REACTIONS OF EPOXIDES—XXIV* THE BF₃-CATALYSED REARRANGEMENT OF 4,5- AND 5,6-EPOXYCHOLESTANES

B. N. BLACKETT, J. M. COXON, M. P. HARTSHORN and K. E. RICHARDS University of Canterbury, Christchurch, New Zealand

(Received in the UK 9 June 1969; Accepted for publication 1 July 1969)

Abstract— 4α , 5α , 4β , 5β - and 5β , 6β -Epoxycholestanes give backbone rearranged compounds on BF₃catalysed rearrangement. Solvent changes markedly affect the products of rearrangement. 4α -Hydroxycompounds arise from the 4β , 5β -epoxide on BF₃-catalysed rearrangement.

DURING studies directed towards the determination of the kinetic isotope effect for the BF₃-catalysed conversion of an epoxide into a ketone involving a 1,2-hydride shift (Fig. 1) we required a steroid epoxide which rearranges in high yield to a ketone.

BF.

* Part XXIII. J. M. Coxon, R. P. Garland, M. P. Hartshorn and G. A. Lane, Tetrahedron

FIG. 2

The rearrangements of $4\alpha,5\alpha$ -epoxy-^{1, 2} (1), $4\beta,5\beta$ -epoxy-¹ (2) and $5\beta,6\beta$ -epoxy-² (3) cholestanes with BF₃·Et₂O in benzene have been reported to give crude products from which the corresponding ketones could be crystallized. As a preliminary to the kinetic isotope study we examined the BF₃·Et₂O catalysed reactions of these epoxides in benzene, benzene-ether, and ether solution. The results of these experiments were significantly at variance with the earlier reports and are given below. The $4\beta,5\beta$ - (2) and $5\beta,6\beta$ - (3) epoxides were prepared by treatment of the $4\beta,5\alpha$ -diacetate¹ and the $5\alpha,6\beta$ -diacetate³ with KOH-ethanol.

Rearrangements of $5,6\beta$ -epoxy- 5β -cholestane (3). Reaction of the epoxide (3) with BF₃·Et₂O in benzene was rapid (2 min, TLC). Chromatography on alumina allowed the separation of the products, cholesta-3,5-diene (15%; possibly containing some cholesta-4,6-diene), 5-formyl-B-nor cholestane (4; 18%), cholestan-6-one (20%) and the 6β -hydroxy- $\Delta^{13(17)}$ -compound (5; 46%). The aldehyde (4) is identical with the aldehyde product from the rearrangement of $5,6\alpha$ -epoxy- 5α -cholestane.^{4,*} On mechanistic grounds it seems more probable that the aldehyde (4) has the 5β -configuration, and that it is formed by rearrangement of the C-5 carbonium ion in conformation (6). In an attempt to establish the C-5 stereochemistry, the aldehyde

^{*} It seems probable that the more flexible ring A would accommodate the conformational changes involved in introducing an sp² centre at C-5.

(4) was reduced by LAH to the alcohol (7a), the tosylate (7b) of which surprisingly gave cholest-4-ene on treatment with LAH. An analogous reaction involving an A-nor-system is reported below.

The structure of the 6β -hydroxy- $\Delta^{13(17)}$ -compound (5) followed from a consideration⁵ of its UV and NMR spectra (Experimental).

Reaction of the 5 β ,6 β -epoxide (3) with BF₃·Et₂O in Et₂O solution was slow (2¹/₂ hr; TLC). The products, separated by alumina chromatography, were a fluorine containing compound (C₂₇H₄₇OF, mass spectrum; 6%), a mixture of $\Delta^{3, 5}$ - and $\Delta^{4, 6}$ -cholestadienes (22%), the fluorohydrin (8; 57%), and the $\Delta^{13(17)}$ -compound (5; 9%). The fluorine containing compound produced in low yield is tentatively assigned the 6 α -fluoro-5 β -hydroxy-structure (9).

In order to investigate the possibility of fluorohydrin (8) intermediacy in the formation of rearrangement products from the $BF_3 \cdot Et_2O$ -benzene reaction, the fluorohydrin (8) was treated with $BF_3 \cdot Et_2O$ -benzene. The reaction, followed⁶ by TLC, was rapid (20 sec). The products formed were those isolated from the epoxide- $BF_3 \cdot Et_2O$ -benzene reaction, but with a significant increase in the yield of the 6β -hydroxy- $\Delta^{13(17)}$ -olefin (5).

Rearrangements of $4\alpha,5$ -epoxy- 5α -cholestane (1). Reaction of the epoxide (1) with BF₃·Et₂O-benzene (45 sec) gave unidentified non-polar material (6%), 5 β -cholestan-4-one (76%), and the 4α -hydroxy- $\Delta^{13(17)}$ -compound (12a; 11%). The $\Delta^{13(17)}$ -compound (12a) was identified by means of its UV and NMR spectra,⁵ and its conversion on oxidation into the known⁷ 4-ketone (12c).

In contrast reaction with $BF_3 \cdot Et_2O$ was slower; after 15 hr starting material (28%) was isolated. In addition to a reduced yield of 5 β -cholestan-4-one (20%) were isolated a mixture of $\Delta^{3.5}$ - and $\Delta^{4.6}$ -cholestadienes (14%), cholest-5-en-4 α -ol (14%) and two other unidentified polar compounds (total 9%).

Rearrangements of 4β -5-epoxy-5 β -cholestane (2). Brief reaction of epoxide (2) with BF₃·Et₂O in benzene gave a mixture of $\Delta^{3,5}$ - and $\Delta^{4,6}$ -cholestadienes (8%), 5α -cholestan-4-one (41%), the fluorohydrin (10; 3%), the 4α -hydroxy- Δ^9 -compound (11a: 11%), the 4β -hydroxy- $\Delta^{13(17)}$ -compound (12b; 23%), the 4α -hydroxy- $\Delta^{13(17)}$ -compound (12a; 3%), and the 5 β -formyl-A-nor cholestane (13; 7%). The identity of the unexpected 4α -hydroxy- Δ^9 -compound (11a) was established by a consideration of its UV and NMR spectra, and by its conversion on oxidation with CrO₃-pyridine into the known⁷ unsaturated ketone (11b). The 5-formyl compound (13) is tentatively assigned the 5 β -configuration. Reduction of the aldehyde (13) gave the alcohol (14a), the tosylate (14b) of which gave cholest-4-ene on reaction with LAH. The reactions of tosylate (7b and 14b) with LAH are regarded as proceeding via heterolysis of the tosylate with nor-ring expansion to give the C-5 carbonium ion (15) which suffers removal of the more accessible 4β -proton to give cholest-4-ene.

Reaction of epoxide (2) with $BF_3 \cdot Et_2O$ in Et_2O gave the fluorohydrin (10; 67%) as the major product accompanied by cholesta-3,5-diene (6%), 5 α -cholestan-4-one (6%) and a mixture of two unidentified polar compounds (9%).

Reaction of the fluorohydrin (10) with $BF_3 \cdot Et_2O$ in benzene was rapid (10 sec). Apart from unidentified non-polar material (8%), the reaction products were 5 α -cholestan-4-one (28%) and the 4 β -hydroxy- $\Delta^{13(17)}$ -compound (12b; 56%). The significantly higher yield of the 4 β -hydroxy- $\Delta^{13(17)}$ -compound (12b) from the fluorohydrin reaction (compared with the epoxide reaction) may be rationalised in terms of a BF₃-catalysed heterolysis of the C⁵-F bond, without involvement of the 4 β -OH group, leading directly to backbone rearrangement.

DISCUSSION

For the 4 β ,5 β -epoxide (2) and the 5 β ,6 β -epoxide (3) rearrangements the nature of the products of BF₃-catalysed rearrangement are markedly dependent on the solvent used, ether or benzene. Furthermore the rate of product formation is notably greater in benzene. For reactions of the 4 β ,5 β -epoxide (2) in benzene-Et₂O solvent systems the products were those of the 'Et₂O reaction' on admixture of only 4%. Et₂O to the reaction solvent. Even for the benzene -1% Et₂O solvent system the fluorohydrin (10) was a significant product from the BF₃·Et₂O catalysed reaction.

The isolation of the 4α -hydroxy- Δ^9 -(11a) and 4α -hydroxy- $\Delta^{13(17)}$ -(12a) compounds from the rearrangement of the 4β , 5β -epoxide (2) was unexpected. These compounds are considered to arise by the mechanistic route shown in (Fig. 2). Cleavage of the C₅₈-O bond followed by migration of the 19-Me group to the 5β-position gives the C-10 carbonium ion (16). From the C-10 carbonium ion (16) the normal sequence of 1,2-hydride and 1,2-Me shifts would lead to the expected (and found) 4β -hydroxy- $\Delta^{13(17)}$ -compound (12b). However, the preferred conformation of 16 allows a fragmentation reaction⁸ to give the A-seco-5-methyl- $\Delta^{5(10)}$ -4-aldehyde (17). Reversal of this process in conformation 17 leads back to the C-10 carbonium ion (16), and ultimately to the 4β-hydroxy- $\Delta^{13(17)}$ -compound (12b). For the A-seco-aldehyde in conformation 18 cyclization may occur via a cyclic transition state⁹ with 9α-H removal by the aldehyde oxygen atom and leading directly to the 4 α -hydroxy- Δ^9 compound (11a). The origin of the 4α -hydroxy- $\Delta^{13(17)}$ -compound (12a) is not clear. It may arise by simple $\Delta^9 \rightarrow \Delta^{13(17)}$ -olefin isomerization or it may represent the component of '4a-OH cyclization' where 9a-proton removal is not effected by the aldehyde O atom.

EXPERIMENTAL

Rotations were measured for $CHCl_3$ solns at room temp. IR spectra were recorded on a Perkin Elmer 337 spectrometer. UV spectra were recorded for cyclohexane solns. Alumina used for chromatography was P. Spence, Grade H, deactivated by the addition of 5% of 10% AcOH. Silica gel used for chromatography was Crossfield Sorbsil Grade 60-120. Light petroleum refers to the fraction b.p. 50-70°. NMR spectra were determined at 60 Mc in CDCl₃ with CHCl₃ and TMS as internal standards.

 $4\beta,5$ -Epoxy-5 β -cholestane (2). The epoxide prepared by the method of Shoppee et al.,¹ m.p. 64-65°, $[\alpha]_D + 6°$ (Lit. values:¹ m.p. 60-62°, $[\alpha]_D + 3.5°$), NMR 2.88 ppm (4 α -H); 1.01 ppm (C¹⁹H₃); 0.67 ppm (C¹⁸H₃).

5,66-*Epoxy*-56-*cholestane* (3). The epoxide prepared by the method of Hallsworth and Henbest,³ m.p. 79–80°, $[\alpha]_D + 6^\circ$ (c 1-00) (Lit. values:³ m.p. 80–81°, $[\alpha]_D + 8^\circ$); NMR 2-99 ppm (6 α -H); 0-98 ppm (C¹⁹H₃); 0-65 ppm (C¹⁸H₃).

Rearrangements of 5,6β-epoxy-5β-cholestane (3).

(a) in benzene. The epoxide (498 mg) in benzene (70 ml) was treated with BF₃·Et₂O (0.5 ml) and kept at 20° for 2 min. The reaction was quenched with Na₂CO₃ aq and the crude product, isolated by means of Et₂O, adsorbed onto alumina (50 g). Elution with light petroleum gave cholesta-3,5-diene, contaminated with cholesta-4,6-diene, (77 mg), m.p. 78-79°, $[\alpha]_D - 79°$ (c 1.01). The major component was identified by comparison of NMR spectra with authentic material. Continued elution with light petroleum gave 4 (87 mg) as a gum, v_{max} (Nujol) 2720, 1728 cm⁻¹; NMR 9.78 ppm (CHO; singlet); 0.88 ppm (C¹⁹H₃); 0.66 ppm (C¹⁸H₃); identical in all respects with the aldehyde⁴ from 5,6α-epoxy-5α-cholestane. The aldehyde rapidly decomposed on storage. Elution with light petroleum-benzene (20:1) gave 5 α -cholestan-6-one (100 mg) as prisms, m.p. 99:5-100:5°, $[\alpha]_D$ +1° (c 1-01), ν_{max} (Nujol) 1715 cm⁻¹; NMR 0-73 ppm (C¹⁹H₃); 0-68 ppm (C¹⁸H₃); (Lit. values¹⁰: m.p. 98°; $[\alpha]_D$ -7°).

Finally elution with benzene gave the 6β -hydroxy- $\Delta^{13(1^{7})}$ -compound (225 mg; 5) m.p. 92–94°, $[\alpha]_D$ + 20° (c 1-05), ν_{max} 3340 cm⁻¹, ϵ 201 nm 9400; NMR 3·27 ppm (W_{b/2} 18 c/s; $\epsilon\alpha$ -H); 0·95 ppm (J = 6 c/s; C²¹H₃; decoupled with -88 c/s) 0·92 ppm (14β-Me); 0·84 ppm (5β-Me), (Found : C, 84·1; H, 12·2. C₂₇H₄₆O requires, C, 84·0; H, 11·9%).

(b) In Et₂O. The epoxide (387 mg) in Et₂O (60 ml) was treated with BF₃·Et₂O (1 ml) and kept at 20° for $2\frac{1}{2}$ hr. The reaction was quenched with Na₂CO₃ aq and the crude product, isolated by means of Et₂O, adsorbed onto alumina (50 g).

Elution with light petroleum gave a solid (107 mg), which on crystallization from light petroleumacetone gave needles (23 mg; 9), m.p. 227° (dec), (M^+ 406·3614; calculated for C₂₇H₄₇FO, 406·3611). The residue (85 mg) was shown (TLC, NMR) to consist of a mixture of cholesta-3,5-diene and cholesta-4,6-diene.

Elution with light petroleum-benzene (4:1) gave 5α -fluoro-6 β -hydroxycholestane (220 mg; 8) as a gum, $[\alpha]_D + 4^\circ$ (c 0.98), ν_{max} (CCl₄) 3625 cm⁻¹; NMR 3.69 ppm (W_{h/2} 11 c/s; 6 α -H), 1.11 ppm (C¹⁹H₃); 0.68 ppm (C¹⁸H₃) (Found: C, 80-2; H, 11.8, C₂₇H₄₇FO requires: C, 79.8; H, 11.6%).

Elution with benzene-Et₂O (10:1) gave the 6β -hydroxy- $\Delta^{13(17)}$ -compound (36 mg; 5), identified by comparison (IR, NMR and TLC) with authentic material.

BF₃-Catalysed reaction of fluorohydrin (8).

The fluorohydrin (5 mg) in benzene (0.5 ml) was treated with $BF_3 \cdot Et_2O$ (5µl), and the reaction followed by TLC. The reaction was complete in 20 sec. The products were the same as those for the epoxide $BF_3 \cdot Et_2O$ benzene reaction, except that the 6β-hydroxy- $\Delta^{13(17)}$ -compound was found in higher yield.

Rearrangements of 4a,5-epoxy-5a-cholestane (1).

(a) In benzene. The epoxide (420 mg) in benzene (40 ml) was treated with $BF_3 \cdot Et_2O$ (0.7 ml). After 45 sec at 20° the reaction was quenched with Na_2CO_3 aq and the crude product, isolated by means of Et_2O , was adsorbed onto alumina (30 g). Elution with pentane gave a non-polar compound (25 mg) followed by 5 β -cholestan-4-one (320 mg) as needles (MeOH), m.p. 108·5-109·5°, $[\alpha]_D + 41°$ (c 1·02), ν_{max} (Nujol) 1705 cm⁻¹ (Lit. values¹: m.p. 109°, $[\alpha]_D + 40°$; NMR 1·11 ppm (C¹⁹H₃), 0·64 ppm (C¹⁸H₃).

Elution with benzene gave 12a (44 mg) as a gum, $[\alpha]_D - 1^\circ$ (c 0.98), ν_{max} (Nujol) 3400 cm⁻¹, 197 nm 9500; NMR 3.31 ppm (W_{b/2} 6 c/s; 4\beta-H); 0.95 ppm (J = 6 c/s, decoupled-88 c/s; C²¹H₃); 0.90 ppm (14 β -Me); 0.86 ppm (5 β -Me).

(b) In Et₂O. The epoxide (137 mg) in Et₂O (25 ml) was treated with BF₃·Et₂O (0.15 ml) and kept at 20° for 15 hr. The reaction was quenched with Na₂CO₃ aq and the crude product, isolated by means of Et₂O, adsorbed onto alumina (20 g). Elution with light petroleum gave a mixture of two compounds (12 mg), v_{max} , (CCl₄) 3635 cm⁻¹ which were not identified. Elution with benzene and crystallization from MeOH gave 4 α -hydroxycholest-5-ene (20 mg), m.p. and m.m.p. 140–141°, [α]_D – 38° (c 0-99) (Lit. values¹¹: m.p. 144–145°, [α]_D – 50°); NMR 5·66 ppm (W_{h/2} 11 c/s; 6-H); 4·20 ppm (W_{h/2} 18 c/s; 4β-H); 0·99 ppm (C¹⁹H₃); 0·68 ppm (C¹⁸H₃).

Rearrangements of 4β , 5-epoxy- 5β -cholestane (2)

(a) In benzene. The epoxide (361 mg) in benzene (40 ml) was treated with $BF_3 \cdot Et_2O$ (0.4 ml) and kept at 20° for 2 min. The reaction was quenched with Na_2CO_3 aq and the crude product, isolated by means of Et_2O , adsorbed onto silica (50 g). Elution with light petroleum gave a mixture (30 mg) of cholesta-3,5diene and cholesta-4,6-diene (TLC, NMR). Further elution with light petroleum the unstable 13 (24 mg), m.p. 58-61° (dec), $[\alpha]_D + 36°$ (dec), $[\alpha]_D + 36°$ (c 1-01), ν_{max} (Nujol) 2720, 1725 cm⁻¹; NMR 9.69 ppm (singlet; CHO); 0.97 ppm (C¹⁹H₃); 0.67 ppm (C¹⁸H₃).

Elution with light petroleum-benzene (10:1) and crystallization from acetone gave the 4α -hydroxy- Δ^9 -compound (40 mg; 11a), m.p. 82-83°, $[\alpha]_D$ + 43° (c 1·01), ν_{max} (CCl₄) 3640, 3600 cm⁻¹, ε 205 nm 11,300; NMR 3·45 ppm (W_{b/2} 6 c/s; 4β-H); 1·08 ppm (5β-Me); 0·80 ppm (C¹⁸H₃). (Found: C, 80·4; H, 11·9. C₂₇H₄₆O·H₂O requires: C, 80·1; H, 11·9%).

Further elution with light petroleum-benzene (5:1) gave a mixture of three compounds. This material was adsorbed onto alumina (20 g). Light petroleum-benzene (20:1) eluted cholestan-4-one (147 mg) as needles (MeOH), m.p. and m.m.p. 100-100.5°, $[\alpha]_D + 31^\circ (c \ 1.05)$ (Lit. values¹²: m.p. 99-100°, $[\alpha]_D + 30^\circ$).

Elution with benzene gave a mixture (22 mg; ca. 1:1) of 12a and 10, identified by comparison (TLC and NMR) with authentic samples.

Elution with light petroleum-benzene (2:1) from the silica column gave the 4β -hydroxy- $\Delta^{13(17)}$ -compound (81 mg; 12b) as a gum, $[\alpha]_D + 27^\circ$ (c 0.95); NMR 3.18 ppm ($W_{b/2}$ 19 c/s; 4 α -H); 0.95 ppm (J 6 c/s, decoupled -88 c/s; C²¹H₃); 0.90 ppm (14 β -Me); 0.83 ppm (5 β -Me), (Found: C, 800; H, 11.9. C₂₇H₄₆O·H₂O requires: C, 801; H, 11.9%).

(b) In Et₂O. The epoxide (240 mg) in Et₂O (20 ml) was treated with BF₃·Et₂O (0.35 ml) and kept at 20° for 2 hr. The reaction was quenched with Na₂CO₃ aq and the crude product, isolated by means of Et₂O, adsorbed onto alumina (20 g). Elution with light petroleum gave a mixture of non-polar compounds (28 mg), containing cholesta-3,5-diene (ca. 50%) by NMR and UV. Continued elution with light petroleum gave 5α -cholestan-4-one (15 mg), m.p. and m.m.p. 100-100-5°, v_{max} (Nujol) 1710 cm⁻¹.

Elution with light petroleum-benzene (20:1) gave the *fluorohydrin* (163 mg; 10) as needles (MeOH), m.p. 136-137°, $[\alpha]_D + 18°$ (c 0.95), v_{max} (Nujol) 3580 cm⁻¹. (Found: C, 80-2; H, 12-0; F, 5-0. C₂₇H₄₇FO requires: C, 79.8; H, 11-6; F, 4-7%); NMR 3-69 ppm (W_{h/2} 12 c/s; 4\alpha-H); 1-14 ppm (C¹⁹H₃); 0-67 ppm (C¹⁸H₃).

Elution with light petroleum-benzene (3:2) gave a mixture of two compounds (22 mg) which were not identified.

Rearrangement of fluorohydrin (10) with BF₃·Et₂O in benzene

The fluorohydrin (39 mg) in benzene (5 ml) was treated with $BF_3 \cdot Et_2O$ (0.2 ml) and kept at 20° for 4 min. The reaction was complete (TLC) in 10 sec. The reaction mixture was quenched with Na₂CO₃aq and the crude product, isolated by means of Et_2O , was adsorbed onto alumina (9 g). Elution with light petroleum gave two non-polar compounds (3 mg) followed by 5α -cholestan-4-one (11 mg), m.p. and m.m.p. 99.5-100-5°.

Elution with benzene gave the 4 β -hydroxy- $\Delta^{13(17)}$ -compound (22 mg) identified by comparison (NMR, TLC) with an authentic sample.

Reactions of the 4α -hydroxy- Δ^9 -compound (11a)

(a) Oxidation with CrO₃-pyridine. The alcohol (50 mg) in pyridine (0.5 ml) was treated with CrO₃-pyridine (50 mg in 1.5 ml) and kept at 20° for 12 hr. The product, isolated by means of pentane, was a gum, $[\alpha]_D + 35^\circ$ (c 0.67), v_{max} (CCl₄) 1710 cm⁻¹, identical (NMR, TLC) with an authentic sample.⁷

(b) Acetylation. The alcohol (80 mg) was treated with Ac₂O (0.3 ml) in pyridine (2 ml) and heated at 100° for 3 hr. Isolation in the usual manner gave the acetate as a gum, v_{max} 1745, 1245 cm⁻¹; NMR 4.74 ppm (W_{b/2} 6 c/s; 4β-H); 1.09 ppm (5β-Me); 0.79 ppm (C¹⁸H₃).

(c) Reaction with $BF_3 \cdot Et_2O$ in benzene. The alcohol (95 mg) in benzene (5 ml) was treated with $BF_3 \cdot Et_2O$ (0.1 ml) and kept at 20° for 75 min. The crude product, isolated in the usual manner, was adsorbed onto alumina (10 g). Elution with light petroleum gave hydrocarbons (8 mg). Elution with light petroleum-benzene (7:1) gave starting material (52 mg). Elution with benzene gave a mixture (20 mg; ca. 1:1) 12a and 12b. These materials were identified by comparison (NMR, TLC) with authentic samples.

Reactions of 5_β-formyl-A-norcholestane (13)

Reduction of 13 (154 mg) with LAH in the usual manner gave 14a (130 mg) as a gum, NMR 3.38 ppm (2H singlet); 0.82 ppm ($C^{13}H_3$); 0.67 ppm ($C^{18}H_3$).

Reaction of 14a (120 mg) with toluenesulphonyl chloride (120 mg) in pyridine (2 ml) for 3 days at 20°, gave 14b (120 mg); NMR 3.74, 3.86 ppm (2H); 0.75 ppm ($C^{19}H_3$); 0.63 ppm ($C^{18}H_3$).

Reaction of 14b (80 mg) with LAH (150 mg) in THF (3 ml) at reflux for 12 hr gave on isolation of the crude product and chromatography on alumina a non-polar material (38 mg). Crystallization from MeOH-Et₂O gave cholest-4-ene (19 mg), identified by comparison with an authentic sample.

Reactions of 5_β-formyl-B-norcholestane (4)

Reduction of 4 (155 mg) as above gave 7a (150 mg); NMR 3·50, 3·66 ppm (2H); 0·75 ppm ($C^{19}H_3$); 0·63 ppm ($C^{18}H_3$). The alcohool 7a (145 mg) gave 7b (125 mg); NMR 3·90, 4·06 ppm (2H); 0·68 ppm ($C^{19}H_3$); 0·61 ppm ($C^{18}H_3$). Reduction of the tosylate (115 mg) with LAH (as above) gave after chromatography on alumina, cholest-4-ene (40 mg) and 7a (15 mg).

Acknowledgements—We acknowledge grants from the Research Committee of the New Zealand Universities Grants Committee.

5004

REFERENCES

- ¹ C. W. Shoppee, M. E. H. Howden, R. W. Killick and G. H. R. Summers, J. Chem. Soc. 630 (1959).
- ² H. B. Henbest and T. I. Wrigley, Ibid. 4596 (1957).
- ³ A. S. Hallsworth and H. B. Henbest, Ibid. 4604 (1957).
- ⁴ J. W. Blunt, M. P. Hartshorn and D. N. Kirk, Tetrahedron 25, 149 (1969).
- ⁵ J. W. Blunt, M. P. Hartshorn and D. N. Kirk, *Ibid.* 22, 3195 (1966); J. W. Blunt, J. M. Coxon, M. P. Hartshorn and D. N. Kirk, *Ibid.* 23, 1811 (1967); J. M. Coxon, M. P. Hartshorn, C. N. Muir, and K. E. Richards, *Tetrahedron Letters* 3725 (1967).
- ⁶ J. W. Blunt, M. P. Hartshorn and D. N. Kirk, Tetrahedron 21, 559 (1965).
- ⁷ J. M. Coxon and M. P. Hartshorn, Tetrahedron Letters 105 (1969).
- ⁸ J. M. Coxon, M. P. Hartshorn and D. N. Kirk, *Tetrahedron* 25, 1603 (1969); B. N. Blackett, J. M. Coxon, M. P. Hartshorn and K. E. Richards, *Tetrahedron Letters* 1737 (1969); J. M. Coxon, M. P. Hartshorn, A. J. Lewis, K. E. Richards and W. H. Swallow, *Tetrahedron* 25, 4445 (1969).
- ⁹ A. T. Blomquist, M. Passer, C. S. Schellenberger, and J. Wolinsky, J. Am. Chem. Soc. 79, 4972 (1957).
- ¹⁰ C. W. Shoppee, R. H. Jenkins and G. H. R. Summers, J. Chem. Soc. 1657 (1958).
- ¹¹ D. N. Jones, J. R. Lewis and G. H. R. Summers, *Ibid.* 2876 (1955).
- ¹² F. Sondheimer and M. Nussim, J. Org. Chem. 26, 630 (1961).