NOTES

A NOVEL ISOMERIZATION OF STEROIDAL $\Delta^{4,9(10)}$ -3-KETONES.

By J. J. Brown and S. Bernstein

Organic Chemical Research Section, Lederle Laboratories, A
Division of American Cyanamid Co., Pearl River, New York, U.S.A.

Received November 27, 1962

In an attempt to prepare the enol ether of 17β -hydroxy-19-norandrosta-4,9(10)-dien-3-one (Ia), we found that treatment of this compound with hydrogen chloride in methanol at room temperature gave a product IIa, isolated as a gum by chromatography, which showed no carbonyl absorption and very weak bands at 1639 and 1612 cm. in the infrared. Hydrolysis of this product using dilute sulfuric acid (8%) in acetone gave an isomer of compound Ia, 17β -hydroxy-19-norandrosta-5(10),9(11)-dien-3-one (IIIa), 2 , m.p. 111-118° with effervescence (Calcd. for $C_{18}H_{24}O_2$: C, 79.37; H, 8.88. Found: C, 78.81; H, 9.04. [α] $_D^{25}$ + 164° (chloroform), MeOH 240 m μ (ξ 17,900), η) $_{max}^{KBr}$ 3333 and 1727 cm. 1). Further evidence for this structure was found in the proton magnetic resonance spectrum which showed one olefinic hydrogen with a

signal at 5.74 p.p.m. The intermediate IIa was assigned the probable structure of 3,3-dimethoxy-19-norandrosta-5(10),9(11)-dien-17 β -ol. The mechanism for its formation is probably similar to that proposed^{4,5} for the formation of Δ^5 -3-ethyleneketals. Thus the addition of methanol to the 3,4-double bond of the first-formed 3,5(10),9(11)-trienol ether would give compound IIa. Compound IIIa was converted back to the parent compound Ia upon treatment with dilute sulfuric acid (8%) in methanol under reflux.

Ia, R = H

IIa, R = H

IIIa, R = H

 $b, R = CH_{3}$

b, $R = CH_3$

 $b, R = CH_3$

 $c, R = C \equiv CH$

 $c, R = C \equiv CH$

 $c, R = C \equiv CH$

Similar two-stage treatment of 17β -hydroxy- 17α -methyl-19-nor-androsta-4,9(10)-dien-3-one (Ib) 1 and of 17α -ethynyl- 17β -hydroxy-19-norandrosta-4,9(10)-dien-3-one (Ic) 1 gave 17β -hydroxy- 17α -

VOLUME 1 JANUARY 1963 STEROIDS 115

methyl-19-norandrosta-5(10),9(11)-dien-3-one (IIIb), m.p. 128-130° (Calcd. for $C_{19}H_{26}O_{2}$: C, 79.68; H, 9.15. Found: C, 79.81; H, 9.51. $\left[\alpha\right]_{D}^{25}$ + 127° (chloroform), $\left\langle \begin{array}{c} \text{MeOH} \\ \text{max} \\ \end{array} \right\rangle$ 240 m μ (£ 19,800), $\left\langle \begin{array}{c} \text{KBr} \\ \text{max} \\ \end{array} \right\rangle$ 3436 and 1698 cm. -1), and 17 α -ethynyl-17 β -hydroxy-19-norandrosta-5(10),9(11)-dien-3-one (IIIc), $\left\langle \begin{array}{c} \text{m.p. } 152\text{-}154^{\circ} \\ \end{array} \right\rangle$ (Calcd. for $\left\langle \begin{array}{c} \text{C}_{20}H_{24}O_{2} \\ \text{C} \\ \end{array} \right\rangle$ C, 81.04; H, 8.16. Found: C, 81.04; H, 8.48. $\left[\alpha\right]_{D}^{25}$ + 145° (chloroform), $\left\langle \begin{array}{c} \text{MeOH} \\ \text{max} \\ \end{array} \right\rangle$ 240 m μ (£19,300), $\left\langle \begin{array}{c} \text{CHCl} \\ \text{max} \\ \end{array} \right\rangle$ 3571, 3279, and 1701 cm. -1) respectively. The intermediates IIb and IIc were isolated as gums by chromatography. Overall yields were 40-50%.

Compounds IIIa, b, and c gave a positive blue tetrazolium test as did the related $\Delta^{5(10)}$ -3-ketones, a Δ^{5} -3-ketone and a Δ^{14} -17-ketone. Thus it appears that, unlike the α β -unsaturated ketones, steroidal β γ -unsaturated ketones give a positive test. Further work on these $\Delta^{5(10)}, 9(11)$ -steroids is in progress.

REFERENCES

 M. Perelman, E. Farkas, E. J. Fornefeld, R. J. Kraay, and R. T. Rapala, J. <u>Am. Chem. Soc.</u>, <u>82</u>, 2402 (1960). 116 STEROIDS VOLUME 1 JANUARY 1963

- 2. Recently, G. Nomine and R. Bucourt, U. S. Pat. 3,033,856/1962 and G. Nomine, R. Bucourt, and M. Vignau, U. S. Pat. 3,052,672/1962 described the conversion of 17β -benzoyloxy-19-norandrosta-4,9(10)-dien-3-one and of compound Ic into the corresponding $\Delta^{5(10)}$,9(11)-3-ketones by the formation of the respective intermediate 3-pyrrolidyl-3,5(10),9(11)-trienes followed by acid hydrolysis.
- 3. These $\Delta^{5(10)}, 9(11)$ -3-ketones were unstable and became yellow on standing overnight at room temperature.
- 4. C. Djerassi and M. Gorman, <u>J. Am. Chem. Soc.</u>, <u>75</u>, 3704 (1953).
- 5. J. J. Brown, R. H. Lenhard, and S. Bernstein, Experientia, 18, 309 (1962).