
5-AMINO-3, 3-BIS(TRIFLUOROMETHYL)-1-PHENYL-4-CYANO-4-PYRAZOLINE

K. V. Komarov, N. D. Chkanikov, S. V. Sereda,M. Yu. Antipin, Yu. T. Struchkov,A. F. Kolomiets, and A. V. Fokin

UDC 542.91:548.737: 547.772.2

In our previous work [1, 2], we described the reactions of 1,1-dicyano-2,2-bis(trifluoromethyl)ethylene (I) with arylamines, leading to derivatives of fused six- and seven-membered nitrogen heterocycles. In the present work, we found that the reaction of alkene (I) with phenylhydrazine in absolute Freon-113 leads to 5-amino-3,3-bis(trifluoromethyl)-1-phenyl-4cyano-4-pyrazoline in 89% yield.

Pyrazoline (II) is stable under ordinary conditions and has limited solubility in nonpolar organic solvents. The mass spectrum of (II) shows an M^+ peak. The major fragmentation involves the elimination of the CF₃ groups and the benzene ring. The chemical shifts in the ¹³C and ¹⁹F NMR spectra are given in the Experimental section.

The molecular structure of (II) was unequivocally proven by an x-ray diffraction structural analysis. The atomic coordinates are given in Table 1. The temperature factors may be obtained from the authors. Figure 1 shows a general view of this molecule with the numbering of the atoms. The most important bond lengths: C^3-C^4 , 1.486(7); C^3-N^2 , 1.477(6); C^4-C^5 , 1.378(7); N^2-N^1 , 1.441(6); and $N^1-C^{1'}$, 1.433(7) Å.

We note a number of features of the five-membered heterocycle. This ring is virtually planar (the maximal yield of the atoms from the mean plane is ± 0.02 Å). The conjugation chain apparently includes $C^4=C^5$, N^1-C^5 , C^5-N^3 , and, to a lesser extent, C^4-C^8 . In particular, significant extension of the $C^4=C^5$ bond is observed to 1.378(7) Å in comparison with 1.313 Å for ethylene [3]. Contraction is noted for C^5-N^1 (1.369(6) Å) and, to a greater extent, C^5-N^3 (1.316(7) Å) in comparison with the ordinary $C_{\rm Sp}2^{-N}{\rm Sp}^3$ bond length (1.45 Å) [4]. There

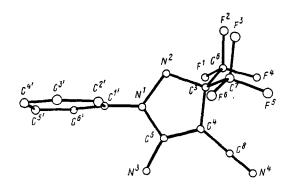


Fig. 1. General view of (II) with numbering of the non-hydrogen atoms. The most important bond lengths: $C^{3}-C^{4}$, 1.486(7); $C^{3}-N^{2}$, 1.477(6); $C^{4}-C^{5}$, 1.378(7); $N^{2}-N^{1}$, 1.441(6), and $N^{1}-C^{1'}$, 1.433(7) Å.

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2417-2419, October, 1988. Original article submitted December 30, 1987.

Atom	X	Y	. z	Atom	X	Ŷ	Z
Fi	9672(5)	6389(1)	1444(4)	C4	7038 (8)	5744(2)	3467 (6)
F^2	8235(6)	6828(1)	3269(4)	C ⁵ C ⁶	5789(7)	5779(2)	4760(6)
F ³ F ⁴	7137(6) 7288(6)	6920(2) 5636(2)	946(4) 66(4)	C	7813(9) 5623(10)	6573(2) 5843(3)	1977 (7) 775(7)
F ⁵	4307(7)	5030(2) 5444(2)	1069(4)	Č*	11182(10)	4590(2)	6695(6)
F ⁶	4667 (7)	6162(2)	-220(4)	Č1'	3162 (8)	6444(2)	5619(6)
N ¹	4122(7)	6117(2)	4471(5)	C ²	1375 (9)	6255 (3)	6365(7)
N^2	4344(6)	6360(2)	2983 (5)	C ³ ′	443(10)	6558(3)	7508(7)
N^3	5979(7)	5550(2)	6113(5)	C⁴′	1194(12)	7042(3)	7833(8)
N^4	9717 (9)	4867 (2)	6813(6)	C∘′	2991 (15)	7223(3)	7109(9)
C³	6237 (8)	6115(2)	2269(6)	C°'	3969(12)	6915(3)	5991 (8)

TABLE 1. Coordinates of the Non-Hydrogen Atoms (×10⁴) in the Structure of 5-Amino-3,3-bis(trifluoromethyl)-1-phenyl-4- cyano-4-pyrazoline

is considerable compression of the pyramidal configuration of N¹ (the sum of the bond angles is 349.5°, which exceeds the sum of the three ideal tetrahedral angles (328.2°) by 21.3°) as a result of conjugation of the unshared N¹ electron pair with the π -system of the C⁴=C⁵ double bond. Conjugation of the C⁴=C⁵ double bond with the cyano group, judging from the bond lengths, is less pronounced: the C⁴=C⁵ single bond is slightly shortened to 1.406(8) Å relative to the standard C_{Sp}²-C_{Sp} bond length (1.426 Å [5]), while the triple bond has the ordinary length (1.158(8) Å). There is no conjugation between the unshared electron pair of N¹ with the phenyl ring π -system due to rotation of the ring (the dihedral angle between the planes of the two rings is 73.4°). The other geometric parameters of (II) have the expected values.

EXPERIMENTAL

The ¹⁹F and ¹³C NMR spectra were taken on a Bruker WP-200SY spectrometer at 188.32 and 50.31 MHz, respectively, in acetone (¹⁹F NMR) and DMSO (¹³C NMR). The chemical shifts were determined relative to TMS as the internal standard (¹³C NMR) and CF₃CO₂H as the external standard (¹⁹F NMR). The mass spectrum was taken on an AEI MS-30 mass spectrometer. The R_f value is given for Silufol UV-254 plates with 10:1 benzene-acetone as the eluent.

A sample of (II) was recrystallized from octane-acetone from the x-ray diffraction study. The unit cell parameters for the monoclinic crystals of (II) at 20°C are as follows: a = 6.256(1), b = 25.272(2), c = 8.699(1) Å, $\beta = 90.47(6)^\circ$, V = 1375.4(3) Å³, $d_{calc} = 1.56$ g/cm³, Z = 4, space group P2₁/c. The unit cell parameters and intensities of 1969 independent reflections were measured on a Hilger-Watts automatic four-circle diffractometer using λMoK_{α} radiation, graphite monochromator, and $\theta/2\theta$ scanning; $2\theta \le 52^\circ$. The structure was solved by the direct method using the MULTAN program and refined by the method of least squares in the anisotropic block diagonal approximation using 1148 reflections with $F^2 \ge 3\sigma$. The positions of all the hydrogen atoms were calculated geometrically and these atoms were included in the refinement with fixed thermal and positional parameters. The final R = 0.069 and R_W = 0.056. All the calculations were carried out on an Eclipse S/200 computer using the INEXTL programs [6].

 $\frac{5-\text{Amino}-3,3-\text{bis}(\text{trifluoromethyl})-1-\text{phenyl}-4-\text{cyano}-4-\text{pyrazoline (II)}. A \text{ sample of 1.09} g alkene (I) was added with stirring over 30 min to an emulsion of 0.5 g phenylhydrazine in 6 ml absolute freon-113. The reaction mixture was left for 4 h at 20°C. The crystals were filtered off and washed with pentane. Recrystallization from CC1₄ gave 1.3 g (89%) white crystalline (II), mp 151-153°C, R_f 0.13. ¹³C NMR spectrum (<math>\delta$, ppm): 162.4 (C⁵), 142.7 (C^{1'}), 129.3 (C^{3'}, C^{5'}), 126.7 (C^{4'}), 124.1 (C^{2'}, C^{6'}), 123.1 (CF₃) (¹J_{CF} 285 Hz), 116.3 (CN), 71.1 (C³), 48.0 (C⁴). ¹⁹F NMR spectrum (δ , ppm): -2.4 s. Mass spectrum, m/z (relative intensity, %): 322 M⁺ (1.55), 253 [M-CF₃]⁺ (100), 77 [C₆H₅]⁺ (73.36), 69 [CF₃]⁺ (27.03). Found: C 44.77; H 2.25; N 17.59%. Calculated for C₁₂H₈N₄F₆: C 44.72; H 2.48; N 17.39%.

CONCLUSIONS

The reaction of phenylhydrazine with 1,1-dicyano-2,2-bis(trifluoromethyl)ethylene leads to 5-amino-3,3-bis(trifluoromethyl)-1-phenyl-4-cyano-4-pyrazoline, whose structure was proven by x-ray diffraction analysis.

LITERATURE CITED

- K. V. Komarov, N. D. Chkanikov, S. V. Sereda, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1917 (1988).
- K. V. Komarov, N. D. Chkanikov, S. V. Sereda, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1920 (1988).
- 3. G. J. H. Nes and A. Van Vos, Acta Crystallogr., <u>33</u>, 1653 (1977).
- 4. M. Burke-Laing and M. Laing, Acta Crystallogr., <u>32</u>, 3216 (1976).
- 5. A. I. Kitaigorodskii (Kitaigorodsky), Molecular Crystals and Molecules, Academic Press, New York-London (1973), p. 431.
- 6. R. G. Gerr, A. I. Yanovskii, and Yu. T. Struchkov, Kristallografiya, 1029 (1983).

HOMOGENEOUS AND SUPPORTED PLATINUM COMPLEX CATALYSTS WITH NITROGEN-CONTAINING LIGANDS IN THE HYDROGENATION OF UNSATURATED HYDROCARBONS

E. G. Kliger, L. P. Shuikina,	UDC 542.971.2:542.941:547.313:
O. P. Parenago, and V. M. Frolov	547.314:547.315

Heterogeneous platinum catalysts are highly active in the hydrogenation of various classes of organic compounds [1, 2]. Information on the use of platinum complexes as hydrogenation catalysts is extremely limited [3, 4].

In our previous work [5], we reported on the synthesis of new platinum complexes with nitrogen-containing ligands, which display high activity in the hydrogenation of unsaturated hydrocarbons. In the present work, results are given for a study of the hydrogenation of unsaturated hydrocarbons in the presence of platinum complex catalysts containing higher aliphatic amines as ligands.

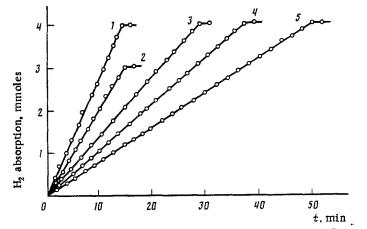


Fig. 1. The kinetic curves for the hydrogenation of 1-hexene (1), cyclopentene (2), 1,3-pentadiene (3), cyclopentadiene (4), and isoprene (5) in the presence of the catalyzer H_2PtC1_6 - $(C_9H_{19})_3N$ - $(i-C_4H_9)_2A1H$ - C_2H_5OH at 20°C, $PH_2 = 40$ kPa, $[Pt] = 5 \cdot 10^{-4}$ mole/liter, amine/Pt = 2, A1/Pt = 8, C_2H_5OH /Pt mole ratio = 8. Toluene served as the solvent. Substrate introduced, mmoles: 4 (1), 3 (2), 2 (3-5).

A. V. Topchiev Institute of Petrochemical Synthesis, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2420-2422, October, 1988. Original article submitted January 25, 1988.