Azobenzene-Based Colorimetric Chemosensors for Rapid Naked-Eye Detection of Mercury(II)

Xiaohong Cheng,^[a] Qianqian Li,^{*[a]} Conggang Li,^[b] Jingui Qin,^[a] and Zhen Li^{*[a]}

Abstract: Two new highly selective colorimetric chemosensors for Hg^{2+} , based on azobenzene and highly selective Hg^{2+} -promoted deprotection of a dithioacetal have been designed and synthesized. In the presence of as little as 20 μ M Hg²⁺, the sensors change their color from light yellow to deep red,

which can easily be observed by the naked eye. The underlying signaling mechanism is intramolecular charge

Keywords: azo compounds · charge transfer · colorimetry · mercury · sensors

Introduction

Mercury pollution is a global problem and has been receiving much attention.^[1] Both human activities, including gold mining, solid-waste incineration, and fossil-fuel combustion,^[2] and nonanthropogenic sources, such as volcanic and oceanic emissions and forest fires,^[3] have caused rapid increase of Hg^{2+} levels in the environment. Ionic mercury is converted to methylmercury by bacteria when it enters the environment and subsequently bioaccumulated through the food chain. Mercury accumulation in the body can cause various neurological damage.^[4] Thus, a convenient and fast method to detect Hg²⁺ is in high demand. Recently, considerable efforts have been made to develop straightforward methods such as fluorescence^[5] or electrochemical changes^[6] for rapid detection of mercury ions. Among these methods, colorimetric sensors are especially promising because the color change can easily be observed by the naked eyes, thus requiring less labor and no equipment. A large number of colorimetric sensors for Hg²⁺ have been developed.^[7] As potential sensing systems, specific chemical reactions with high selectivity for toxic metal ions have drawn great attention. The reaction between the sensor molecule and target

🕏 WILEY 师

7276

transfer (ICT). The sensors have good selectivity for Hg^{2+} with respect to several common alkali, alkaline earth, and transition metal ions. Furthermore, they can be used for in-the-field measurements by virtue of a dipstick approach without any additional equipment.

species should give a unique spectroscopic change.^[8] Because of the strong thiophilicity of Hg²⁺, many fluorescent chemodosimeters with high selectivity, long-range excitation and emission wavelengths, and high quantum yield have been designed on the basis of the mercury desulfurization reaction.^[9]

Here we report two colorimetric chemosensors (S1 and S2) for Hg²⁺ based on azo derivatives and using intramolecular charge transfer (ICT) as signaling mechanism, in which the azobenzene moiety acts as electron donor and the aldehyde group as the electron acceptor. The design of these two sensors took advantage of the well-known azobenzene structure and the highly selective Hg²⁺-promoted deprotection of the dithioacetal, as we reported previously.^[10] Precursors 1 and 2 of S1 and S2, respectively, were synthesized according to previous literature.^[11] A straightforward protection reaction between the aldehyde group and ethyl mercaptan gave sensors S1 and S2 in high yields (Scheme 1). While the formyl group is electron-withdrawing, after mercaptan

Hg^{II}

FULL PAPER

protection, the resulting dithioacetal moiety can be regarded as a weak electron donor. Addition of Hg^{2+} converts the protected aldehyde group back to the original aldehyde, and the D- π -D' structures in **S1** and **S2** are transformed into D- π -A structures (Scheme 1). This increases the degree of ICT and resulting in an obvious redshift of the absorption bands of the compounds.^[12] Addition of Hg^{2+} to dilute solutions of **S1** and **S2** changes the color from light yellow to deep red in a process visible to the naked eye (see Scheme 1). Here we describe the synthesis and the spectroscopic evaluation of both colorimetric chemosensors in detail.

Results and Discussion

Synthesis and structural characterization: Compounds S1 and S2 were prepared by the protection reaction between ethyl mercaptan and aldehydes 1 and 2 (Scheme 1), in accordance with our previous report.^[10] The synthetic route is simple and purification easy.

Compounds **S1** and **S2** exhibit good solubility in common organic solvents such as DMF, CH₃Cl₃, CH₃CN, and THF. They were characterized by spectroscopic methods, and both gave satisfactory spectral data (see Experimental Section). The signal of the aldehyde proton at $\delta = 10.04$ ppm in the ¹H NMR spectrum of **2** (see Figure S1 in the Supporting Information) disappeared in the spectrum of **S2**. In the FTIR spectrum of **S2** (see Figure S2 in the Supporting Information) the strong band at 1685 cm⁻¹ ascribed to C=O stretching of the aldehyde group disappeared owing to the protection reaction between ethyl mercaptan and **2**. The absorption maximum centered at about 460 nm in the UV/Vis spectrum of **2** (see Figure S3 in the Supporting Information) shifted to 420 nm in dithioacetal **S2**. The above results confirm conversion of aldehyde **2** to dithioacetal **S2**.

Hg²⁺-sensing properties: As shown in Scheme 1 and Figure 1, compound **1** is deep red with maximum absorption wavelength centered at about 455 nm in its UV/Vis spectrum, corresponding to the ICT character of the chromophore due to the pull-push effect. After reaction with ethanethiol, the resulting dithioacetal S1 showed a light yellow color with maximum absorption wavelength centered at about 420 nm, due to a change in the electronic property and hence different ICT efficiency. On adding Hg²⁺ ions to a dilute solution of S1 in CH₃CN, the absorption maximum shifted from 420 to 455 nm, with an isosbestic point at about 440 nm, indicating formation of aldehyde 1. Surprisingly, with increasing concentrations of Hg²⁺ ions, not only did the absorption maximum further shift from 455 to 515 nm with an isosbestic point at about 470 nm, but also the new band at 515 nm showed a larger molar absorption coefficient than the original one. The intensities at 420 and 515 nm are compared in Figure S4 (see the Supporting Information), which shows that intensity change almost linearly with the concentration of Hg²⁺ ions. The different colors before and after addition of Hg²⁺ ions could be easily distinguished by

Figure 1. UV/Vis spectra of **S1** (10 μ M, CH₃CN) in the presence of increasing concentration of Hg²⁺. Inset: Photograph of **S1** (A) and **S1**+ Hg²⁺ (B, 50 μ M).

the naked eye (Scheme 1 and Figure 1), and this validates our design of colorimetric chemosensors for Hg^{2+} ions based on the ITC mechanism and the Hg^{2+} -promoted deprotection of dithioacetals.

We studied the influence of traces of water in the Hg^{2+} solution on the sensing process (see Figure S5 in the Supporting Information). The absorption decreased only to a very limited degree, even when 100 µL of H_2O was introduced, which would not affect the results of the titration experiment (Figure 2, inset V). Thus, the Hg^{2+} -promoted deprotection reaction of dithioacetal **S1** occurred as expected, and the color change was observed.

Figure 2. A_{515}/A_{420} change profile of **S1** (10 μM, CH₃CN) in the presence of various metal ions (40 μM). Inset: Photograph of **S1** in the presence of various metal ions (50 μM). A: **1** (1 mM); B: **S1** (100 μM); C-V: **S1**+Hg²⁺, Ba²⁺, Ni²⁺, Co²⁺, Ca²⁺, Cd²⁺, Mg²⁺, Zn²⁺, Pb²⁺, Mn²⁺, Cu²⁺, Fe²⁺, K⁺, Na⁺, Ag⁺, Li⁺, Al³⁺, Fe³⁺, Cr³⁺, H₂O (100 μL).

Chem.	Eur. J.	2011,	17,	7276-	-7281
-------	---------	-------	-----	-------	-------

www.chemeurj.org

To assess the specificity of our sensor towards Hg²⁺, various ions were examined in parallel under the same conditions. As shown in Figure 2 and Figure S6 of the Supporting Information, the reaction of **S1** with Hg^{2+} resulted in strong absorbance, whereas Ba²⁺, Ni²⁺, Co²⁺, Ca²⁺, Cd²⁺, Mg²⁺, Zn²⁺, Pb²⁺, Mn²⁺, Cu²⁺, Fe²⁺, K⁺, Na⁺, and Ag⁺ showed no change, and Fe³⁺, Al³⁺, and Cr³⁺ negligible changes. Therefore, S1 has much higher selectivity for Hg^{2+} than the other ions examined here. This unique property enabled Hg²⁺ to be detected directly by the naked eye over other species (Figure 2). In our previous report on fluorescent sensors,^[10] Ag⁺ could also promote conversion of dithioacetal to aldehyde to some degree, similar to Hg²⁺. However, Ag⁺ did not induce any apparent absorption change even at a concentration of 50 µM (Figures 2 and S6d in the Supporting Information), that is, by adjusting the chemical structure, better selectivity of this kind of chemosensors towards Hg²⁺ could be achieved.

To improve the solubility of **S1** in water, **S2** bearing two hydroxyl groups was synthesized (Scheme 1). Compound **S2** exhibited a similar absorption profile to **S1**, owing to the similar structure. Surprisingly, **S2** displayed much better Hg^{2+} -sensing performance than **S1**. As shown in Figure 3, a

Figure 3. Ratiometric calibration curve A_{515}/A_{420} of **S2** (10 μ M, CH₃CN) as a function of the concentration of Hg²⁺. Inset: UV/Vis spectra of **S2** (10 μ M, CH₃CN) in the presence of increasing concentration of Hg²⁺, and photograph of **S2** (A) and **S2**+Hg²⁺ (B, 50 μ M).

change in absorption occurred even on addition of as little as $2 \mu M Hg^{2+}$. With increasing concentrations of Hg^{2+} , the typical strong absorption band of **S2** at 420 nm gradually decreased, and a new absorption band centered at 515 nm with a larger molar absorption coefficient than **S1** appeared. This 515 nm absorption was responsible for the color change and can be observed by the naked eye. The UV/Vis spectra of dithioacetal **S2** before and after the addition of Hg²⁺ also support this transformation (see Figure S7 in the Supporting Information).

Like **S1**, **S2** also shows good selectivity towards Hg^{2+} . Traces of water and metal ions caused almost no apparent absorption change (see Figures S8–S10 in the Supporting Information). In Figure 3 and Figure S8 in the Supporting Information, the A_{515}/A_{420} ratio of **S2** in CH₃CN was almost 12-fold for Hg²⁺, while the values for the other metal ions were less than 0.5-fold. The sensing process could also be observed visually (see Charts S1 and S2 in the Supporting Information). These results indicate that **S2** is an Hg²⁺-specific colorimetric sensor.

The ultimate goal of this research is to develop naked-eye colorimetric sensors. Compound **S2** has better sensitivity and lower detection limit and potentially it can be used for direct naked-eye sensing of Hg^{2+} . Figure 4 shows the results of adding various amounts of Hg^{2+} to a 100 μ M solution of **S2** in CH₃CN. Although not as sensitive as measurements by UV/Vis spectrometer, we could easily distinguish color changes at concentrations as low as 20 μ M of Hg²⁺.

Figure 4. Photograph of $S2~(10~\mu m,~CH_3CN)$ in the presence of increasing concentrations of Hg²⁺. A–H): 0, 1, 1.5, 2, 2.5, 3, 4, and $5\times 10^{-5}~mol\,L^{-1}.$

Taking advantage of the two hydroxyl group in S2, we attempted to conduct the sensing process in in H₂O/CH₃CN (1/9) at pH 7.0 maintained with HEPES buffer (20 mM). As shown in Figure 5, the absorption maximum wavelength of S2 shifted from 420 to 460 nm, with an isosbestic point at about 440 nm, indicating formation of aldehyde 2. The transformation was confirmed by UV/Vis spectra (see Figure S11 in the Supporting Information) with that of aldehyde 2 for comparison. The inset of Figure 5 shows a good linear relationship between the A_{460}/A_{420} ratio and the concentration of Hg^{2+} in the range of 0–12 μ M. A linear regression curve was simulated, and the point at which it crossed the abscissa was taken as the detection limit (ca. 0.4 µm).^[13] As shown in Figure S12 of the Supporting Information, dithioacetal S2 can also function in H₂O/CH₃CN (2/8), but the sensing behavior is not as good as in organic solvents and solvent mixtures with less H_2O (H_2O/CH_3CN 1/9). One reason could be the poor solubility of S2 in the mixed solvents. Further research to develop water-soluble sensors by utilizing this idea is ongoing. The specificity of S2 towards Hg²⁺ in H₂O/CH₃CN solution was also investigated, but the performance was not as good as in pure CH₃CN (see Figures S8 and S13 in the Supporting Information).

FULL PAPER

Figure 5. UV/Vis spectra of **S2** (10 μ M) in the presence of increasing concentrations of Hg²⁺ in CH₃CN/H₂O (9/1, 20 mM HEPES, pH 7.0). Inset: Ratiometric calibration curve A_{460}/A_{420} as a function of the concentration of Hg²⁺.

On addition of Hg^{2+} ions to a solution of **S2** in pure CH₃CN, the absorption maximum of **S2** changed by approximately 95 nm (from 420 to 515 nm), with an obvious color change. However, after addition of Hg^{2+} ions to a solution in CH₃CN/H₂O, the absorption profile only changed a little (from 420 to 460 nm). To confirm the formation of the resulting products and gain insight into the sensing mechanism, control experiments were conducted. Dithioacetal **S2** was treated with Hg^{2+} ions and the reaction product (complex I) isolated, and aldehyde **2** was mixed with Hg^{2+} ions to give complex II. Partial ¹H NMR spectra of complexes I and II are shown in Figure 6 with those of **S2** and **2** for comparison. The resonance of the aldehyde proton appeared at $\delta = 10.04$ ppm. Both the aldehyde small upfield shift compared

to aldehyde **2**, indicating a mutual effect between the resultant aldehyde and Hg^{2+} . In addition, the ¹H NMR spectra of complex I was the same as that of complex II. An absorption peak centered at about 1605 cm⁻¹ in the IR spectrum of **2** (see Figure S14 in the Supporting Information) indicated the presence of -N=N- groups. After addition of Hg^{2+} ions, a new broad peak at 1635 cm⁻¹ appeared as the result of a reaction between **2** and Hg^{2+} ions to form an N-bound Hg^{2+} complex (Scheme 2). ESI mass spectra (see Figure S15 in

Scheme 2. Postulated response process of 2 towards Hg2+.

the Supporting Information) revealed a main peak at 314.4 after Hg^{2+} ions were added to 2, corresponding to $[2-H]^+$ (calcd m/z 314.1). A weak peak at about 515.9 was assigned to traces of $[2+Hg-H]^{2+}$ (calcd m/z 516.1), which leads to changes in the absorption spectra and a color change. UV/ Vis titrations in CH₃CN supported the formation of a complex on treatment of 2 with Hg²⁺ (see Figures S16 and S17 in the Supporting Information), consistent with a previous report.^[14] In CH₃CN/H₂O, smaller changes in the absorption spectra of the sensors may be due to interference of water in the reaction between 2 and Hg²⁺. Although the above results were unexpected, they are beneficial to sensors due to the much more apparent color changes before and after the addition of the analytes, which led to a much larger red shift (95 nm) in absorption and much more pronounced color change.

Test strips, prepared by immersing filter paper into a solution of dithioacetal **S2** in CH₃CN $(1 \times 10^{-3} \text{ mol L}^{-1})$ and drying in air, were used to determine the suitability of a dipstick method for detection of Hg²⁺, similar to that commonly used for pH measurements. When the test strips coated with **S2** were immersed into aqueous solutions of Hg²⁺ ions with different concentrations, immediate color change from yellow to pink was observed (Figure 7). The detection limit of the test strips was relatively low $(10^{-4} \text{ mol L}^{-})$. Development of such an approach is attractive for in-the-field measurements that would not require any additional equipment.

Conclusion

Figure 6. ¹H NMR spectra of S2 (a), complex I (b), complex II (c), and aldehyde 2 (d) in [D₆]acetone.

New naked-eye colorimetric chemosensors S1 and S2 were developed by coupling aldehyde protection/Hg²⁺-promoted

Chem. Eur. J. 2011, 17, 7276-7281

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 7279

CHEMISTRY

Figure 7. Photographs of test strips of **S2** (A), **S2**+Hg²⁺ (10⁻⁵ molL⁻¹, B), **S2**+Hg²⁺ (10⁻⁴ molL⁻¹, C), **S2**+Hg²⁺ (5×10⁻⁴ molL⁻¹, D), **S2**+Hg²⁺ (10⁻³ molL⁻¹, E), and **S2**+Hg²⁺ (5×10⁻³ molL⁻¹, F).

deprotection with the ICT mechanism, and the sensing properties were studied. Both probes displayed high sensitivity and selectivity for Hg^{2+} with respect to several common alkali, alkaline earth, and transition metal ions. In addition, **S1** and **S2** could serve as practical colorimetric sensors for in-the-field measurements that would not require any additional equipment by virtue of a dipstick approach.

Experimental Section

Materials and instrumentation: Dichloromethane was dried over and distilled from CaH₂ under an atmosphere of dry nitrogen. All reagents were of analytical-reagent grade and used without further purification. Doubly distilled water was used in all experiments. The ¹H and ¹³C NMR spectra were measured on Varian Mercury300 spectrometer with tetramethylsilane (TMS; $\delta = 0$ ppm) as internal standard. FTIR spectra were recorded on a PerkinElmer-2 spectrometer in the region of 3000–400 cm⁻¹ on NaCl pellets. The ESI mass spectra were measured on a Finnigan LCQ advantage mass spectrometer, UV/Vis spectra were obtained with a Shimadzu UV-2550 spectrometer, and the pH values were determined by using a DELTA 320 PH dollar. The thermometer used for measurement of melting points was uncorrected.

Synthesis of compound S1: Under dry argon, 1 (71 mg, 0.28 mmol) and ethanethiol (0.052 mL, 0.7 mmol) were dissolved in dry dichloromethane (10 mL) with BF₃·Et₂O (0.1 mL, 0.84 mmol) as Lewis acid. After stirring at 0°C for 3 h, 0.1 mol L⁻¹ aqueous NaHCO₃ was added to adjust the pH value of the resultant mixture to 8–9. The resultant mixture was extracted with diethyl ether several times, the organic layers were combined, and the product was recrystallized from dichloromethane to afford S1 as a yellow solid (90.5 mg, 90%). M.p. 98–99°C; ¹H NMR (300 MHz, CDCl₃): δ =7.79–7.81 (d, *J*=6.0 Hz, 2H), 7.72–7.74 (d, *J*=6.0 Hz, 2H), 7.46–7.49 (d, *J*=9.0 Hz, 2H), 6.67–6.70 (d, *J*=9.0 Hz, 2H), 4.91 (s, 1H), 3.02 (s, 6H), 2.44–2.58 (m, 4H), 1.14–1.18 ppm (t, *J*=6.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ =144.81, 141.00, 128.34, 124.95, 122.27, 111.43, 52.06, 40.22, 26.18, 14.27 ppm; UV/Vis (CH₃CN): λ_{max} =420 nm; MS (ESI): *m*/*z* 360.39 [*M*⁺], calcd 359.55.

Synthesis of compound S2: Under dry argon, compound 2 (88 mg, 0.28 mmol) and ethanethiol (0.052 mL, 0.7 mmol) were dissolved in dry dichloromethane (10 mL) with BF₃·Et₂O (0.1 mL, 0.84 mmol) as Lewis acid. After stirring at 0°C for 2 h, 0.1 molL⁻ aqueous NaHCO₃ was

added to adjust the pH of the mixture to 8–9. The resultant mixture was extracted with diethyl ether several times, the organic layers were combined, and the product was purified by column chromatography with ethyl acetate/methanol (11/1) as eluent to afford **S2** as an orange solid (110 mg, 94%). M.p. 87–88°C; ¹ H NMR (300 MHz, CDCl₃): δ =7.79–7.87 (m, 4H), 7.54–7.57 (d, *J*=9.0 Hz, 2H), 6.75–6.78 (d, *J*=9.0 Hz, 2H), 4.98 (s, 1H), 3.95 (s, 2H), 3.72 (s, 2H), 3.07 (s, 2H), 2.55–2.62 (m, 4H), 1.21–1.26 ppm (t, *J*=7.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ =152.75, 150.53, 144.15, 142.19, 128.68, 125.27, 122.63, 112.20, 60.66, 55.45, 52.35, 26.50 ppm; UV/Vis (in CH₃CN): λ_{max} =420 nm; MS (ESI) *m/z* 420.54 [*M*⁺], calcd 419.60.

Preparation of solutions of metal ions: 1 mmol of each inorganic salt (NaNO₃, KNO₃, LiCl, Ba(NO₃)₂, AgNO₃, Cr(NO₃)₃,9H₂O, CoCl₂·6H₂O, Ca(NO₃)₂,•4H₂O, Pb(NO₃)₂, Ni(NO₃)₂·6H₂O, Zn(NO₃)₂·6H₂O, Cu(NO₃)₂,•3H₂O, Al(NO₃)₃·9H₂O, Fe(NO₃)₃·9H₂O, MnSO₄·2H₂O, Cd(SO₄)·8H₂O, (NH₄)₂Fe(SO₄)₂·6H₂O, MgSO₄, and Hg(ClO₄)₂·3H₂O) was dissolved in distilled water (10 mL) to afford a 1×10^{-1} mol L⁻ aqueous solution. The stock solutions were diluted to desired concentrations with water when needed.

UV absorption changes of S1 due to Hg^{2+} ions: A solution of S1 ($1.0 \times 10^{-5} \text{ mol L}^-$) was prepared in CH₃CN. A solution of Hg^{2+} ($1 \times 10^{-3} \text{ mol L}^-$) was prepared in distilled water. A solution of S1 (3.0 mL) was placed in a quartz cell (10.0 mm width) and the absorption spectrum recorded. The Hg^{2+} solution was introduced in portions and absorption changes were recorded at room temperature each time.

UV absorption changes of S1 due to different metal ions: A solution of S1 $(1 \times 10^{-5} \text{ mol L}^-)$ was prepared in CH₃CN. The solutions of metal ions $(1 \times 10^{-1} \text{ mol L}^-)$ were prepared in distilled water. A solution of S1 (3.0 mL) was placed in a quartz cell (10.0 mm width) and the absorption spectrum was recorded. Different ion solutions were introduced and the changes in absorption were recorded at room temperature each time.

UV absorption changes of S2 due to Hg^{2+} ions: Solutions of S2 ($1.0 \times 10^{-5} \text{ mol/L}$) were prepared in CH₃CN and CH₃CN/H₂O (9/1, 20 mm HEPES, pH 7.0). A solution of Hg^{2+} ($1 \times 10^{-3} \text{ mol/L}$) was prepared in distilled water. A solution of S2 (3.0 mL) was placed in a quartz cell (10.0 mm width) and the absorption spectrum was recorded. The Hg^{2+} ion solution was introduced in portions and absorption changes were recorded at room temperature each time.

UV absorption changes of S2 due to different metal ions: A solution of S2 $(1 \times 10^{-5} \text{ mol L}^-)$ was prepared in CH₃CN. Solutions of metal ions $(1 \times 10^{-1} \text{ mol L}^-)$ were prepared in distilled water. The solution of S2 (3.0 mL) was placed in a quartz cell (10.0 mm width) and the absorption spectrum was recorded. Different ion solutions were introduced and the changes of the absorption changes were recorded at room temperature each time.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 20974084, 21075134), the Program of NCET (NCET-08-0411), and the National Fundamental Key Research Program (2011CB932702) for financial support.

- a) W. F. Fitzgerald, C. H. Lamborg, C. R. Hammerschmidt, *Chem. Rev.* 2007, *107*, 641–662; b) S. Vupputuri, M. P. Longnecker, J. L. Daniels, X. Guo, D. P. Sandler, *Environ. Res.* 2005, *97*, 195–199; c) T. A. Baughman, *Environ. Health Perspect.* 2006, *114*, 147–152.
- [2] a) A. Renzoni, F. Zino, E. Franchi, *Environ. Res.* 1998, 77, 68–72;
 b) O. Malm, *Environ. Res.* 1998, 77, 73–78.
- [3] a) E. M. Nolan, J. L. Stephen, *Chem. Rev.* 2008, 108, 3443–3480;
 b) F. M. M. Morel, A. M. L. Kraepiel, M. Amyot, *Annu. Rev. Ecol. Syst.* 1998, 29, 543–566.
- [4] a) I. Onyido, A. R. Norris, E. Buncel, *Chem. Rev.* 2004, 104, 5911–5929; b) M. Matsushita, M. M. Meijler, P. Wirsching, R. A. Lerner,

7280

FULL PAPER

K. D. Janda, *Org. Lett.* **2005**, *7*, 4943–4946; c) M. Nendza, T. Herbst, C. Kussatz, A. Gies, *Chemosphere* **1997**, *35*, 1875–1885.

- [5] a) X. Q. Chen, S.-W. Nam, M. J. Jou, Y. Kim, S.-J. Kim, S. Park, J. Yoon, Org. Lett. 2008, 10, 5235-5238; b) J. H. Kim, H. J. Kim, S. H. Kim, J. H. Lee, J. H. Do, H. Kim, J. H. Lee, J. S. Kim, Tetrahedron Lett. 2009, 50, 5958-5961; c) R. H. Yang, W. H. Chan, A. W. M. Lee, P. F. Xia, H. K. Zhang, K. A. Li, J. Am. Chem. Soc. 2003, 125, 2884-2885; d) X. F. Guo, X. H. Qian, L. H. Jia, J. Am. Chem. Soc. 2004, 126, 2272-2273; e) A. Ono, H. Togashi, Angew. Chem. 2004, 116, 4400-4402; Angew. Chem. Int. Ed. 2004, 43, 4300-4302; f) E. M. Nolan, S. J. Lippard, J. Am. Chem. Soc. 2003, 125, 14270-14271; g) M. J. Choi, M. Y. Kim, S.-K. Chang, Chem. Commun. 2001, 1664-1665; h) A. Caballero, R. Martinez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tarraga, P. Molina, J. Veciana, J. Am. Chem. Soc. 2005, 127, 15666-15667; i) E. M. Nolan, J. Jaworski, K. Okamoto, Y. Hayashi, M. Sheng, S. J. Lippard, J. Am. Chem. Soc. 2005, 127, 16812-16823; j) Y. K. Yang, K. J. Yook, J. Tae, J. Am. Chem. Soc. 2005, 127, 16760-16761; k) E. M. Nolan, M. E. Racine, S. J. Lippard, Inorg. Chem. 2006, 45, 2742-2749; l) X. M. Meng, L. Liu, H. Y. Hu, M. Z. Zhu, M. X. Wang, J. Shi, Q. X. Guo, Tetrahedron Lett. 2006, 47, 7961-7964; m) L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am. Chem. Soc. 2006, 128, 10-11; n) J. B. Wang, X. H. Qian, J. N. Cui, J. Org. Chem. 2006, 71, 4308-4311; o) A. Coskun, E. U. Akkaya, J. Am. Chem. Soc. 2006, 128, 14474-14475; p) J. B. Wang, X. H. Qian, Chem. Commun. 2006, 109-111; q) S. V. Wegner, A. Okesli, P. Chen, C. He, J. Am. Chem. Soc. 2007, 129, 3474-3475; r) I.-B. Kim, U. H. F. Bunz, J. Am. Chem. Soc. 2006, 128, 2818-2819; s) B. R. White, H. M. Liljestrand, J. A. Holcombe, Analyst 2008, 133, 65-70; t) X. F. Liu, Y. L. Tang, L. H. Wang, J. Zhang, S. P Song, C. H. Fan, S. Wang, Adv. Mater. 2007, 19, 1471-1474; u) Y. Wang, B. Liu, Macromol. Rapid Commun. 2009, 30, 498-503; v) Z. D. Wang, J. H. Lee, Y. Lu, Chem. Commun. 2008, 6005-6007; w) T. Li, S. J. Dong, E. K. Wang, Anal. Chem. 2009, 81, 2144-2149.
- [6] a) S. J. Liu, H. G. Nie, J. H. Jiang, G. L. Shen, R. Q. Yu, Anal. Chem. 2009, 81, 5724–5730; b) X. Zhu, L. F. Chen, Z. Y. Lin, B. Qiu, G. N. Chen, Chem. Commun. 2010, 46, 3149–3151; c) J. M. Lloris, R. Martínez-Máñez, J. Soto, T. Pardo, M. E. Padilla-Tosta, A. Benito, M. D. Marcos, Polyhedron 1999, 18, 3689–3694.
- [7] a) J. H. Huang, W.-H. Wen, Y.-Y. Sun, P.-T. Chou, J.-M. Fang, *J. Org. Chem.* 2005, 70, 5827–5832; b) E. Coronado, J. R. Galán-Mascarós, C. Martí-Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, Md. K. Nazeeruddin, *J. Am. Chem. Soc.* 2005, *127*, 12351–

12356; c) E. Palomares, R. Vilar, J. R. Durrant, *Chem. Commun.* 2004, 362–363; d) O. Brümmer, J. J. La Clair, K. D. Janda, *Org. Lett.* 1999, *1*, 415–418; e) H. Zheng, Z. H. Qian, L. Xu, F. F. Yuan, L. D. Lan, J. G. Xu, *Org. Lett.* 2006, *8*, 859–861.

- [8] a) M. Y. Chae, A. W. Czarnik, J. Am. Chem. Soc. 1992, 114, 9704– 9705; b) F. L. Song, S. Watanabe, P. E. Floreancig, K. Koide, J. Am. Chem. Soc. 2008, 130, 16460–16461.
- [9] a) M. H. Lee, S. W. Lee, S. H. Kim, C. Kang, and J. S. Kim, Org. Lett. 2009, 11, 2101-2104; b) M. H. Lee, B.-K. Cho, J. Yoon, J. S. Kim, Org. Lett. 2007, 9, 4515-4518; c) J.-S. Wu, I.-C. Hwang, K. S. Kim, J. S. Kim, Org. Lett. 2007, 9, 907-910; d) M. G. Choi, Y. H. Kim, J. E. Namgoong, S.-K. Chang, Chem. Commun. 2009, 3560-3562; e) J. E. Namgoong, H. L. Jeon, Y. H. Kim, M. G. Choi, S.-K. Chang, Tetrahedron Lett. 2010, 51, 167-169; f) W. Jiang, W. Wang, Chem. Commun. 2009, 3913-3915; g) K. C. Song, ; J. S. Kim, S. M. Park, K.-C. Chung, S. Ahn, S.-K. Chang, Org. Lett. 2006, 8, 3413-3416; J. S. Kim, S. M. Park, K.-C. Chung, S. Ahn, S.-K. Chang, Org. Lett. 2006, 8, 3413-3416; h) G. X. Zhang, D. Q. Zhang, S. W. Yin, X. D. Yang, Z. G. Shuai, D. B. Zhu, Chem. Commun. 2005, 2161-2163; i) B. Liu, H. Tian, Chem. Commun. 2005, 3156-3158; j) X. Zhang, Y. Xiao, X. Qian, Angew. Chem. 2008, 120, 8145-8149; Angew. Chem. Int. Ed. 2008, 47, 8025-8029; k) J. Ros-Lis, M. D. Marcos, R. Martínez-Máñez, J. Soto, Angew. Chem. 2005, 117, 4479-4482; Angew. Chem. Int. Ed. 2005, 44, 4405-4407.
- [10] X. H. Cheng, Q. Q. Li, J. G. Qin, Z. Li, ACS Appl. Mater. Interfaces 2010, 2, 1066–1072.
- [11] A. K. Singh, J. Das, N. Majumdar, J. Am. Chem. Soc. 1996, 118, 6185–6191.
- [12] a) B. Liu, H. Tian, *Chem. Lett.* 2005, *34*, 686–687; b) B. Valeur, I. Leray, *Coord. Chem. Rev.* 2000, *205*, 3–40; c) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. Mccoy, J. T. Rademacher, T. E. Rice, *Chem. Rev.* 1997, *97*, 1515–1566.
- [13] M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, Anal. Chem. 1996, 68, 1414–1418.
- [14] a) T. L. Kao, C. C. Wang, Y. T. Pan, Y. J. Shiao, J. Y. Yen, C. M. Shu, G. H. Lee, S. M. Peng, W. S. Chung, *J. Org. Chem.* **2005**, *70*, 2912– 2920; b) S. El-Safty, D. Prabhakaran, Y. Kiyozumi, F. Mizukami, *Adv. Funct. Mater.* **2008**, *18*, 1739–1750.

Received: November 14, 2010 Revised: January 25, 2011 Published online: May 19, 2011

www.chemeurj.org