

0031-9422(95)00499-8

A DIMERIC SINAPALDEHYDE GLUCOSIDE FROM ILEX ROTUNDA

DONG-XU WEN and ZHONG-LIANG CHEN*

Shanghai Institute of Materia Medica, Academia Sinica, Yue-yang Road 319, Shanghai 200031, People's Republic of China

(Received in revised form 5 June 1995)

Key Word Index—*Ilex rotunda*; Aquifoliaceae; bark; ilexrotunin; dimeric sinapaldehyde glucoside; rotundanonic acid.

Abstract—Investigation of the Chinese medicinal plant *Ilex rotunda*, afforded, in addition to known compounds, a dimeric sinapaldehyde glucoside, ilexrotunin, and rotundanonic acid. The structures were elucidated by spectroscopic methods.

INTRODUCTION

Ilex species are distributed widely in China and some have been used extensively in folk medicine, such as *I.* pubescens, *I. chinensis* and *I. asperlla*. A decoction of the roots of *I. pubescens* has shown coronary vasodilation in animal tests and is used for the treatment of coronary disease, myocardial infarction and Burger's disease [1]. Ilex chinensis is taken as an antibacterial and is used as a remedy for pneumonia, tonsillitis, urinary tract infections and the common cold, and also shows coronary vasodilation activity [2]. Leaves of *I. asperlla* are applied to snake-bites and used as an antibiotic [3]. Ilex rotunda is a commonly known antipyretic and antidote for the treatment of the common cold, tonsillitis, stomach and intestinal ulcers [4].

Chemical investigations of *llex* species have shown that they contain rotundic acid (1) [5], pedunculoside (2) [6], syringin (4) [7, 8], rotungenic acid, rotundioic acid and other known triterpenoid compounds [9]. In our study, we examined the chemical components of the bark of *I. rotunda*. In addition to eight known compounds, rotundanonic acid (7) and the dimeric sinapaldehyde glucoside, ilexrotunin (8), were isolated.

RESULTS AND DISCUSSION

The ethanol extract of the bark of *I. rotunda* was partitioned between petrol and methanol. The methanol layer was further treated with acetone. The acetone-soluble fraction was repeatedly chromatographed to afford rotundic acid (1), pedunculoside (2), syringaldehyde (3), syringin (4), sinapaldehyde (5), sinapaldehyde glucoside (6), 3-O-acetyloleanolic acid, stearic acid, rotundanonic acid (7) and ilexrotunin (8).

*Author to whom correspondence should be addressed.

Rotundanonic acid (7) showed a $[M]^+$ at m/z 486.3357 suggesting the molecular formula $C_{30}H_{46}O_5$. Its spectral data showed unconjugated keto absorption at 285 nm in UV and 3480(OH), 1700(CO), 1450(double bond) cm⁻¹ in IR. In the ¹H NMR, signals at $\delta 0.84 s$, 0.87 s, 1.0 s, 1.36 s and 0.93 d, together with six methyl signals were observed typical of ursene-type triterpenes. In the downfield region, trisubstituted olefinic protons at $\delta 5.28 t$ were also observed.

The ring system and substitution of 7 was obtained from its EI-mass spectrum in accordance with the known fragmentation patterns of triterpenes. There were two characteristic peaks at m/z 264 [a]⁺ and 222 [b]⁺, ascribed to retro-Diels-Alder cleavage fragments commonly found in spectra of olean-12-ene or urs-12-ene derivatives possessing one hydroxyl group and one keto group on ring A/B and one hydroxyl group and one carboxyl group on ring D/E [5]. Further losses of H_2O_1 , COOH and CH_2OH from $[a]^+$ or $[b]^+$ were observed at 246 $[a - H_2O]^+$, 219 $[b - COOH]^+$ and 191 $[b - CH_2OH]^+$. The peak at m/z 219 $[a - COOH]^+$ was four times more intense than $[a]^+$. This indicates that the COOH must be present at C-17 [10, 11]. The ¹HNMR spectrum of 7 exhibited a methyl signal at $\delta 0.93 d$ and a downfield methyl signal at $\delta 1.36 s$, indicating that a hydroxyl group may be connected to C-19 or C-20. The ¹H NMR spectrum also showed a H-18 singlet at $\delta 2.51$. This evidence indicated that the hydroxyl group is located at C-19. The stereochemistry of the C/D ring in 7 was established as cis-fused by NOE difference spectroscopy; saturation of the H-12 olefinic proton gave NOE with H-18 (8.37%) and irradiation of H-18 gave NOE with H-12 (7.25%). It is thus identical with rotundic acid (1) at the C/D ring junction. The ¹H NMR of 7 also showed a pair of AB-system protons at δ 3.41 and 3.32, with coupling constants of 10.4 Hz and 2.42 Hz ddd and a signal at $\delta 2.35 \, ddd$ corresponding the two α -protons of a keto carbonyl, but the H-3 proton found in rotundic acid was not present. Rotundic acid (1) could be oxidized

with Jones reagent in acetone to give 7. Therefore, the structure of rotundanonic acid is 19α -23-dihydroxy-3-keto- Δ^{12} -ursane-28-oic acid (7).

Dimeric sinapaldehyde glucoside (8) was obtained as yellow needles, $C_{30}H_{44}O_{18}$. It showed UV absorption at 235 nm and 315, and IR absorption at 3400(OH), 1590 and 1460 (Ar) cm⁻¹. The ¹H NMR spectrum exhibited a signal at $\delta 6.90 \ s$ (2H) for two equivalent aromatic protons, $\delta 6.85 \ d$ ($J = 16.0 \ Hz$) and $\delta 6.40 \ (J = 16.0 \ and 4.6 \ Hz)$ for a pair of *trans*-olefinic protons, and one at $\delta 6.40$ coupled with 5.86 d ($J = 4.6 \ Hz$). These signals indicate the presence of a

moiety in the molecule. The ¹HNMR spectrum also showed signals at $\delta 3.38$ and 3.75, for two methoxyl groups and $\delta 5.09 d$ (J = 5.7 Hz, H-1'), 4.35 m (2H, H-6') and 3.38-4.35 corresponding to glucosyl protons. After enzyme hydrolysis of **8**, glucose and sinapaldehyde were detected by TLC.

Comparison between the spectra of **8** and sinapaldehyde glucoside **6**, revealed that the v_{CHO} and δ_{CHO} had disappeared in the IR and ¹H NMR spectra of **8** and that the signal of the glucosyl 6'-protons of **6** (δ 4.50) had shifted upfield to δ 4.35. Based on the above data, **8** was elucidated as a hemiacetal of sinapalderdehyde glucoside, which may be condensed by hemiacetal formation. Dreiding stereomolecular models indicated that it is impossible for **6** to form an intramolecular condensation product with a *trans*-linked double bond.

Veith et al. [12] have reported ion-formation FD-MS for measuring the $[M]^+$ of nonvolatile and polar organic compounds and successfully determined the molecular formula of loroglossin $C_{34}H_{46}O_{18}$, a diglucoside from the Orchidaceae [13]. Compound 8 formed an ion-cluster at m/z 763 $[M + Na]^+$ and 741 $[M + 1]^+$. Therefore, we deduced that 8 is a dimeric sinapaldehyde glucoside. The bis-hemiacetal structure of 8 can be regarded as a product of intermolecular addition between two molecules of 6. The formation of the hemiacetal is reversible under acidic conditions. We found that 8 partially decomposed in acid solution to form 6, which could be detected by TLC.

EXPERIMENTAL

General. Mps: uncorr. IR: KBr discs; ¹H NMR: Bruker AM-400.

Plant material. Ilex rotunda Thunb. was collected in Guangxi province (southern China) in the summer and identified by Prof. Shu-quan Zhong. A voucher specimen is deposited at the Guangxi Institute of Botany.

Extraction and isolation. Air-dried plant material was extracted with EtOH and the resulting extract was distributed between petrol and MeOH. The MeOH fr. was dissolved in Me₂CO and the Me₂CO-sol. portion chromatographed on silica gel with petrol and Et₂O mixts of increasing polarity and then further purified by rechromatography and separated by TLC. This afforded rotundic acid (1) 10 g, pedunculoside (2) 5 g, syrigin (4) 5 g, rotundanonic acid (7) 200 mg, sinapaldehyde (5) 50 mg, sinapaldehyde glucoside (6) 50 mg, 3-O-acetyl olealic acid 100 mg, syringaldehyde (3) 50 mg, stearic acid 10 mg and ilexrotunin (8) 10 mg.

Rotundanonic acid (7). Mp 215–217°. $[\alpha]_D + 101^\circ$ (c 0.20; Me₂CO). HRMS: m/z 486.3357 [M]⁺ C₃₀H₄₆O₅ (calc. 486.3354). EIMS m/z (rel. int.): 486 [M]⁺ (1), 440 [M - COOH]⁺ (8), 410 [M - HCOOH - HCHO]⁺ (29), 264 [a]⁺ (2), 246 [a - H₂O]⁺ (1), 222 [b]⁺ (2), 218 [a - COOH]⁺ (1) 191 [b - CH₂OH]⁺ (7). IR: (KBr) 3480 (OH), 1700 (CO), 1650 (C=C). UV: (MeOH) 285 nm (log ε 1.79). ¹H NMR (acetone- d_6): δ 0.84, 0.87, 1.00, 1.19, 1.36 (s, each 3H), 0.93 d (3H, J = 6.5 Hz), 2.35 ddd (H-2), 2.42 ddd (H-2'), 2.51 s (H-18), 3.41 d (2H, J = 10.4, H-23), 5.28 t (J = 3.4, H-12).

Oxidation of rotundic acid. To a soln of 20 mg rotundic acid (1) in 10 ml Me₂CO, 0.1 ml Jones reagent (5 g CrO₃ in 5 ml H₂SO₄ dild to 20 ml) was added and oxidized in the usual manner to afford to 10 mg of 7. Mp 215–217°, IR, TLC same as natural product 7.

llexrotunin 8. Mp 151–152°. FDMS: m/z (rel. int.) 763 [M + Na]⁺ C₃₄H₄₄O₁₈ (67), 741 [M + H]⁺ (9), 393 [C₁₇H₂₂O₉ + Na]⁺ (100), 231 (18), 99 (10). IR: (KBr) 3400 (OH), 1590, 1460 (Ar). ¹H NMR (C₅D₅N): δ 3.38-4.35 (protons of glucosyl moiety), 4.35 m (4H, H-6'), 5.90 d (2H, J = 5.7 Hz, H-1'), 5.85 d (2H, J = 4.6 Hz), 6.40 dd (2H, J = 16.0, 4.6 Hz), 6.85 (2H, J = 16.0 Hz), 6.90 s (4H, Ar-H), 3.38 s (6H, OCH₃), 3.75 s (6H, OCH₃).

REFERENCES

- 1. The Jiangsu College of Chinese Medicine (1977) The Dictionary of Chinese Herbs, pp. 392, 492, 1732. Shanghai Peoples Press, Shanghai.
- 2. Shanghai 13th Pharmaceutical Company (1977) Zhongcaoyao 8, 25.
- 3. Perry, L. M. (1980) Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses, p. 33. MIT Press.
- 4. The Chinese Ministry of Public Health, The Institute of Drug Control (1987) *The Colour Atlas of Chinese Herbs*, p. 245. Science Press.

- Oyama, T., Aoyama, H., Yamada, K., Mitsuhashi, T. and Sugiyama, N. (1968) *Tetrahedron Lett.* 44, 4639.
- Hase, T., Hagii, H., Ishizu, M., Ochi, M., Ichikawa, N. and Kubata, T. (1973) Nippon Kagaku Kaishi 4, 778.
- 7. Zhu, R., Hong, S. and Wang, Y. (1956) Acta Chim. Sinica 22, 128.
- 8. Xie, B. (1980) Chinese Pharmaceut. Bull. 15, 235.
- 9. Nakalani, M., Miyazaki, Y., Iwashita, T., Naoki, H. and Hase, T. (1989) *Phytochemistry* 28, 1479.
- Budjikiewics, H., Wilson, J. M. and Djerassi, C. (1963) J. Am. Chem. Soc. 85, 3688.
- 11. Karliner, J. and Djerassi, C. (1966) J. Org. Chem. 31, 1945.
- 12. Veith, H. J. (1976) Angew. Chem. 88, 762.
- Gray, R. W., Guggisberg, A., Segebarth, K. P., Hessa, M. and Schmid, H. (1977) *Helv. Chim. Acta* 60, 1304.