Experimental Section⁶

2-(4-Chlorophenyl)-7-(2-[1-azacycloheptyl]-1-hydroxyethyl)quinoline (Ie).⁷ 7-Methylquinoline (Ia).—A mixture (62%) of 5- and 7-methylquinolines was obtained by the Richter and Smith modification⁸ of the Skraup reaction, treatment with Ac₂O, and steam distillation. After three partial freezing operations, the solid remaining was recrystallized from C₆H₁₄ to yield 34.7 g (24%) of white plates, mp 37-39°, lit.⁹ mp 39°.

2-(4-Chlorophenyl)-7-methylquinoline (**Ib**).—Under N₂ *p*chlorobromobenzene (0.1 mole) in 500 ml of Et₂O was brought to reflux and 0.1 mole of 22% BuLi solution in C₆H₁₄ added and the exchange allowed to take place for 10 min.¹⁰ Ia (0.1 mole) was added as a solid followed by the immediate addition of 450 ml of C₆H₆. The mixture was refluxed for 20 min, 100 ml of EtOH and 150 ml of C₆H₅NO₂ were added, the volatile solvents removed by distillation, and the red C₆H₅NO₂ solution was refluxed for 20 min followed by steam distillation of the now green solution to remove C₈H₅NO₂. The residue was removed by filtration, washed with hot H₂O, and extracted with CCl₄ and the residue from the extract recrystallized from C₆H₁₂ (decolorizing C) to give 15 g (64%) of white crystals, mp 141-142°; lit.¹¹ mp 143-144°.

2-(4-Chlorophenyl)-7-quinolinecarboxaldehyde (Ic, Sommelet Method).—Ib (0.04 mole), 150 ml of CCl₄, 0.1 g of I_2 , and 30 ml of H₂O were refluxed and irradiated with a 150-W lamp while 0.044 mole of Br₂ in 70 ml of CCl₄ was added dropwise in 4 hr. The yellow precipitate (81% of which 72% was the α -bromomethyl compound by nmr analysis) was removed by filtration and washed with CCl₄. The crude product (10.7 g) in 160 ml of CHCl₃ was mixed with (CH₂)₆N₄ (0.14 mole) in 160 ml of CHCl₃. After 3 days, the quaternary salt (14 g) was filtered off and washed with CHCl₃. A solution of 0.1 mole of (CH₂)₆N₄, 100 ml of AcOH, 2 ml of concd HCl, and 30 ml of H2O was refluxed while the quaternary salt (0.03 mole) was added portionwise in 6 hr. While hot, the solution was diluted with H₂O to cloudiness and cooled. The crystals were filtered, washed with cold H₂O-EtOH and hot H_2O , and recrystallized from EtOH to yield 2.8 g (26% from Me compound), mp 163-164°. Anal. (C₁₆H₁₀ClNO) С, Н.

2-(4-Chlorophenyl)-7-epoxyethylquinoline (Id).—Under N₂ with magnetic stirring, DMSO (10.8 ml) and NaH (0.0194 mole) were heated at 65° for 45 min and cooled. At -10° , 10.8 ml of THF was added to the black solution and the mixture held there for 30 min and treated with Me₃SI (0.0194 mole) in 20.7 ml of DMSO within 1 min. Ic (0.00972 mole) in 20.7 ml of THF-DMSO was added in 2 min and the green solution stirred at -10° for 15 min and at 25° for 30 min. The mixture was poured over cracked ice and the precipitate filtered, dried, and recrystallized from EtOH (decolorizing C) to give 1.81 g, 66%, of light yellow plates, mp 139.5–141°. Anal. (C₁₇H₁₂ClNO) C, H.

Ie.—Id (0.0054 mole) and 17 g of azacycloheptane were heated at 115° for 14 hr and steam-distilled to remove amine. The brown, solid residue was recrystallized from aq EtOH (decolorizing C) to give 1.4 g, 68%, of beige tufts, mp 108.5–109.5°. Anal. (C₂₃H₂₅ClN₂O) C, H, N.

2-p-Chlorophenyl-6,8-dichloro-7-(2-dialkylamino-1-hydroxyethyl)quinoline (IIh-1 and -2).¹² 2,6-Dichloro-3-aminotoluene (IIb).—This compound, mp 51–53°, lit.¹³ mp 59–60°, was made in 48% overall yield from 2,6-dichlorotoluene, IIa.

6,8-Dichloro-7-methylquinoline (IIc).—The Skraup reaction⁸ of IIb, 0.3 mole, gave a dark precipitate which was recrystallized first from H_2O -EtOH and then from C_6H_{14} to yield 32 g, 51%, of beige-colored crystals, mp 97.5–98.5°. Anal. ($C_{10}H_7Cl_2N$) Cl.

2-(p-Chlorophenyl-6,8-dichloro-7-methylquinoline (IId).--IId was made from 0.125 mole of IIc by the same method used for preparation of Ib. IId was obtained in <math>86% yield as beige

62, 2327 (1940).

(9) I. M. Heilbron and H. M. Bunbury, "Dictionary of Organic Compounds," Vol. 2, Oxford University Press, New York, N. Y., 1936, p 808.
(10) H. Gilman, W. Langham, and F. W. Moore, J. Amer. Chem. Soc.,

Journal of Medicinal Chemistry, 1970, Vol. 13, No. 5 1005

needles, mp 134.5-136.5° from C_6H_{14} ; analytical sample, mp 135.8-137.4°. Anal. ($C_{16}H_{10}Cl_3N$) Cl.

2-p-Chlorophenyl-6,8-dichloro-7-bromomethylquinoline (IIe). —IId (0.1 mole) in 1.3 l. of CCl₄ was refluxed and irradiated with a 150-W flood-lamp while 0.113 mole of N-bromosuccinimide was added portionwise and the final mixture refluxed 15 hr. The CCl₄ was evaporated, and the residue was washed thoroughly (H₂O), dried, and recrystallized from CCl₄ to give 34 g, 80%, of beige, powdery crystals, mp 177-180.5°; analytical sample, mp 180.2-181.2°. Anal. (C₁₆H₉BrCl₈N) C, H.

2-p-Chlorophenyl-6,8-dichloro-7-quinolinecarboxaldehyde (IIf).—IIe (0.08 mole) was treated with 0.08 mole each of NaOEt and Me₂CHNO₂ in EtOH according to the method of Hass and Bender¹⁴ and gave, after recrystallization from EtOAc 16.3 g (60%) of pale yellow crystals, mp 199–201.5°; analytical sample, mp 200–201°. Anal. (C₁₆H₁₈Cl₈NO) Cl.

2-p-Chlorophenyl-6,8-dichloro-7-epoxyethylquinoline (IIg).— IIg was made in the same manner as Id from 0.05 mole of IIf. The residue from Et₂O extraction was chromatographed on silica gel (Baker's) using $C_6H_{14}-C_6H_6$ as an eluting solvent. Early fractions indicated by tlc that a pure substance was being eluted (R_t 0.34, 50% $C_6H_6-C_6H_{14}$) which recrystallized from MeCN gave 6.5 g, 38%; of pale yellow crystals, mp 159-161°; analytical sample, mp 162.1-16.24°. Anal. ($C_{17}H_{10}Cl_3NO$) Cl.

2-*p*-Chlorophenyl-6,8-dichloro-7-(2-dibutylamino-1-hydroxyethyl)quinoline (IIh-1).—IIg (0.00856 mole) in 20 ml of Bu₂NH was heated and stirred at 115° for 19 hr and the excess amine removed by steam distillation. The residue was chromatographed on silica gel using C₆H₆-EtOAc as the developing solvent. When the eluted solute was pure (R_f 0 with C₆H₆; R_f 0.2–0.3 with C₆H₆-EtOAc), it was recovered and recrystallized from C₈H₁₄ giving 2.1 g, 51%, of yellow crystals, mp 80-82.8°. Anal. (C₂₅H₂₉Cl₈N₂O) C, H, Cl.

2-p-Chlorophenyl-6,8-dichloro-7-(2-[N-3-azabicyclo[3.2.2]nonyl]-1-hydroxyethyl)quinoline (IIh-2).—IIg (0.0088 mole) and 3-azabicyclo[3.3.2] nonane¹⁶ (0.0177 mole) in 20 ml of toluene were refluxed 24 hr and then steam distilled. The residue was chromatographed using silica gel and C_6H_6 -EtOAc. A second chromatography was necessary using C_6H_6 -20% EtOAc. The solute was recrystallized from C_6H_{14} giving 0.2 g of light yellow needles, mp 169–173°, R_t 0.46 (C_6H_6 and silica gel); not tested for activity because of small sample size. Anal. ($C_{25}H_{25}Cl_3N_2O$)C, H, Cl.

Acknowledgment.—We are indebted to the U. S. Army Medical Research and Development Command for Grant DA49-193-MD-2752 in support of this program, and to the National Science Foundation for aid in purchase of a nmr apparatus (Grant 1683) and a mass spectrometer (Grant GU-2057).

(14) H. B. Hass and M. L. Bender, "Organic Synthesis," Coll. Vol. IV, Wiley, New York, N. Y., 1963, p 932.

(15) V. L. Brown, Jr., and T. E. Stanin, *Ind. Eng. Chem.*, *Prot. Res. Develop.*, **4**, 40 (1965). We are indebted to Dr. R. D. Clark and the Tenn. Eastman Co. for a generous sample of this compound.

Quinoxaline Studies. XVII.^{1a} Potential Antimalarials. Some (*RS*)-α-(Dialkylaminomethyl)-6chloro-2-quinoxalinemethanols^{1b}

HENRY R. MORENO AND HARRY P. SCHULTZ

Department of Chemistry, University of Miami, Coral Gables, Florida 33124

Received A pril 6, 1970

Previously reported² quinoxalinemethanols, similar to antimalarial quinolinemethanols, were without antimalarial activity. Because a chloro substituent in-

(13) J. B. Cohen and H. D. Dakin, J. Chem. Soc., 79, 1132 (1901); 81, 1346 (1902).

⁽⁶⁾ Analyses (by Galbraith Laboratories, Knoxville, Tenn.) are within 0.4% and recorded with the Editor. Melting points are uncorrected and were taken with A. H. Thomas Uni-Melt apparatus. Nmr spectra of new compounds are on file with the authors.

⁽⁷⁾ From the Ph.D. Thesis of T. G. B., Vanderbilt University, Nashville, Tenn., 1970.

⁽⁸⁾ F. Richter and G. F. Smith, J. Amer. Chem. Soc., 66, 396 (1944).

⁽¹¹⁾ H. Gilman, R. V. Christian, and S. M. Spatz, *ibid.*, 68, 979 (1946).
(12) From part of the present Ph.D. work of L. C. W.
(13) J. B. Cohen and H. D. Dakin, *J. Chem. Soc.*, 79, 1132 (1901); 81,

 ⁽a) Paper XVI of this series, G. H. Fisher, P. J. Whitman, and H. P. Schultz, J. Org. Chem., **35**, 2240 (1970);
 (b) Contribution No. 761 from the Army Research Program on Malaria, supported by the U. S. Army Medical Research and Development Command via Contract DADA **17-67-C-7064**.
 (2) H. R. Moreno and H. P. Schultz, J. Med. Chem., **13**, 119 (1970).

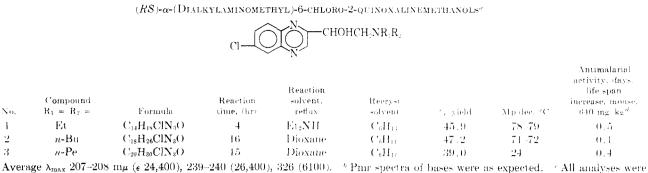


TABLE I

^a Average λ_{\max} 207–208 m μ (ϵ 24,400), 239–240 (26,400), 326 (6100). ^b Pmr spectra of bases were as expected. ^c All analyses were for C, H, and N; values were within $\pm 0.4\%$ of the theoretical values. ^d Average life span of control mice infected with *P. berghei*, 6.2 days.

creases the activity of many quinolinemethanols,³ it was hoped that chloroquinoxalinemethanols would also possess antimalarial capacity. The purpose of this paper is to report the syntheses of representative (RS)- α -(dialkylaminomethyl)-6-chloro-2-quinoxalinemethanols, incorporating diethylamino, di-*n*-butylamino, and di-*n*-pentylamino groups, for testing as antimalarials.

Chemistry.—Prior success² in transforming 2-quinoxalinecarboxylic acid into 2-quinoxalinemethanols justified developing first a procedure for making large quantities of 6-chloro-2-quinoxalinecarboxylic acid (4) for use in attaining the objective of this project.

The availability of 4-chloro-o-phenylenediamine (1) dictated its utilization for the preparation of 2-tetrahydroxylbutyl-6-chloroquinoxaline (2). Unfortunately, the facile condensation of o-phenylenediamine with sucrose earlier reported⁴ to give 2-tetrahydroxybutylquinoxaline was not paralleled in this instance; 2(and its 7-chloro isomer, 3) was first prepared by cyclizing the N,N'-diglucosyl derivative of 1. More usefully, direct condensation of 1 with glucose (and also fructose) in the necessary presence of H₂NNH₂, HOAc, and H_2O gave a 1:1 mixture of 2 and 3. Condensation of 1 with N-D-glucosyl-p-toluidine, according to a general procedure of Weygand and Bergmann,⁵ also gave mixed 2(3). All attempts, physical or chemical, to separate 2 from 3 failed.

Therefore, oxidation of the mixed isomers was effected with Na₂O₂ in a heterogeneous C₆H₆-H₂O system. Fortunately the 1:1 mixture of 6-chloro-2-quinoxalinecarboxylic acid (4) and its 7-chloro isomer (5) was separable; 4 was insoluble, 5 moderately soluble (*ca.* 1 g/50 ml) in 9 N HCl.

Henseke and Jacobi⁶ described the unequivocal, but lengthy, preparation of 2-methyl-6-chloroquinoxaline. Modification of a portion of their work enabled relatively easy preparation of pure 2-methyl-6-chloroquinoxaline which, oxidized *via* its styryl derivative, gave unequivocal 4; the structure of 5 was therefore proved by difference.

The decision to use 4 as the precursor for the target chloroquinoxalinemethanols was the consequence of the observation that although both 4 and 5 were inactive as antimalarials, careful scrutiny of the test data showed **5** extended the mean life of test mice only 0.1 day, whereas **4** extended the mean life of test mice 0.9 day at dosages of 160 mg/kg.

From this point the desired synthetic objective was attained via the sequence 6-chloro-2-quinoxaloyl chloride (6), 6-chloro-2-diazoacetylquinoxaline (not isolated) (7), 6-chloro-2-chloroacetylquinoxaline (8), (RS)- α -(chloromethyl)-6-chloro-2-quinoxalinemethanol (not analyzed) (9), (RS)-6-chloro-2-quinoxalinepoxyethane (10), and (RS)- α -(dialkylaminomethyl)-6-chloro-2-quinoxalinemethanols (11).

The procedures used to prepare the above compounds were the same as those utilized for making the corresponding nonsubstituted quinoxalines,² except that compounds **11** were solids, easily purified, analyzed, and tested as free bases, rather than (as were the parent compounds) the pamoate salts. For the same reasons discussed in the prior paper,² utilization of the pmr spectra of **10** and **11** contributed to a successful chemical conclusion of this problem.

Table I summarizes data re the target compounds.

Biological Results. All compounds were tested by the previously described procedure⁷ for antimalarial activity against *Plasmodium berghei* in mice. All intermediates and target compounds were inactive and nontoxic. Data are recorded in Table I.

Experimental Section⁸

N,N'-Di-D-glucosyl-3,4-diaminochlorobenzene Dihemihydrate. --A mixture of 36 g of D-glucose, 14.2 g of 3,4-diaminochlorobenzene, 0.2 g of NH₄Cl, and 300 ml of MeOH was stirred and refluxed for 1 hr. After cooling at 0° for 4 hr, 31 g (60.5%) of tan powder, mp 150-151°, was obtained. The crude material was recrystallized from three times from 1:1 MeOH-H₂O (7 ml g) to give 9.7 g (18.9%): mp 156-157° dec, of product; λ_{max} 216 mµ (ϵ 33,200), 249 (10,200), 299 (3200); [α]^{23.5}D = 128.6° (c 2, DMF). Anal. ($C_{18}H_{27}ClN_2O_{10}\cdot 2.5 H_2O$) C, H.

2-D-Arabinotetrahydroxybutyl-6(7)-chloroquinoxalines (2, 3). **Method A.**—A solution of 4.66 g of N,N'-di-D-glucosyl-3,4diaminochlorobenzene, 0.32 g of N_2H_4 , and 50 ml of 10% HOAc

⁽³⁾ G. R. Coatney, W. C. Cooper, N. B. Eddy, and J. Greenberg, "Survey of Antimalarial Agents," Public Health Monograph No. 9, U.S. Government Printing Office, Washington, D. C., 1953.

⁽⁴⁾ S. Gerchakov, P. J. Whitman, and H. P. Schultz, J. Med. Chem., 9, 266 (1966).

⁽⁵⁾ F. Weygand and A. Bergmann, Chem. Ber., 80, 255 (1947).

⁽⁶⁾ G. Henseke and R. Jacobi, Justus Liebigs Ann. Chem., 684, 146 (1965)

⁽⁷⁾ T. S. Osdene, P. B. Russell, and L. Rane, J. Med. Chem., 10, 431 (1967). The authors thank the staff of the Division of Medicinal Chemistry. Walter Reed Army Institute of Research, for transmitting the test results provided by Dr. L. Rane. University of Miami.

⁽⁸⁾ Uv absorption spectra were obtained from samples at concentrations of 5 mg/1. of 95% EtOH (except acyl halides) using 1-cm silica cells. Pmr spectra, all referred to TMS, were determined at 60 MHz, 34°. Except in those instances where spectral data are presented, uv and nmr spectra were as expected.³ All optical activities were observed on a Rudolph Model 63 polarimeter. Melting points, determined on a Thomas-Hoover apparatus, are uncorrected. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements are within $\pm 0.4\%$ of the theoretical values.

was boiled for 30 min, cooled at 10° for 6 hr, and filtered to give 0.6 g (23.2%) of **2** (**3**), mp 178–179°. The crude product was recrystallized from 95% EtOH (50 ml/g) to give 0.3 g (11.6%): mp 181–181.5°; λ_{max} 210 m μ (ϵ 14,800), 239 (20,300), 323 (4600); $[\alpha]^{25}D - 129.2^{\circ}$ (c 2, DMF). Anal. (C₁₂H₁₃ClN₂O₄) C, H, Cl, N.

Method B.—A solution of 14.3 g of 1, 18 g of glucose, 21.7 ml of HOAc, 4.8 ml of N₂H₄, and 100 ml of H₂O was refluxed 1 hr, then cooled 4 hr at 10° to give 7.5 g (26.5%), mp 171–177°, of crude 2(3).

Recrystallization gave 7 g (24.5%), mp $180.5-181^{\circ}$ dec, of 2 (3); uv and $[\alpha]$, as above. All attempts to separate 2 and 3 failed.

Condensation of fructose with 1 gave 26.4% of 2 (3); of *N*-D-glucosyl-*p*-toluidine with 1 gave 22% of 2(3); 2 (3) has also been reported^{9,10} synthesized by reaction of 1 with fructose-1-phenyl-hydrazone.

6(7)-Chloro-2-quinoxalinecarboxylic Acids (4, 5).—To a stirred cold suspension of 40 g of Na₂O₂ (98.4%) in 135 ml of H₂O and 135 ml of C₈H₆ was added 28.4 g of 2 (3). The mixture was heated to 50°, at which temp spontaneous reaction occurred; its temperature was maintained at 60 \pm 2° for 65 min by intermittent cooling or heating; finally the mixture was refluxed (72°) for 10 min. After cooling to 15°, the suspension of crude Na salts of 4 and 5 was transformed into the mixed products in 66% yield in the same way as was the parent compound,² then twice recrystallized from 1:1 EtOH-H₂O (30 ml/g): 37.2%; mp 196–198° dec; λ_{max} 242 m μ (ϵ 25,000), 320 (3600), 331 (4500). Anal. (C₉H₅-ClN₂O₂) C, H, Cl, N.

6-Chloro-2-quinoxalinecarboxylic Acid (4), Equivocal Preparation.—Crude, mixed 4 and 5 (80 g) was extracted three times at 24° for 16-hr intervals with 1 l. portions of 9 N HCl, each time separating solid from supernatant liquid by centrifugation. The final HCl-insoluble residue was filtered, rinsing the cake with 9 N HCl and H₂O. The filter cake of crude 4 was dissolved with warming in 1.5 l. of 0.15 N NaOH, and after clarification with decolorizing C and filter aid, the filtrate was adjusted to pH 1 with HCl to precipitate 32.4 g (40.5%), mp 223–224° dec, of pure 4. For analysis material was recrystallized (66% recovery) from 95% EtOH (30 ml/g); same melting point; λ_{max} 209 m μ (ϵ 24,000), 245 (32,100), 320 (4500), 331 (7800). Anal. (C₉H₅-ClN₂O₂) C, H, Cl, N.

Methyl 6-Chloro-2-quinoxalinecarboxylate, Equivocal.—A solution of 3 g of 4 in 30 ml of MeOH and 0.5 ml of H₂SO₄ was refluxed 3 hr, cooled at 0° for 3 hr, filtered, and triturated with H₂O-NaHCO₃ to give 3.2 g (100%), mp 147.5–148.5°, of Me ester of 4. This material was twice recrystallized from CCl₄ (10 ml/g) to give 2.1 g (65.6%) of product; mp 147.5–148.5°; $\lambda_{max} 208 \text{ m}\mu$ ($\epsilon 24,600$), 247 (34,600), 321 (6600), 331 (7600); pmr (CDCl₃) δ ppm 4.13 (s, 3 H, CH₃), 8.05 (m, 3 H, aromatic), 9.69 (s, 1 H, heterocyclic). Anal. (C₁₀H₇ClN₂O₂) C, H, Cl, N.

Saponification of recrystallized Me ester of 4 gave 4 of the same melting point and mixture melting point above.

7-Chloro-2-quinoxalinecarboxylic Acid (5), Equivocal.—The HCl extracts rich in 5 (vide supra) were brought to pH 1 with NH₄OH, and after 12 hr at 0° were filtered. The first two HCl extracts of mixed 4 and 5 each gave 25% recovery (40 g total) from the starting mixture of 4 and 5. Further HCl extracts had very little material dissolved in them; any present was recyclized with starting material, crude 4(5).

Crude 5 (40 g) was refluxed in 400 ml of MeOH and 6 ml of H_2SO_4 for 3 hr; the crude ester was filtered from the cold solution, triturated with 400 ml of saturated NaHCO₃, then with 400 ml of H₂O to give 32.8 g of tan crystals, mp 151–152°. One recrystallization of this material from hot CCl₄, with treatment with decolorizing C and filter aid, gave 28.4 g of white crystals, mp 153–154°. The melting point was not changed with further recrystallizations.

The Me ester of 5 was saponified by refluxing 28.4 g in 320 ml of 1 N NaOH for 1 hr. Upon cooling, the Na salt of 5 precipitated from the basic solution. After adding 200 ml of warm H_2O , the solution was decolorized, filtered, and brought to pH 1 to give 26.4 g (33% recovery) from the original 4(5) mixture, mp 223-224° dec.

For analysis 5 was recrystallized three times from MeOH (20 ml/g) (30% recovery), mp 225.5-226.5° dec. As with 4, however, rate of heating and temperature at which a melting point

(9) W. Bauer, Thesis, University of Greifswald, Greifswald, East Germany (1957).

(10) R. Knaak, Thesis, University of Greifswald, Greifswald, East Germany (1959).

sample was inserted into the melting point bath, gave values as low as 220–221° dec; mmp of 4 and 5, 203.5–204° dec; λ_{max} 209 m μ (ϵ 24,500), 243 (30,900), 331 (4600). Anal. (C₉H₅ClN₂O₂) C, H, Cl, N.

Methyl 7-chloro-2-quinoxalinecarboxylate had mp 153-154°; $\lambda_{max} 209 \text{ m}\mu \ (\epsilon \ 24,400), 245 \ (37,700), 310 \ (3700), 334 \ (4500); \text{ pmr} \ (CDCl_3) \ \delta \text{ ppm } 4.20 \ (s, 3 \text{ H, CH}_3), 8.15 \ (m, 3 \text{ H, aromatic}), 9.69 \ (s, 1 \text{ H, heterocyclic}); \text{ mixture melting point with pure Me ester of 4, mp 119-128°. Anal. } (C_{10}H_7ClN_2O_2) C, H, Cl, N.$

Saponification of a sample of Me ester of 5 gave 5 of the same melting point and mixture melting point as cited above.

This same procedure of esterification was used upon a sample of crude, mixed 4(5) to give 69.5% tan mixed esters, mp $117-125^{\circ}$; solution in CHCl₃, decolorization, and evaporation of the solvent gave 66.5% colorless mixed esters, mp $119-130^{\circ}$.

It was concluded, therefore, that condensation of glucose with 3,4-diaminochlorobenzene gave ca. a 1:1 mixture of 2 and 3, and that this mixture of isomers upon oxidation gave ca. a 1:1 mixture of 4 and 5.

2-Methyl-6-chloroquinoxaline.-The preparation of this compound was adapted from Henseke and Jacobi.6 A solution of 14.3 g of 1, 16.8 ml of 12 N HCl, and 20 ml of MeCOCHO-H₂O (30%, tech) in 175 ml of H₂O was stirred at 80° for 20 min, 1 hr at 24°, and 12 hr at 0° to give 7.7 g (43.2%) of red crystals, mp 110–120°. This product⁶ contained *ca*. 90% of 2-methyl-6chloroquinoxaline and 10% of the 7-chloro isomer. For isolation of pure 6-chloro isomer from the reaction mixture, the crude product was steam distilled (100 ml of H_2O/g) to give 6.3 g (35.4%), mp 128-133°, which twice recrystallized from 1:2.5 EtOH-H₂O (35 ml/g), gave 4.6 g (25.8%) of white crystals, mp 133-134° (lit.⁶ mp 131°; 7-Cl isomer, mp 91°). Repeated steam distillation and recrystallization did not change the melting point of the product: pmr (CDCl_3) δ ppm 2.74 (s, 3 H, CH_3), 7.75 (m, 3 H, aromatic), 8.75 (s, 1 H, heterocyclic). The splitting pattern of the aromatic H of this product was similar to that of the aromatic H of the Me ester of 4, dissimilar to that of the Me ester of 5.

trans-B-(6-Chloro-2-quinoxalinyl) styrene.—A mixture of 17.9 g of 2-methyl-6-chloroquinoxaline, 32 ml of PhCHO, 33.2 ml of Ac₂O, and 1.12 g of powdered NaOH was stirred at 125° for 4 hr. After cooling, 250 ml of H₂O was added, and the pH of the mixture was brought to pH 9 with solid K_2CO_3 . The red oil was extracted into 300 ml of CCl₄, which was washed four times with 100-ml portions of 10% K₂CO₃, and three times with H₂O. After concentration, the crude product was steam distilled (H_2O , 650 ml) to remove starting materials, leaving a red, solid residue which was dissolved in 250 ml of CHCl₃. Washing with 10%K₂CO₃, H₂O, drying (MgSO₄), clarification (decolorizing C and filter aid), filtration, and concentration gave a red solid which was recrystallized from CCl₄ (100 ml) to give 7.71 g (28.9%) of powder, mp 143.5–145°. The crude product was three times recrystallized from 95% EtOH (50 ml/g) to give 6.08 g (22.8%) of orange crystals: mp 144.5–145°; λ_{max} 209 m μ (ϵ 25,700), 245 (10,800), 285 (19,500), 297 (19,500), 308 (inf); ir (Nujol) 1000 cm⁻¹ (hence trans), no cis peaks; pmr (CDCl₃), δ ppm 7.78 (m, 10 H, aromatic, vinylic), 9.07 (s, 1 H, heterocyclic). Anal. $(C_{16}H_{11}ClN_2)$ C, H, Cl, N.

6-Chloro-2-quinoxalinecarboxylic Acid (4), Unequivocal Preparation.—Over 90 min 4.4 g of KMnO₄ was added at 0° to a suspension of 2.67 g of *trans-β*-(6-chloro-2-quinoxalinyl)styrene in 95 ml of Me₂CO; the mixture was stirred 24 hr at 24°, filtered, and rinsed with AcMe. The filter cake was repeatedly washed with 400 ml of boiling H₂O, and after clarification the filtrate was brought to pH 2 with dilute H₂SO₄ to give 2.09 g (100%) of 4, mp 220-220.5° dec, mmp with 4, equivocally prepared, 221° dec.

Me ester (90%), mp 147.5–148° had mmp with Me ester of equivocal 4, mp 147.5–148°, pmr spectrum, as above.

Compounds 6 through 11 were prepared by reported procedures,² and include per cent yield, mp, and (where different than expected) recrystn solvent, and spectral data. All analyses were for C, H, Cl, N, and were within $\pm 0.4\%$ of theory.

6-Chloro-2-quinoxaloyl chloride (6) was obtained in 75% yield, mp $103-103.5^{\circ}$.

7-Chloro-2-quinoxaloyl chloride was obtained in 66% yield: 122.5-123.5°; λ_{max} (hexane) 220 m μ (ϵ 9800), 248 (34,400), 253 (37,000), 299 (5300), 310 (5100), 338 (3400).

6-Chloro-2-chloroacetylquinoxaline (8) was obtained in 66% yield: mp 151.5–152° dec, Me₂CO–H₂O; λ_{max} 212 m μ (ϵ 11,600), 243 (16,200), 254 (15,300), 326 (8200), 339 (6200).

(RS)- α -(Chloromethyl)-6-chloro-2-quinoxalinemethanol (9)

was obtained in 42% yield, mp $95.5-96^\circ$; unstable; not analyzed; transformed into **10** at once.

(RS)-6-Chloro-2-quinoxalineepoxyethane (10) was obtained in 70% yield, ligroin (bp 66-75°), 93-94°.

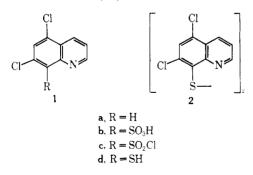
(RS)- α -(Di-n-alkylaminomethyl)-6-chloro-2-quinoxalinemethanols (11).—Data in Table I.

Acknowledgment.—The authors are indebted to Mr. John Oatis, Jr., for his skilled technical assistance, and to Drs. Sweeney and Strube of WRAIR for helpful advice.

Synthesis and Antimicrobial Activity of 5,7-Dichloroquinoline-8-thiol and Its Derivatives

A. O. FITTON

Department of Chemistry and Applied Chemistry, University of Salford, Salford, England


AND FRANK RIDGWAY E. R. Squibb and Sons Ltd., Moreton, Wirral, England

Received March 16, 1970

8-Hydroxyquinoline (oxine) and several of its derivatives are effective against Gram-positive and Gramnegative bacteria, and pathogenic fungi. In addition, halogenated 8-quinolinols are active against protozoa. Albert, *et al.*,¹ determined the minimal bacteriostatic concentrations of 8-quinolinol, 5-chloro-8-quinolinol, 7-chloro-8-quinolinol, and 5,7-dichloro-8-quinolinol, and showed that the chloro derivatives were superior to oxine against certain organisms.

Certain derivatives of the thio analog of 5,7-dichloro-8-quinolinol have now been prepared, and their bacteriostatic actions against various organisms determined. Although the tendency of 5,7-dichloroquinoline-8-thiol itself to undergo oxidation to the disulfide appears to be less than that of quinoline-8-thiol, under the test conditions considerable oxidation occurred, both with the dichlorothiol and also with its Na salt.

Chemistry.—5,7-Dichloroquinoline (**1a**) was prepared by the method of Elderfield and Kreuger,² and converted into its 8-sulfonyl chloride (**1c**) either by direct chlorosulfonation or indirectly by the action of PCl_5 on the 8-sulfonic acid (**1b**). Reduction of the sulfonyl

chloride with SnCl_2 in concd HCl gave tin 5,7-dichloroquinoline-8-thiolate, which in the presence of NaOH and I_2 yielded 5,7-dichloro-8-quinolyl disulfide (2). Alkaline reduction of the disulfide gave 5,7-dichloroquinoline-8-thiol (1d). The pmr spectrum of 5,7-dichloroNotes

quinoline displayed a doublet at τ 1.97, attributable³ to the 8 proton *meta* coupled to the 6 proton (J = 2 Hz). That chlorosulfonation had proceeded in the 8 position was confirmed by the absence of the 8 proton in the spectrum of the sulfonyl chloride, and presence of the 6 proton as a singlet.

Attempts to synthesize the 5,7-dichloroquinoline-8thiol system by chlorination of quinoline-8-thiol, its benzoate or 8-quinolyldisulfide proved unsuccessful, and these reactions are under further investigation.

Biological Evaluation.—The antimicrobial activities of 5,7-dichloroquinoline-8-thiol and several related compounds were screened against both Gram-positive and Gram-negative bacteria, and yeasts. The following organisms were utilized: *Staphylococcus aureus*, *Bacillus cereus*, *Streptococcus faecalis* (Gram-positive), *Escherichia coli*, *Pseudomonas aeruginosa* (Gram-negative), *Saccharomyces cerevisiae*, and *Candida albicans* (yeasts).

The compounds were dissolved in DMSO and added to nutrient agar (for bacteria) and sabouraud agar (for yeasts) to give a concentration range of $200-6.25 \ \mu g_{c}$ ml. The organisms were streaked onto the surface of the agar plate and minimum inhibiting concentration recorded after 24 and 48 hr. S-Quinolinol was screened as a control.

The results (see Table I) indicate a broad spectrum for tin 5,7-dichloroquinoline-8-thiolate, while showing its antimicrobial activity to be less than that of 8quinolinol under the evaluation conditions applied.

Experimental Section⁴

5,7-Dichloroquinoline-8-sulfonic Acid.—A solution of 5,7dichloroquinoline (3 g) in 25% oleum (15 ml) was heated at 140° for 40 hr, then added dropwise to crushed ice (50 g). The pptd acid was filtered, washed with H₂O, and recrystd from H₂O to give the sulfonic acid (3.25 g) as prisms, mp 300°. Anal. (C₂H₅Cl₂NO₃S) C, H, N.

5,7-Dichloroquinoline-8-sulfonyl Chloride (a).—The temperature of an intimately ground mixture of 5,7-dichloroquinoline-8sulfonic acid (1 g) and PCl₅ (1.2 g) was gradually increased to 160°, then held there for 1 hr. POCl₃ was distd and the residue was added portionwise to crushed ice (20 g). The mixture was ground up and extracted (C₆H₆) and the extract was washed successively with aq NaHCO₃ and H₂O, then dried, and evaporated. Recrystallization of the residue from EtOAc gave product (0.5 g) as prisms: mp 140–141°; pmr (CDCl₃) τ 0.34 (quadruplet, J = 4.5 and 1.7 Hz) (H₂), 1.27 (quadruplet, J = 8.5 and 1.7 Hz) (H₄), 2.17 (H₆), 2.25 (quadruplet, J = 8.5 and 4.5 Hz) (H₃) ppm. Anal. (C₉H₄Cl₃NO₂S) C, H, N. (b).—A solution of 5,7-dichloroquinoline (10 g) in chloro-

(b).—A solution of 5,7-dichloroquinoline (10 g) in chlorosulfonic acid (30 ml) was heated at 140° for 40 hr then cooled and added dropwise with stirring to crushed ice (250 g). The mixture was filtered and the residue was washed (H₂O), then triturated with 5% aq NaHCO₃, and refiltered. Recrystallization of the dried residue from EtOAc gave a product (6.2 g), identical with the above sample.

Tin 5,7-Dichloroquinoline-8-thiolate.—A solution of $SnCl_2$ · $2H_2O$ (12 g) in concd HCl (25 ml) was added at 0° to a solution of 5,7-dichloroquinoline-8-sulfonyl chloride (4 g) in coned HCl (25 ml). The yellow ppt was stirred at 0° for 1 hr then allowed to stand overnight at 0° before filtration. The residue was triturated with H₂O and the ppt (3.6 g) was filtered, and re-

⁽¹⁾ A. Albert, S. D. Rubbo, R. J. Goldacre, and B. G. Balfour, *Brit. J. Exp. Pathol.*, **28**, 69 (1947).

⁽²⁾ R. C. Elderfield and G. L. Kreuger, J. Org. Chem., 17, 358 (1952).

⁽³⁾ L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic. Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, Braunschweig, (1969) p 308.

⁽⁴⁾ Melting points were determined on a Gallenkamp MF.370 apparatus and are uncorrected. Pmr spectra were determined on a Varian A60A spectrometer with TMS as internal reference. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.