625 though we were able to affect formylation of 2 in only low yield (possibly for steric reasons). 2-Formyl-1,3-dithiane (5) is known^{4.5}, but its alkylation chemistry has not been reported. We have found that addition of 2-lithio-1,3-dithiane to dimethylformamide at -20°C, followed by treatment with 3-bromocyclohexene (4) yielded after workup 70-75% of the aldehyde 1 directly (Scheme A). This reaction has been extended (Scheme B) to a variety of other allylic halides. ### Scheme A 7a-d | 5 | 6 | а | - | |---|---|---|---| | 5 | 6 | а | - | | 6,7 | R ¹ | R ² | \mathbb{R}^3 | Χ | |--------|----------------|-----------------|-----------------|----| | а | Н | Н | Н | Br | | a
b | CH₃ | Н | Н | J | | c
d | Н | CH3 | Н | Br | | d | Н | CH ₃ | CH ₃ | Br | #### Scheme B As evident from the Table, the alkylations with unsymmetrical allylic halides $\bf 6$ yield products $\bf 7$ corresponding to S_N2' reaction. This is probably the result of S-alkylation of the lithium enolate of $\bf 5$ by the allylic halides followed by a [2,3]-type rearrangement⁸. It should be noted that any unreacted 2-formyl-1,3-dithiane can be easily removed from the alkylation product by washing the crude reaction mixture with aqueous (10%) sodium hydroxide. From G.L.C. analysis it was concluded that 2-formyl-1,3-dithiane (5) is completely deprotonated by aqueous sodium hydroxide solution and can be extracted from ether solution. Acidification liberates 5 which can be isolated by ether extraction. Swedish chemists⁶ have reported that reaction of alkylmagnesium bromides with dialkylformamides yields enamines which, in certain cases, can be alkylated *in situ* in high yield. They report, however, that alkyllithium reagents in hexane react with dialkylformamides to form the amino-alcoholates which did not undergo elimination to form enamines. We favor a mechanism that involves addition of 2-lithio-1,3-dithiane to dimethylformamide to yield the amino-al- # In Situ Alkylation of 2-Formyl-1,3-dithiane ## S. R. WILSON, J. MATHEW Department of Chemistry, Indiana University, Bloomington, Indiana 47405, U.S.A. In connection with another synthetic study, it became necessary to develop a convenient synthesis of 2-(3-cyclohexenyl)-2-formyl-1,3-dithiane (1). 2-Alkyl-1,3-dithianes had been formylated 1,2,3 in yields ranging from 50-75%, al- Table. In Situ Alkylation of 2-Formyl-1,3-dithiane (5) | Prod-
uct | Yield ^a
[%] | b.p. [°C]/
torr | Molecular
formulab | ¹H-N.M.R. (CDCl ₃)
δ [ppm] | M.S.
m/e (M =) | |--------------|---------------------------|--------------------|--|---|--------------------------------| | 7a' | 50 | 105°/1 | C ₈ H ₁₂ OS ₂
(188.3) | 9.0 (s, 1 H); 5.8 (m, 1 H); 5.1 (m, 2 H) | - Annual | | 7ь | 48 | 120°/1 | C ₉ H ₁₄ OS ₂
(202.0) | 9.0 (s, 1 H); 5.8 (m, 1 H); 5.1 (m, 2 H); 1.1 (d, 3 H) | 202.04831
(calc. 202.04858) | | 7c | 69 | 115°/1 | $C_9H_{14}OS_2$ (202.0) | 9.1 (s, 1 H); 4.9 (m, 2 H); 1.9 (s, 3 H) | 202.04869
(calc. 202.04858) | | 7 d | 54 | 123°/1 | C ₁₀ H ₁₆ OS ₂
(216.1) | 9.2 (s, 1 H); 6.0 (dd, 1 H); 5.1 (m, 2 H); 1.1 (s, 6 H) | 216.06335
(calc. 216.06424) | ^a Yield of isolated product of >96% purity as determined by ¹H-N.M.R. (220 MHz) and G.L.C. (conditions: OV 101, programmed 40-250 °C) coholate which breaks down to form the stable enolate (Scheme C). 8 ## 2-(3-Cyclohexenyl)-2-formyl-1,3-dithiane (1); Typical Procedure: A solution containing 1,3-dithiane (3; 1.2 g, 0.01 mol) in anhydrous tetrahydrofuran (20 ml) is cooled with stirring under nitrogen to -30 °C (Dry Ice/isopropyl alcohol) and treated dropwise with 2.4 molar n-butyllithium in hexane (4.2 ml, 0.01 mol). After 1 h of additional stirring, dimethylformamide (2.8 g, 0.04 mol) in tetrahydrofuran (5 ml) is added. The mixture is stirred at −20 °C for 2 h and then kept at 0°C (refrigerator) for 12 h. To the resulting white suspension under nitrogen is added 3-bromocyclohexene (4; 2 ml, 3.2 g, 0.02 mol). After stirring for 16 h at 25 °C, the reaction mixture is poured into ice/water (25 ml) and extracted with ether (2×20 ml). The ether extract is washed with 2 normal hydrochloric acid (2 × 20 ml) and then with 10% sodium hydroxide solution (2 × 20 ml). The organic extract is finally washed with water and dried with magnesium sulfate. Evaporation of the ether gives a yellow oil (1.85 g), and distillation gives analytically pure 1; yield: 1.7 g (72%); b.p. 135 °C/1 torr. C₁₁H₁₆OS₂ calc. C 57.89 H 7.01 S 28.07 (228.1) found 57.60 7.05 28.43 M.S.: m/e = 228.06424 (M⁺, calc. 228.06412). $^{1}\text{H-N.M.R.}$ (CHCl₃): $\delta = 9.1$ (s, 1 H, CHO); 5.8 ppm (m, 2 H). Received: January 11, 1980 (Revised form: February 25, 1980) ^b The microanalyses were in satisfactory agreement with the calculated values (C ± 0.26 , H ± 0.26 , S ± 0.26). D. Seebach, E. J. Corey, J. Org. Chem. 40, 231 (1975). ² K. F. Burri, R. A. Cardone, W. Y. Chen, P. Rossen, J. Am. Chem. Soc. 100, 7069 (1978). ³ E. W. Colvin, T. A. Purcell, R. A. Raphael, J. Chem. Soc. Chem. Commun. 1972, 1031. ⁴ A. I. Meyers, R. C. Strickland, J. Org. Chem. 37, 2579 (1972). ⁵ M. Nakane, C. R. Hutchinson, J. Org. Chem. 43, 3922 (1978). ⁶ C. Hansson, B. Wickberg, J. Org. Chem. 38, 3075 (1973). ⁷ S. R. Wilson, R. N. Misra, submitted for publication. Note added: H. J. Reich, M. L. Cohen, J. Am. Chem. Soc. 101, 1307 (1979).