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ABSTRACT 

This paper describes a new and convenient procedure for 
the synthesis of 5$-cholestane-3a,7a,l2a,24-tetrol24R and 
24 S) and 5B-cholestane-3a,7a,l2u,26-tetrol starting from 
5$-cholestane-3a,7a,12a,25-tetrol. Dehydration of the 25- 
hydroxytetrol with glacial acetic acid and acetic anhydride 
yielded a mixture of 5@-cholest-24-ene-3a,7a,l2a-triol and 
the corresponding A2s compound. 
of the mixture of 524 and A25 

Hydroboration and oxidation 
unsaturated bile alcohols 

resulted in the formation of 5B-cholestane-3a,7a,L2a,245-tet- 
rol and 5B-cholestane-3a,7a,l2a,26-tetrol. In addition, 
smaller amounts of 58-cholestane-3a,7a,l2a,23~-tetrol and 
5~-cholestane-3a,7a,l2a-triol were also obtained. 

The bile alcohols epimeric at C-24 were resolved by an- 
alytical and preparative TLC, characterized by qas-liquid 
chromatography and mass-spectrometry. Tentative assignments 
of the 24R and 24s configuration was made on the basis of 
molecular rotation differences. These compounds will be use- 
ful for biological studies of cholic acid biosynthesis. 

The mechanism whereby cholesterol is converted into 

INTRODUCTION 

bile acids in vertebrates has been studied extensively in re- 

cent years (1). C27 bile alcohols have been postulated as in- 

termediates in the formation of the primary bile acids: 

cholic acid and chenodeoxycholic acid. The pathway for the 

degradation of the sterol side chain is thought to involve 
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C-26 hydroxylation as an initial step (2_4).Recent studies 

from our laboratory have indicated that 25-hydroxylation 

of the side chain may also play a role in bile acid synthe- 

sis (5). In order to investigate the major metabolic path- 

way of cholic acid biosynthesis and the sequence of the side 

chain hydroxylations we required the synthesis of the hypo- 

thetical intermediates 56-cholestane-3a,7a,l2%,26-tetrol 

and the isomeric SB-cholestane-3a,7a,l2a,24a-tetrol and 58- 

cholestane-3a,7a,l2a,24$-tetrol (compounds IV and V, fig. 1). 
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Figure 1 



Previously reported syntheses (6) of 26-hydroxytetrol 

involve the electrolytic coupling of cholic acid with the 

half ester of methyl succinic acid and subsequent reduction 

with LiAlH 
4' 

The product resulting from an electrolysis 

reaction is a complex mixture and its separation by prepar- 

ative thin layer chromatography results in very low yields 

of the 26-tetrol. 

Utilizing the sequence illustrated in Fig. 1, we have 

shown that it is possible to produce a mixture of 60% 58- 

cholestane-3a,7a,l2a,24S_tetrol, 30% 5B-cholestane_3a,7a, 

l_Za,26-tetrol, 4% 5&-cholestane-3a,7a,12a,23E-tetrol, and 

6% SB-cholestane-3a,7a,l2a-triol by a hydroboration reaction 

(7) - 

on a 
ted. 

on a 

Physical measurements: Melting points were determined 
Thermolyne apparatus, model MP-12600, and are uncorrec- 

Optical rotations were determined at 2S°C in methanol 
Carey model 60 spectropolarimeter. 

GLC: The bile alcohols, as the TMSi-derivatives, were 
analyzed on a 180cm x 4mm column packed with either 3% QF- 
1 230°C (Hewlett-Packard model 7610 gas chromatograph). 

Mass Spectra of the bile alcohols were obtained with a 
Varian MAT-111 gas chromatograph-mass spectrometer (Varian 
Associates, Palo Alto, Ca.). High resolution mass spectra 
were recorded on a model CEC-110 (Consolidated Electrodynam- 
ics Corp., Monrovia, Ca.). 

TLC: The bile alcohols were separated on silica gel G 
plates (Brinkmann, 0.25 mm thickness). The spots were de- 
tected with phosphomolybdic acid (3.5% in isopropanol),sul- 
phuric acid (10%) and heating for one minute at llO". Bands 
on preparative TLC were made visible with iodine or water. 
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EXPERIMENTAL 

(A) Dehydration of 5B-cholestane-3u,7a,l2a,25-tetrol: 58- 
cholest-24-ene-3a,7a,12a-triol (II, fig.1) and 5B-chol- 
est-25-ene-3a,7a,12a-triol (III, fig.1). 

A solution of 220 mg. of 5$-cholestane-3a,7a,l2a, 
25-tetrol (8) in 6 ml of glacial acetic acid was refluxed 
for 3 hrs. Four ml of acetic anhydride was added and the 
reaction mixture was further refluxed for 12 hrs. The sol- 
ution was evaporated to dryness in vacua. The pale yellow 
semisolid (220 mg) obtained was subjected to column chroma- 
tography on neutral alumina which on elution with benzene- 
ethyl acetate 80:20 provided 200 mg of a mixture of SB-chol.. 
est-24-ene-3a,7a,12a-triacetate and 5B-cholest-25-ene-3a,7a, 
12a-triacetate. This was hydrolysed by refluxing with 10 ml 
of 6% methanolic potassium hydroxide for 1.5 hrs., and the 
mixture poured into a beaker containing crushed ice with 
vigorous stirring which on filtration gave a white precipi- 
tate consisting of 5B-cholest-24-ene-3a,7a,l2a-triol and 5B- 
cholest-25-ene-3a,7a,l2a-triol (II and III, fig. 1). 

(B) Hydroboration of a mixture (70:30) of 5B-cholest-24- 
ene-3a,7a,l2a-trio1 and 5B-cholest-25-ene-3a,7a,12a- 
triol. 

A mixture of unsaturated triols (compounds II and 
III, fig. 1) (180 mg, 0.43 mmol) was dissolved in 20 ml ab- 
solute tetrahydrofuran. The solution was cooled to O°C, 
and 1 M borane solution in dry tetrahydrofuran (2.25 ml; 
2.25 mm01 
and at 

& 
was added. The mixture was kept at O°C for 1 hr. 

25 C for 15 minutes. Aqueous 3 N NaOH, 0.6 ml, at 
O°C was mixed with a precooled solution of 30% H202 (0.7 ml). 
The cold basic peroxide was gradually added (30 min.) to the 
organoborane solution at O°C and stirring was continued 
overnight at room temperature. Dilution with water, remov- 
al of tetrahydrofuran in vacua, extraction with ethyl ace- 
tate, two washings with saturated NaCl solution and evapor- 
ation to dryness yielded 150 mg of an amorphous powder. 
This residue was purified by column chromatography on neu- 
tral alumina grade IV followed by preparative TLC CCHC13- 

70:50:15 (v/v/va. The compound from the 
f 0.70 was crystallized from methanol to ’ 

12 mg of 58-cholestane- a,7a,l2a-trio1 
m.p. 186-188OC) (9) &Jq5 = + 30.4O. 
zone with Rf 0.40 (i0 mt) 

~h~.~~m~~~,~8~~~~~~~~. 
was crystallized from acetone to 

yield 33 mg of 5$-cholestane-3a,7a,l2a,24B-tetrol (24S), 
m.p. 181-183OC (lit. m.p. 186-187OC) (lO),caJ25 = + 5.2O, 
and the material from the zone with Rf 0.34 y!?elded after 
two crystallizations from acetone 16.0 rnz of 5B-cholestane- 
3a,7a,12a,24a- 
186OC (lO),PJD 

gy 



peated crystallizations from acetone gave 17.0 mg of SB-cho- 
lestane-3a,7a,12a,26-tetrol; m.p. 200-202°C (lit. m.p. 204O 
C) (11). The fraction having Rf = 0.27 m/e TMSi 724 could 
not be crystallized. 

DISCUSSION 

Tentative assignment of the 24a and 248 configuration 

was made by reference to known bile steroids (7,10,12,13). 

A comparison of the relative retention times of these com- 

pounds and different types of bile alcohols required for 

this study is given in Table 1. 

TABLE I 
RETENTION TIMES OF THE TMSi ETHER DERIVATIVES OF SOME BILE 

ALCOHOLS RELATIVE TO 58-CHOLESTANE ON 3% QF-1 AND 1% Hi-EFF 
8BP 

Compound 
1% Hi-EFF 

3% QF-la 8BPb 1 
58-Cholestane_3a,7a, 
12a-trio1 1.64 0.70 
58-Cholest-24-ene-3a, 
7a,l2a-trio1 1.80 0.91 
5B-Cholest-25-ene-3a, 
7a,l2a-trio1 1.81 0.89 
5$-Cholestan-3a,7a,l2a, 
~22S-tetrol 2.37 0.97 
58-Cholestan-3a,7a,l2a, 
24S-tetrol 2.65 1.11 
5$-Cholestan-3a,7a,l2a, 
25-tetrol 1.98 1.25 
5B-Cholestan-3a,7a,l2a, 
26-tetrol 3.24 1.56 
5B-Cholestan-3a,7a,l2a, 
235,25-pent01 3.90 1.58 
5B-Cholestan-3a,7a,l2a, 
24a,25-pent01 4.22c 1.65 
5B-Cholestan-3a,7a,12a, 
24t3,25-pent01 4.35c 1.76 
a Column 235 C; N 40ml/min: Retention time of 5B-cholest- 

ane-2.75 min. 
b Column 235 C; N 40ml/min: Retention time of SB-cholest- 

ane-7.08 min. 
c The RRT for these two epimers are different with ~~0.01 
on both columns (13). 
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The identification of these tetrols via mass spectrom- 

etry was facilitated by earlier studies of Cronholm and Jo- 

hansson (41, who observed major fragment ions as m/e 145 

and 159 in the mass spectra of the TMSi ethers of SB-choles- 

tane-3n,7a,12a,24<- and 3a,7a,lZa,235-tetrol, respectively. 

The base peak for the TMSi ether of 5B-cholestane-3a,7a,l2cz, 

26-tetrol was m/e 253. The fragment ions, 145, 159, and 253 

appeared as base peaks in spectra of TMSi ethers of 58-chol- 

estane_3a,7a,12a,24a-, 3a,7a,12a,24B-, 3a,7a,l2a,235-, and 

3a,7a,12a,26_tetrols respectively (Table 2). 

TABLE 2 
% RELATIVE INTENSITY 

OF THE 
FOR MAJOR FRAGMENTS OF THE TMSi ETHERS 
58-CHOLESTANE TETROLS (14). 

Compound m/e % Relative Intensity 
3a,7a,12a, 3a,7a,12a 3a,7a,12a, 
23S-tetrol 24S-tetrol 26-tetrol 

M-(2x90) 
M-(3x90) 454 8:s 19.5 
M-(3x90+43) 411 17.5 
M-(3x90+57) 397 3.n 
M-(4x90) 364 
M-(2x90+201 

Ii16 17.6 7.8 I 
I 

Side Chain 343 11.0 24.3 37.2 
M-(4x90+43) 321 46.6 
M-(4x90+57) 307 9.0 
M-(3x90+201) 
Side Chain 253 33.0 55.4 89.1 
Charged Side 
Chain 159 100.0 
Charged Side 
Chain 145 64.1 
Charged Side 
Chain 103 14.1 

Si(CH,), 73 51.6 100 100 1 
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The retention times and mass spectra of the TMSi ethers 

of 5$-cholestane-3a,7a,l2a,24a-tetrol and 5t3-cholestane-3a, 

7a,12a,248-tetrol on 3% QF-1 and 1% Hi-EFF 8 BP were identi- 

cal. These epimers did not separate on gas chromatography 

and were found to be present in about equal amounts. 
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APPENDIX 

The formation of small amounts of 5B-cholestane_3a,7a, 
12a-trio1 (See Experimental) is attributed to the protonol- 
ysis (7) of the organoborane intermediate as follows: 

H3B HOH 
R-CH=CH2----J ,-> RCH2CH3 

And the isomerization of the organoborane intermediate 
constituted the formation of 5B-cholestane-3a,7a,12a,235- 
tetrol in 4% yields. 

Taniguchi, H., Brener, L., and Brown, H.C., J. Amer. Chem. 
sot., 98, 7107 (1976). 


