7 mm., literature value 123.9 mm.). Its infrared spectrum indicated the presence of methoxysilanes.3 A second, less volatile fraction (0.0203 g., mol. wt. 85 to 90) partly changed to a non-volatile white solid each time it was distilled in the vacuum system.

(G) SiH₃OCH₃ and BF₃. (i).—Equimolar quantities of SiH₃OCH₃ (1.268 mmoles) and BF₃ (1.262 mmoles) were combined at -196° in a 93-ml, glass vessel connected to a combined at -196° in a 93-ml, glass vessel connected to a mercury manometer. On holding the reaction vessel at -96° for 75 minutes the pressure slowly increased to 22 cm. On cooling to -196° the pressure returned to zero and on raising the temperature to -96° the pressure increased to 22 cm. in 2-3 minutes. After an additional 1 hr. at -96° the pressure had risen to 23 cm. As the temperature was raised slowly to room temperature over a period of 4 hr. the pressure gradually increased and continued to increase at room temperature during an additional ten minutes. No H2 was formed. Fractionation of the products yielded a mixture of SiH₃F and BF₃ (1.459 mmoles, mol. wt. found, 52.1, calcd. for SiH₃F, 50.08, calcd. for BF₃, 67.82; confirmed by infrared spectrum¹⁵) containing approximately 1.29 mmoles of SiH₃F and 0.17 mmole of BF₃. In addition there was obtained CH₃OBF₂ (0.765 mmole; mol. wt. found, 75.3, calcd., 79.85; melting point, found 41-42°, literature value¹⁶ 41.5°) and (CH₃O)₂BF (0.260 mmole, mol. wt. found, 91.3, calcd., 91.89).

The above results indicate that at -96° a non-reversible reaction was occurring, and as is shown in experiment (ii) reaction was occurring, and as is shown in experiment (ii) below, SiH₃F was being produced (see equation 8). If it is assumed that CH₃OBF₂ partly disproportionates on formation into (CH₃O)₂BF and BF₃, it then, from the quantity of (CH₃O)₂BF isolated, it would appear that 0.520 mmole of CH₃OBF₂ had decomposed in this manner. Thus a total of 1.285 mmoles of CH₃OBF₂ was originally formed in the reaction. reaction. Equation 8 therefore represents the chief reaction which occurred.

(13) R. Wintgen, Ber., 52, 724 (1919).

(ii).—SiH₂OCH₃ (1.103 mmoles) and BF₃ (1.697 mmoles) were combined at -196° in the apparatus used in (i) above. The temperature was raised to -127.8° and held at this value for 45 minutes. The pressure then remained at 23.6 mm. for the next 1 hr. Materials which distilled from the mm. for the next 1 hr. Materials which distilled from the reaction vessel at -127.8° during the next 0.5 hr. (0.699 mmole) were identified by infrared spectrum¹⁵ and mol. wt., (found, 60.4, calcd., for SiH₂F, 50.08, BF₃, 67.82), as an approximately equimolar mixture of SiH3F and BF1. During an additional 1 hr. at -127.8° the pressure in the reaction vessel rapidly increased to 21.2 mm. and then remained constant at this value. Material volatile at this temperature (0.203 mmole) then was removed and was found by its infrared spectrum to be a mixture of SiH₃F¹⁵ and BF₂. SiH₃OCH₃ and BF₃ therefore react at -127.8° to produce SiH₂F. It should be noted that if an adduct such as SiH₂OCH₂·BF₂ had been formed at -127.8°, then the excess BF₂ used (0.594 mmole), which is volatile at this temperature, should have been removed readily. However, only approximately 0.35 mmole of BF₃ was recovered during a 0.5 hr. distillation at -127.8° . This strongly suggests that reaction as indicated by equation 8 occurred rapidly at -127.8° and that the SiH₂F liberated immediately combined with the excess BF, to give the adduct SiH₂F·BF₃. This seems highly likely, since in a previous investigation it was found that (CH₃SiF and BF, formed the non-volatile addition compound (CH₂)₂SiF·BF₂ at -126°.18

(H) SiH1OCH2 and B2H6.—The apparatus and technique to be employed was first checked by measuring the vapor pressure of the known unstable addition compound (CH₃)₂O· BH₃ at -78.2° (found, 16.2 mm., constant for 1.5 hr., literature value¹⁹ 18 mm. at -78.5°). The experiment was carried out using an 80-ml. Pyrex tube attached to a mercury

manometer.

(i).—SiH₄OCH₃ (0.417 mmole) and B₂H₆ (0.242 mmole) were combined at -196° and then raised to -78° and recooled to -196° on six occasions to aid mixing. After holding at -78.8° for 2 hr. a constant pressure of 74.4 mm. was observed. The sum of the vapor pressure of SiH₃OCH₄ and gas pressure of B₂H₆ at this temperature is 79.3 mm. The temperature then was reduced to -130.8° and within ten minutes the pressure dropped to a constant value of 35.7 mm. The sum of the vapor pressures of each substance at this temperature is 46.9 mm.* Volatile material was then distilled from the reaction vessel at -130.8° during 4-5 minutes. This consisted of B_2H_6 (0.243 mmole, mol. wt. found, 26.5, calcd., 27.69; infrared spectrum identical with that of pure material) and SiH3OCH3 (approx. 0.02 mmole, identified by infrared spectrum). This SiH_3OCH_3 was then combined with the material which did not distil This SiH3OCH3 from -130.8° and was found to be pure SiH₃OCH₃ (0.414 mmole, mol. wt. found, 62.3, calcd., 62.15; infrared spectrum identical with pure material).

(ii) Experiment (i) was repeated using SiH_3OCH_3 (0.382 mmole) and B_2H_6 (0.210 mmole) but the reaction vessel was alternately held at -78° and -23° every 15 minutes for a total of 90 minutes. After 75 minutes at -130.8°, volatiles were removed at -130.8° during 5-10 minutes as in the previous experiment. There was recovered B₂H₃ (0.207 mmole, mol. wt. found, 29.5, calcd., 27.69; its infrared spectrum showed the presence of small quantities of SiH₃OCH₃) and SiH₃OCH₃ (0.381 mmole, mol. wt. found, 62.3, calcd., 62.15, infrared spectrum

identical with that of pure material.)

The low vapor pressures of the SiH₂OCH₃-B₂H₆ mixture at -78.8° and -130.8° in (i) probably are due to solubility effects or some form of extremely weak interaction. Similar observations in the (SiH3)2N-B2H6 system have been attributed to solubility effects.20

Infrared Spectrum of SiH3OCH3.-Infrared measurements were made with a Perkin-Elmer Model 21 double beam recording spectrophotometer, employing a sodium chloride optical system. Measurements were made on a gaseous sample at 7.5 mm. pressure in a 10 cm. cell having potassium bromide windows cemented with glyptal resin.

⁽¹⁴⁾ R. C. Lord, D. W. Robinson and W. C. Schumb, J. Am. Chem. Soc., 78, 1327 (1956).

⁽¹⁵⁾ C. Newman, J. K. O'Loane, S. R. Polo and M. K. Wilson, J. Chem. Phys., 25, 855 (1956).

⁽¹⁶⁾ V. Gasselin, Ann. chim. phys., 3, 5 (1894).

⁽¹⁷⁾ E. Wiberg and W. Sütterlin. Z. anorg. Chem., 202, 22 (1931).

⁽¹⁸⁾ E. C. Evers, W. O. Freitag, W. A. Kriner, A. G. MacDiarmid and S. Sujishi, J. Inorg. Nucl. Chem., 13, 239 (1960).

⁽¹⁹⁾ H. I. Schlesinger and A. B. Burg, J. Am. Chem. Soc., 60, 290 (1938).

⁽²⁰⁾ H. M. Manasevit, Doctoral Dissertation, Illinois Institute of Technology, Chicago, Ill., 1959.

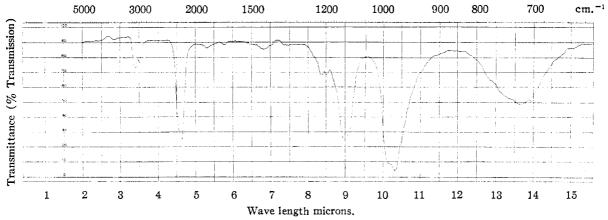


Fig. 1.—Infrared spectrum of silyl methyl ether.

Results and Discussion

Gaseous CH₃OH and gaseous SiH₄ were found to combine at room temperature only in the presence of copper metal catalyst, but if liquid methanol was present reaction occurred in the absence of copper catalyst. The products of the reaction were methoxysilanes and hydrogen.

TABLE II

Infrared Absorption Maxima of SiH ₂ OCH ₃		
Cm1	Designation	
2930 weak } 2830 weak }	C-H stretch	
2150 medium	Si–H stretch	
1890 very weak	Unidentified	
1470 very weak	CH ₃ deformation	
1200 weak \\ 1178 weak \	CH ₂ rocking	
1117 medium { 1102 medium }	Si-O-C stretch	
982 strong (SiH ₂ deformation	
732 medium	SiH ₂ rocking	

In an attempt to prepare SiH₃OCH₃, the interaction of silyl iodide, SiH₃I, and CH₃OH was investigated. Vigorous reaction commenced at approximately -60° and continued up to and at room temperature. Non-volatile oils, mixtures of liquids which could not be separated, hydrogen and a trace of SiH₃OCH₃ were obtained. It is believed that the SiH₃OCH₃ formed initially in the reaction

$$SiH_{\bullet}I + CH_{\bullet}OH \longrightarrow SiH_{\bullet}OCH_{\bullet} + HI$$
 (1)

was almost entirely consumed in the series of reactions

$$\begin{array}{c} \text{HI} + \text{CH}_{4}\text{OH} \longrightarrow \text{CH}_{4}\text{I} + \text{H}_{2}\text{O} \qquad (2) \\ \text{xHI} + \text{SiH}_{3}\text{OCH}_{4} \longrightarrow \text{I}_{x}\text{SiH}_{3-x}\text{OCH}_{3} + x\text{H}_{2} \qquad (3) \\ \text{I}_{x}\text{SiH}_{3-x}\text{OCH}_{3} + x\text{H}_{2}\text{O} \longrightarrow (\text{HO})_{x}\text{SiH}_{3-x}\text{OCH}_{4} + x\text{HI} \end{array}$$

$$y(\text{HO})_x \text{SiH}_{3-x} \text{OCH}_3 \longrightarrow [\text{O}_{x/2} \text{SiH}_{3-x} \text{OCH}_3]_y + (y/2) \text{H}_2 \text{O}$$
(5)

Silanes of the type (HO)_xSiH_{3-x}OCH₃ would be expected to be volatile in a vacuum system and to condense spontaneously to polymeric siloxanes. The above reaction sequence is consistant with the fact that, in the methanolysis of SiCl4, some complex polymers are formed²¹ and in the ethanolysis

(21) W. R. Schwarz and K. G. Knauf, Z. anorg. allgem. Chem., 275. 176 (1954).

of HSiCl₃ some Si(OC₂H₅)₄ is produced.^{22,23} In the former case the formation of CH₃Cl and water is postulated and in the latter case conversion of a Si-H to a Si-Cl linkage by HCl is suggested. If methanolysis of the Si-H bonds in SiH₃OCH₃ also occurred, as is highly likely, the final products would be even more complex.

Attempts to prepare SiH₃OCH₃ by the reduction of Cl₈SiOCH₃ with LiAlH₄ or LiAlH(t-OC₄H₉)₃ under a variety of experimental conditions proved unsuccessful, as was also the reaction of SiH2I with CH₃ONa.

The reaction of the addition compound formed from SiH₃I and N(CH₃)₈ with CH₃OH at -78° yielded the new compound SiH₃OCH₃.

$$SiH_2I N(CH_2)_2 + CH_2OH \longrightarrow$$

 $SiH_2OCH_2 + (CH_2)_2N\cdot HI$ (6)

The pure material was thermally stable at room temperature but disproportionated very slowly in In the presence of copper the presence of HgI_2 . metal, hydrogen was liberated slowly. It was hydrolyzed quantitatively by pure water. No

$$2SiH_2OCH_4 + H_2O \longrightarrow (SiH_2)_2O + 2CH_2OH (7)$$

reaction occurred with methanol when both components were in the gaseous phase but in the presence of liquid CH3OH, reaction took place to yield a mixture of methoxysilanes and hydrogen. The Si-O bond in SiH₃OCH₃ was cleaved by iodine at room temperature to yield SiH₃I. This reaction is therefore similar to those occurring between iodine and $(SiH_3)_2O^{24}$ and $(cyclo-C_6H_{11}SiH_2)_2O^{25}$ in which SiH₃I and cyclo-C₆H₁₁SiH₂I, respectively, are formed. Silyl methyl ether was not spontaneously inflammable in air, and it underwent no reaction with SiH₃I or with COCl₂.

Silyl methyl ether is of particular interest since its preparation completes the series of ethers (Si-H₃)₂O, SiH₃OCH₃ and (CH₃)₂O which is completely analogous to the corresponding series of amines $(SiH_3)_3N$, $(SiH_3)_2NCH_3$, $SiH_3N(CH_3)_2$ and $N(CH_3)_3$. The smaller electronegativity of silicon (1.8) as compared to carbon (2.5) would suggest that the

⁽²²⁾ M. E. Havill, I. Joffe and H. W. Post, J. Org. Chem., 13, 280 (1948).

⁽²³⁾ I. Joffe and H. W. Post, ibid., 14, 421 (1949).

⁽²⁴⁾ H. J. Emeléus, A. G. MacDiarmid and A. G. Maddock, J. Inorg. Nucl. Chem., 1, 194 (1955).

⁽²⁵⁾ H. H. Anderson, J. Am. Chem. Soc., 81, 4785 (1959).

silvl ethers and amines should be stronger Lewis bases than their methyl analogs and that the base strength should decrease as silyl groups are replaced by methyl groups. However, in the amine series, the reverse has been found to be the case, (SiH₃)₃N being the weakest base and (CH₃)₃N being the strongest in the series. 20,26 This has been attributed to d_{π} - p_{π} bonding involving the lone pair of electrons on the nitrogen and the 3d orbitals of the silicon^{20,26-28} It also has been observed by using B₂H₆ as a reference acid that (SiH₃)₂O is a much weaker Lewis base than $(CH_3)_2O$, 29 the latter, but not the former compound forming an adduct with B_2H_6 at $\sim\!-78^{\circ}.^{19,29}$

The results of the present investigation show that SiH₃OCH₃ is also a much weaker Lewis base than (CH₃)₂O since it forms no addition compound with B_2H_6 at -78° . However, diborane is not a sufficiently strong acid to differentiate between the relative base strengths of SiH₃OCH₃ and (Si-H₃)₂O. Boron trifluoride was of no use in measuring the base strength of SiH₃OCH₃ since SiH₃F was liberated at -127.8° and on warming to room temperature the reaction represented by equation 8 occurred. This reaction is completely analogous

$$SiH_3OCH_3 + BF_3 \longrightarrow SiH_3F + CH_8OBF_2$$
 (8)

to that occurring between (SiH₃)₂O and BF₃ under similar experimental conditions. 29,30

- (26) A. B. Burg and E. S. Kuljian, J. Am. Chem. Soc., 72, 3103 (1950).
 - (27) S. Sujishi and S. Witz, ibid., 76, 4631 (1954).
- (28) A. G. MacDiarmid, Quart. Rev., 10, 208 (1956).
 (29) (a) S. Sujishi, E. L. Gasner and A. D. Payton, Jr., Abstracts of papers presented at 133rd National Meeting of the American Chemical Society, San Francisco, 1958, p. 52-Q. (b) S. Sujishi, Ordnance Re-

The relative basicities of the ethers given above may be explained in two ways: (1) One SiH₃ group in SiH₃OCH₃ abstracts electrons from the oxygen atom by means of d_{π} -p_{π} back-coördination approximately as strongly as do two SiH₃ groups in (SiH₃)₂O. Until the Si-O-C bond angle is ascertained, the validity of this somewhat unlikely assumption cannot be determined. (2) The enthalpy for the process

$$B_2H_6 \longrightarrow 2BH_3$$
 (9)

is 28.4 kcal./mole.31 If the interaction energy of a BH₃ group with both SiH₃OCH₃ and (SiH₃)₂O were less than that required to dissociate B₂H₆, then neither ether would form an isolable addition compound with B2H6; hence, even if SiH3OCH3 were in reality a considerably stronger base than (SiH₃)₂O, it would appear to have the same base strength. That this is indeed quite likely is apparent from the fact that (CH₃)₂O BH₃ is an unstable compound19,32 and therefore any slight decrease in electron-donor ability of the oxygen could readily decrease the ether-BH3 interaction energy to a point where insufficient energy for the B₂H₆ dissociation step would be available.

Acknowledgment.—The authors wish to thank Dr. E. R. Nixon for helpful discussions on the interpretation of infrared spectral data.

search Project No. TB 2-0001-(817), Contract No. DA-11-022 ORD-1264, Final Report, Aug., (1957).

(30) H. J. Emeléus and M. Onyszchuk, private communication, 1954.

(31) R. E. McCoy and S. H. Bauer, J. Am. Chem. Soc., 78, 208 (1956).

(32) F. G. A. Stone, Chem. Revs., 58, 101 (1958).

[CONTRIBUTION FROM THE GENERAL ELECTRIC RESEARCH LABORATORY, SCHENECTADY, NEW YORK]

The Reaction of Active Nitrogen with Liquid Siloxane Heptamer, D_7

By Joseph L. Weininger RECEIVED FEBRUARY 13, 1961

The reaction of active nitrogen with the liquid cyclic siloxane heptamer D_7 , $[(CH_3)_2SiO]_7$, was studied quantitatively in a flow system at -24 to 136° . The chemical stability of the siloxane is shown by the fact that atomic nitrogen can be bubbled through the liquid to some extent, giving the characteristic afterglow downstream from the reaction vessel. The nitrogen The nitrogen atoms can, however, attack any bond of the compound D_7 in a reaction which leads mainly to the products HCN and NH₈. The comparable attack of active nitrogen on liquid n-hexadecane is more than ten times as vigorous, with 85% of the nitrogen atoms being converted to degradative N-containing gaseous compounds.

In an investigation of the reactions of active nitrogen with compounds in condensed states, the reaction with the cyclic siloxane heptamer D_7^1 was studied. Emphasis was placed on pure starting materials, an extended temperature range over which the reaction was observed, accurate determinations of the concentration of nitrogen atoms as well as reaction products and hence the determination of reaction yields. For comparison of the liquid siloxane with a liquid hydrocarbon the reaction of active nitrogen with n-hexadecane also was studied.

Experimental

The condenser-discharge system which was used in the study of the reaction of active nitrogen with polymers2 was modified for the reaction with liquid siloxane by converting a trap into a reaction vessel. A special glass lock in an inner ground joint surface locked a showerhead in place. This arrangement allowed the exchange of showerheads with orifices of different size as well as their removal to convert the apparatus to solid-state or vapor-phase work. The glass system was not poisoned except insofar as the siloxane vapor may have formed a film on the walls. In the course of an experiment purified dry nitrogen was passed through the discharge tube at the rate of 5 to 8 m./sec. and also flowed through the liquid in the reaction vessel. The liquid level was maintained 5 to 10 mm. above the gas entry ports so that the residence time of the gas in In that interval the the liquid was at least 0.01 second. nitrogen atoms produced in the discharge reacted with the siloxane, others recombined with each other and an appreciable fraction passed through the liquid and gave the yellow afterglow in the system downstream from the reaction vessel. After the reaction the liquid as well as

^{(1) [(}CH₈)₂SiO]₇, tetradecyl methyl cycloheptasiloxane, m.p. -26°. b.p. 154° (20 mm.).

⁽²⁾ J. L. Weininger, J. Phys. Chem., 65. 941 (1961).