

Library & Archives

Note

A flexible strategy for the regiocontrolled synthesis of pyrazolo[1,5-a]pyrazines

Peter J. Lindsay-Scott, Natalie G. Charlesworth, and Alexandru Grozavu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b02128 • Publication Date (Web): 26 Sep 2017

Downloaded from http://pubs.acs.org on September 26, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A flexible strategy for the regiocontrolled synthesis of pyrazolo[1,5a]pyrazines

Peter J. Lindsay-Scott,* Natalie G. Charlesworth, Alexandru Grozavu

Eli Lilly and Company Limited, Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom *Supporting Information Placeholder*

ABSTRACT: A 4 step protocol for the synthesis of pyrazolo[1,5-a]pyrazines has been developed. Commercially available pyrazoles were alkylated and formylated in a regiocontrolled manner to give pyrazole-5-aldehydes bearing 2,2-dialkoxyethyl substitution on *N*-1. Efficient conditions for the subsequent deprotection and cyclization of these intermediates allowed access to pyrazolo[1,5-a]pyrazines with multiple substitution patterns. The versatility of the pyrazole-5-aldehyde intermediates was further demonstrated through a deprotection and double-reductive amination sequence to give 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazines.

Nitrogen-containing heterocycles are ubiquitous in modern drug discovery.¹ Medicinal chemistry teams frequently incorporate nitrogen atoms in aromatic and heteroaromatic ring systems to modulate key physicochemical properties such as lipophilicity, polarity and hydrogen-bonding ability in their pursuit of new pharmacological agents.² In recent years, pyrazolo[1,5-*a*]pyrazines have emerged as an important class of nitrogen heterocycles. They have been investigated in a variety of biological settings, including as kinase inhibitors (against JAK,^{3a} GSK3,^{3b} PI3K^{3c} and CHK-1^{3d} kinases), dopamine receptor agonists⁴, V1b antagonists⁵ and Orexin receptor antagonists.⁶

Synthetic strategies towards pyrazolo[1,5-a]pyrazines have largely focused on building up the pyrazole ring from pyrazine precursors (Scheme 1a). Using this methodology, 3-substituted pyrazolo[1,5-*a*]pyrazines can be accessed in low yields via the intermolecular reaction of N-aminopyrazinium salts and alkynes,^{3a} whilst the corresponding 6-substituted analogues can be synthesized via intramolecular gold- and silver-catalyzed variants.7 A Pd-mediated tandem C-H functionalizationcyclization tactic has also been explored by Charette and coworkers to construct 2-substituted pyrazolo[1,5-a]pyrazines.⁸ These approaches suffer from several drawbacks, including the use of thermally-hazardous N-amination reagents (e.g. Omesitylenesulfonyl hydroxylamine 1)⁹ to prepare the requisite N-aminopyrazinium starting materials and a limited reported substrate scope. An alternative synthetic approach towards pyrazolo[1,5-a]pyrazines that has received relatively little attention from the synthetic community involves building up the pyrazine ring from pyrazole precursors.^{6,10} Using this strategy, Karp and co-workers were able to form pyrazolo[1,5*a*]pyrazine **3** in 64% yield over 2 steps via the desymmetrization of pyrazole diester 2 (Scheme 1b).¹¹ The products from this desymmetrization approach necessarily contain an ester group in the 2-position, but this can be excised via decarboxylation at high temperature.¹² However, despite these advances, no general method has been reported to date which is capable of providing flexible access to pyrazolo[1,5-*a*]pyrazines bearing multiple substitution patterns in high yields.

Scheme 1. Synthetic strategies towards pyrazolo[1,5*a*]pyrazines

(a) Pyrazine amination-cyclization approach^{3a}

We wondered whether pyrazoles **8** bearing an aldehyde at the 5-position and a 2,2-dialkoxyethyl group on *N*-1 might serve as versatile intermediates for the construction of pyrazolo[1,5-*a*]pyrazines (Scheme 2). In order to investigate this hypothesis, we required synthetic access to these intermediates in a regiocontrolled manner. To this end, we investigated the alkylation of commercially available pyrazole **4** with alkyl bromide **5** in a range of solvents in order to assess the alkylation regioselectivity (Scheme 2a). However, the major product observed in all cases was the undesired regioisomer formed through alkylation pathway (i) (see the Supporting Information). These observations are in accordance with literature precedent,¹³ which suggests that the alkylation of 3- and 3,4-

ACS Paragon Plus Environment

substituted pyrazoles generally leads to mixtures of regioisomeric products favoring the *N*-1 alkylated isomer.

Scheme 2. Pyrazole alkylation regioselectivity challenges and proposed route to pyrazolo[1,5-*a*]pyrazines 9

(a) Regioselectivity challenges in the alkylation of pyrazole 4

In order to overcome these regioselectivity issues, we opted instead to explore an alkylation-formylation strategy (Scheme 2b). Encouraged by reports of the selective metalation of N-1 alkylated pyrazoles at the 5-position,¹⁴ we were intrigued by the possibility of using a 2,2-dialkoxyethyl group on nitrogen to both control the regiochemistry of formylation and to serve as a useful functional handle for further elaboration.¹⁵ We reasoned that the alkylation of either tautomer of 4-substituted pyrazoles 6 ($R^1 = H$) would lead to identical alkylated products 7, which might then undergo regioselective metalation at the most acidic 5-position.¹⁴ In contrast, the alkylation of 3and 3,4-substituted pyrazoles 6 ($R^1 \neq H$) would be expected to generate N-1 alkylated pyrazoles 7 regioselectively, allowing subsequent metalation at the remaining 5-position. We hypothesized that the acid-mediated deprotection of key intermediates 8 and subsequent ring closure with ammonia would then furnish the target heterocycles 9.

A range of commercially available pyrazoles **6** were therefore subjected to alkylation with alkyl bromide **5** (Scheme 3). While 4-substituted pyrazoles were alkylated smoothly without any issues of regioselectivity (see **7a-g**), the alkylation of pyrazoles bearing substituents in the 3-position generated mixtures of regiosomeric products. Gratifyingly, the desired alkylated isomer was formed predominantly in all cases and the regioisomeric mixtures were readily separable by column chromatography.¹⁶ The synthesis of pyrazoles **7k** and **7l** bearing methyl substituents on the alkyl chain required more forcing alkylation conditions.

With a range of alkylated pyrazoles **7a-I** in hand, we set out to explore the formylation step (Scheme 4). Thus, deprotona-

tion of 4-substituted pyrazoles **7a-f** with LDA at low temperature followed by addition of DMF allowed access to pyrazolealdehydes **8a-f** in a regioselective manner, with formylation occurring exclusively at the 5-position (75-89% yield).¹⁶ Despite substitution on the 2,2-dialkoxyethyl group, pyrazoles **8k** and **8l** were also formed in high yields. Moreover, subjection of 3-substituted pyrazoles **7h-j** to the formylation conditions delivered the corresponding pyrazole-aldehydes **8h-j** as single regioisomers. However, *t*-Bu-substituted pyrazole **7g** failed to show any conversion of starting material to the desired product **8g** under the reaction conditions. Interestingly, some elimination of ethanol from the 2,2-dialkoxyethyl group was observed during the formylation of ester-containing substrates **7e** and **7h** (see the Experimental section).

Scheme 3. Alkylation of pyrazoles 6

^{*a*}Cs₂CO₃ (3 equiv), **5** (1.25 equiv), MeCN, 82 °C. ^{*b*}Yield of pure isolated regioisomer after chromatography. ^{*c*}Regioselectivity reported in parentheses was determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}1-bromo-2,2-dimethoxypropane (1.05 equiv), Cs₂CO₃ (1.5 equiv), DMSO, 120 °C. ^{*e*}2-bromo-1,1-diethoxypropane (2 equiv), Cs₂CO₃ (6 equiv), DMSO, 120 °C.

Having prepared the key intermediates 8 in a regiocontrolled fashion, we turned our attention to the acid-mediated acetal deprotection step and subsequent ring closure with ammonia (Scheme 5). Unfortunately, our initial attempts to effect this transformation in a one-pot manner with ammonia sources in the presence of ethanol and acetic acid gave rise to complex reaction mixtures. However, we were delighted to find that an alternative 2 step deprotection-cyclization protocol provided

 the target pyrazolo[1,5-*a*]pyrazines **9** in high yields (Scheme 5). Thus, acetal deprotection of pyrazoles **8** with aqueous TFA^{17} followed by solvent swapping and subsequent cyclization with ammonium acetate furnished the desired products **9**, circumventing the need to isolate the dialdehyde intermediates.¹⁸

Scheme 4. Formylation of alkylated pyrazoles 7

Next, in order to probe the robustness and scalability of the synthetic methodology, we subjected bromopyrazole **12** to the alkylation, formylation, deprotection and cyclization protocols on multigram scale (Scheme 6a). Thus, pyrazolo[1,5-a]pyrazine **9b** was furnished in 63% yield over 4 steps, with only a single chromatographic purification performed at the end of the synthetic sequence. With access secured to pyrazolo[1,5-a]pyrazines bearing substitution at the 2-, 3-, 6- and 7-positions, we then investigated the formation of a 4-substituted analogue (Scheme 6b). Thus, addition of MeMgBr to pyrazole **8a** and subsequent oxidation delivered ketone **13** in 70% yield over 2 steps, which was subjected to the standard deprotec-

tion-cyclization sequence to give pyrazolo[1,5-a]pyrazine 14 in 80% yield over 2 steps.

Scheme 5. Formation of pyrazolo[1,5-a]pyrazines 9

^aStarting material contained compound **10** as an impurity. ^bStarting material contained compound **11** as an impurity.

Scheme 6. Multigram scale synthesis of 9b and further synthetic transformations of pyrazole-aldehyde 8a

(a) Multigram scale synthesis of pyrazolo[1,5-a]pyrazine 9b

(b) Accessing 4-substituted pyrazolo[1,5-a]pyrazine 14

Finally, we explored the synthesis of 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazines from pyrazole **8a** (Scheme 7). These structurally-related compounds represent an important class of heterocycles with widespread applications in

medicinal chemistry.¹⁹ A deprotection and double-reductive amination process was therefore developed, giving rise to saturated analogues **15a-c** in yields of 47-75% over 2 steps.

In summary, we have developed a flexible strategy for the synthesis of pyrazolo[1,5-*a*]pyrazines. The regioselectivity challenges, low yields and thermally-hazardous reagents associated with existing synthetic methodologies have been successfully overcome via a 4 step reaction sequence. Furthermore, the pyrazole-5-aldehyde intermediates were shown to be amenable to functionalization, allowing access to multiple substitution patterns and saturated analogues in a highly regiocontrolled manner.

EXPERIMENTAL SECTION

All reactions were carried out under an atmosphere of N₂ and commercially available reagents were used as received. Thin layer chromatography (TLC) was performed on commercially available pre-coated TLC plates (0.25 mm silica gel with fluorescent indicator UV254) and visualisation was achieved by either the quenching of UV fluorescence or with a KMnO₄ stain. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker AV-HD 400 spectrometer and Bruker Avance III 500 spectrometer. Signal positions were recorded in δ ppm with the abbreviations s, br. s, d, t, q, quint, dd and m denoting singlet, broad singlet, doublet, triplet, quartet, quintet, doublet of doublets and multiplet respectively. All ¹H NMR chemical shifts were referenced to SiMe₄ as an internal standard (0.00 ppm). All ¹³C NMR chemical shifts in CDCl₃ were referenced to the residual solvent peak at 77.00 ppm. All ¹⁹F NMR chemical shifts were referenced to CFCl₃ (0.00 ppm). All coupling constants, J, are quoted in Hz. Infra-red spectra were recorded on a Shimadzu IRAffinity 1 FT-IR spectrometer. Melting points were obtained using a DSC 1 STARe system. Highresolution electrospray ionization (ESI-TOF) mass spectra were obtained with an Agilent Technologies 6230 series timeof-flight mass spectrometer.

General Procedure 1 for alkylation of pyrazoles. To a stirred solution of the pyrazole 6 (1 equiv.) in acetonitrile (8 mL/g) at room temperature was added cesium carbonate (1.5 equiv.) in one portion, followed by a solution of 2-bromo-1,1-diethoxy-ethane 5 (1.05 equiv.) in acetonitrile (2 mL/g) dropwise. The reaction mixture was stirred in an 82 °C heating block for 16 hours, then was cooled to room temperature and filtered through celite, washing with ethyl acetate (20 mL/g). The filtrate was concentrated to give a residue which was purified as specified.

1-(2,2-Diethoxyethyl)-4-iodo-1*H***-pyrazole (7a). 4-Iodo-1***H***-pyrazole (1.02 g, 5.28 mmol) was subjected to General Procedure 1. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 7a** (1.54 g, 4.99 mmol, 94% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2974, 1121, 1055, 941; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.51 (1H, s), 7.50 (1H, s), 4.72 (1H, t, *J* 5.5), 4.20 (2H, d, *J* 5.5), 3.74-3.66 (2H, m), 3.47-3.39 (2H, m), 1.16 (6H, t, *J* 6.9); $\delta_{\rm C}$ (100 MHz, CDCl₃) 144.5, 134.9, 101.2, 63.7, 55.8, 55.4, 15.2; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₁₅IN₂O₂ 310.0178; Found 310.0180.

4-Bromo-1-(2,2-diethoxyethyl)-1*H*-**pyrazole** (7b). 4-Bromo-1*H*-pyrazole (0.993 g, 6.76 mmol) was subjected to General Procedure 1. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 7b (1.59 g, 6.06 mmol, 89% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2976, 1122, 1055, 953; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.49 (1H, s), 7.46 (1H, s), 4.72 (1H, t, *J* 5.4), 4.17 (2H, d, *J* 5.3), 3.74-3.66 (2H, m), 3.48-3.40 (2H, m), 1.17 (6H, t, *J* 6.9); $\delta_{\rm C}$ (100 MHz, CDCl₃) 140.0, 130.6, 101.1, 92.9, 63.7, 55.6, 15.2; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₁₅BrN₂O₂ 262.0317; Found 262.0316.

1-(2,2-Diethoxyethyl)-4-fluoro-1*H*-**pyrazole** (7c). 4-Fluoro-1*H*-pyrazole (0.800 g, 9.23 mmol) was subjected to General Procedure 1. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 7c (1.67 g, 8.29 mmol, 89% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2978, 1580, 1126, 1061, 1020; δ_{H} (400 MHz, CDCl₃) 7.36 (1H, d, *J* 4.1), 7.34 (1H, d, *J* 4.1), 4.71 (1H, t, *J* 5.3), 4.10 (2H, d, *J* 5.3), 3.74-3.66 (2H, m), 3.48-3.41 (2H, m), 1.18 (6H, t, *J* 7.0); δ_{C} (100 MHz, CDCl₃) 149.5 (d, *J* 245.0), 126.4 (d, *J* 13.9), 116.6 (d, *J* 27.9), 101.3, 63.7, 55.9, 15.2; δ_{F} (¹H decoupled, 376 MHz, CDCl₃) -177.5; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₁₅FN₂O₂ 202.1118; Found 202.1110.

1-(2,2-Diethoxyethyl)-4-(trifluoromethyl)-1*H***-pyrazole (7d). 4-(Trifluoromethyl)-1***H***-pyrazole (0.570 g, 4.19 mmol) was subjected to General Procedure 1. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 7d (0.987 g, 3.91 mmol, 93% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2980, 1238, 1115, 1057, 968; \delta_{H} (400 MHz, CDCl₃) 7.75 (1H, s), 7.70 (1H, s), 4.75 (1H, t,** *J* **5.4), 4.22 (2H, d,** *J* **5.3), 3.76-3.68 (2H, m), 3.48-3.40 (2H, m), 1.16 (6H, t,** *J* **7.1); \delta_{C} (100 MHz, CDCl₃) 137.1, 130.0 (q,** *J* **3.7), 122.6 (q,** *J* **266.3), 113.6 (q,** *J* **38.2), 101.0, 63.9, 55.4, 15.1; \delta_{F} (¹H decoupled, 376 MHz, CDCl₃) -56.4; HRMS (ESI)** *m/z***: [M]⁺ Calcd for C₁₀H₁₅F₃N₂O₂ 252.1086; Found 252.1075.**

Ethyl 1-(2,2-diethoxyethyl)-1*H*-**pyrazole-4-carboxylate** (7e). Ethyl 1*H*-pyrazole-4-carboxylate (1.12 g, 7.98 mmol) was subjected to General Procedure 1. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 7e (1.90 g, 7.43 mmol, 93% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2978, 1715, 1554, 1225, 1113, 1059, 1026; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.95 (1H, s), 7.91 (1H, s), 4.78 (1H, t, *J* 5.3), 4.29 (2H, q, *J* 7.2), 4.20 (2H, d, *J* 5.3), 3.75-3.67 (2H, m), 3.48-3.41 (2H, m), 1.35 (3H, t, *J* 7.2), 1.16 (6H, t, *J* 6.9); $\delta_{\rm C}$ (100 MHz, CDCl₃) 163.0, 141.2, 133.9, 115.1, 100.9, 63.7, 60.1, 55.3, 15.1, 14.3; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₂H₂₀N₂O₄ 256.1423; Found 256.1420.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

1-(2,2-Diethoxyethyl)-N,N-dimethyl-1H-pyrazole-4-

carboxamide (7f). *N*,*N*-Dimethyl-1*H*-pyrazole-4-carboxamide (0.485 g, 3.49 mmol) was subjected to General Procedure 1. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-10% methanol/ethyl acetate) to give pyrazole 7f (0.779 g, 3.05 mmol, 87% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2976, 1609, 1551, 1123, 1057; δ_{H} (400 MHz, CDCl₃) 7.81 (1H, s), 7.74 (1H, s), 4.78 (1H, t, *J* 5.3), 4.20 (2H, d, *J* 5.3), 3.75-3.67 (2H, m), 3.49-3.41 (2H, m), 3.19 (3H, br. s), 3.10 (3H, br. s), 1.16 (6H, t, *J* 6.9); δ_{C} (100 MHz, CDCl₃) 164.4, 139.8, 132.7, 117.3, 100.9, 63.5, 55.0, 38.8, 35.8, 15.1; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₂H₂₁N₃O₃ 255.1583; Found 255.1577.

4-(tert-Butyl)-1-(2,2-diethoxyethyl)-1H-pyrazole (7g). To a stirred solution of 4-tert-butyl-1H-pyrazole (0.504 g, 4.05 mmol) in acetonitrile (4.03 mL) at room temperature was added cesium carbonate (1.99 g, 6.09 mmol) in one portion, followed by a solution of 2-bromo-1,1-diethoxyethane (0.661 mL, 4.26 mmol) in acetonitrile (1.01 mL) dropwise. The reaction mixture was stirred in an 82 °C heating block for 16 hours. To the mixture was added cesium carbonate (1.99 g, 6.09 mmol) in one portion, followed by a solution of 2-bromo-1,1-diethoxyethane (0.126 mL, 0.811 mmol) in acetonitrile (0.50 mL) dropwise. The reaction mixture was stirred in an 82 °C heating block for 2 hours, then was cooled to room temperature and filtered through celite, washing with ethyl acetate (100 mL). The filtrate was concentrated to give a residue which was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 7g (0.721 g, 3.00 mmol, 73% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2960, 1126, 1059, 989; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.38 (1H, s), 7.25 (1H, s), 4.72 (1H, t, J 5.5), 4.13 (2H, d, J 5.5), 3.72-3.65 (2H, m), 3.40-3.33 (2H, m), 1.25 (9H, s), 1.14 (6H, t, J 7.0); $\delta_{\rm C}$ (100 MHz, CDCl₃) 136.9, 133.1, 126.8, 101.8, 63.8, 55.1, 31.8, 29.3, 15.2; HRMS (ESI) m/z: [M]⁺ Calcd for C₁₃H₂₄N₂O₂ 240.1838; Found 240.1828.

Ethyl 1-(2,2-diethoxyethyl)-1H-pyrazole-3-carboxylate (**7h**). Ethyl 1*H*-pyrazole-3-carboxylate (1.00 g, 7.17 mmol) was subjected to General Procedure 1. The resultant residue (3:1 r.r. as determined by ¹H NMR analysis on the crude material) was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole **7h** (1.11 g, 4.33 mmol, 60% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2978, 1715, 1229, 1119, 1055, 1024; δ_H (400 MHz, CDCl₃) 7.50 (1H, d, *J* 2.0), 6.79 (1H, d, *J* 2.2), 4.79 (1H, t, *J* 5.4), 4.41 (2H, q, *J* 7.0), 4.28 (2H, d, *J* 5.5), 3.74-3.67 (2H, m), 3.46-3.38 (2H, m), 1.40 (3H, t, *J* 7.1), 1.15 (6H, t, *J* 7.0); δ_C (100 MHz, CDCl₃) 162.3, 143.9, 132.1, 108.7, 101.3, 64.0, 60.9, 55.7, 15.2, 14.4; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₂H₂₀N₂O₄ 256.1423; Found 256.1416.

4-Bromo-1-(2,2-diethoxyethyl)-3-isopropyl-1*H*-**pyrazole** (7i). 4-Bromo-3-isopropyl-1*H*-pyrazole (0.409 g, 2.16 mmol) was subjected to General Procedure 1. The resultant residue (7:1 r.r. as determined by ¹H NMR analysis on the crude material) was purified by flash column chromatography (SiO₂, eluting with 0-30% methyl *tert*-butyl ether/heptane) to give pyrazole 7i (0.492 g, 1.61 mmol, 74% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2970, 1125, 1059, 1028; δ_{H} (400 MHz, CDCl₃) 7.40 (1H, s), 4.72 (1H, t, *J* 5.6), 4.11 (2H, d, *J* 5.5), 3.73-3.66 (2H, m), 3.46-3.38 (2H, m), 3.03 (1H, septet, *J* 6.8), 1.28 (6H, d, *J* 6.8), 1.15 (6H, t, *J* 7.0); δ_{C} (100 MHz, CDCl₃) 155.7, 131.1, 101.2, 91.7, 63.7, 55.3, 26.7, 21.6, 15.2; HRMS (ESI) m/z: [M]⁺ Calcd for C₁₂H₂₁BrN₂O₂ 304.0786; Found 304.0775.

4-Bromo-1-(2,2-diethoxyethyl)-3-(trifluoromethyl)-1*H***-pyrazole** (7j). 4-Bromo-3-(trifluoromethyl)-1*H*-pyrazole (0.505 g, 2.35 mmol) was subjected to General Procedure 1. The resultant residue (>19:1 r.r. as determined by ¹H NMR analysis on the crude material) was purified by flash column chromatography (SiO₂, eluting with 0-20% methyl *tert*-butyl ether/heptane) to give pyrazole 7j (0.644 g, 1.95 mmol, 82% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2980, 1231, 1123, 1059, 1003; δ_H (400 MHz, CDCl₃) 7.57 (1H, s), 4.73 (1H, t, *J* 5.4), 4.21 (2H, d, *J* 5.3), 3.77-3.69 (2H, m), 3.51-3.44 (2H, m), 1.18 (6H, t, *J* 6.9); δ_C (125 MHz, CDCl₃) 140.4 (q, *J* 37.2), 133.4, 120.6 (q, *J* 268.9), 100.7, 91.3, 64.0, 56.0, 15.2; δ_F (¹H decoupled, 376 MHz, CDCl₃) –62.0; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₀H₁₄BrF₃N₂O₂ 330.0191; Found 330.0175.

1-(2,2-Dimethoxypropyl)-4-iodo-1H-pyrazole (7k). To a stirred solution of 4-iodo-1H-pyrazole (0.513 g, 2.65 mmol) in dimethyl sulfoxide (4.11 mL) at room temperature was added cesium carbonate (1.30 g, 3.97 mmol) in one portion, followed by a solution of 1-bromo-2,2-dimethoxypropane (0.376 mL, 2.78 mmol) in dimethyl sulfoxide (1.03 mL) dropwise. The reaction mixture was stirred in a 120 °C heating block for 16 hours, then was cooled to room temperature and filtered through celite, washing with ethyl acetate (80 mL). The filtrate was concentrated, then was diluted with water (30 mL), sat. aq. sodium chloride solution (10 mL) and methyl tert-butyl ether (30 mL) and the layers were separated. The aqueous laver was extracted with methyl tert-butyl ether (50 mL), then the combined organics were dried over Na2SO4 and concentrated to give a residue, which was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 7k (0.645 g, 2.18 mmol, 82% yield) as a pale yellow oil. v_{max} (thin film)/cm⁻¹ 2957, 1175, 1043, 986, 941; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.50 (1H,s), 7.49 (1H, s), 4.24 (2H, s), 3.29 (6H, s), 1.16 (3H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 144.0, 134.5, 100.0, 56.6, 56.5, 48.7, 19.7; HRMS (ESI) m/z: $[M]^+$ Calcd for C₈H₁₃IN₂O₂ 296.0022; Found 296.0024.

1-(1,1-Diethoxypropan-2-yl)-4-iodo-1H-pyrazole (7l). To a stirred solution of 4-iodo-1H-pyrazole (0.545 g, 2.81 mmol) in dimethyl sulfoxide (4.36 mL) at room temperature was added cesium carbonate (5.52 g, 16.9 mmol) in one portion, followed by a solution of 2-bromo-1,1-diethoxy-propane (0.991 mL, 5.62 mmol) in dimethyl sulfoxide (1.09 mL) dropwise. The reaction mixture was stirred in a 120 °C heating block for 16 hours, then was cooled to room temperature and filtered through celite, washing with ethyl acetate (100 mL). The filtrate was concentrated then was diluted with water (30 mL), sat. aq. sodium chloride solution (10 mL) and methyl tertbutyl ether (30 mL) and the layers were separated. The aqueous layer was extracted with methyl tert-butyl ether (30 mL), then the combined organics were dried over Na₂SO₄ and concentrated to give a residue, which was purified by flash column chromatography (SiO₂, eluting with 10-15% ethyl acetate/heptane) to give pyrazole 71 (0.631 g, 1.95 mmol, 69% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2976, 1115, 1105, 1059, 939; δ_H (400 MHz, CDCl₃) 7.52 (1H, s), 7.51 (1H, s), 4.56 (1H, d, J 4.5), 4.35 (1H, quint, J 6.6), 3.74-3.66 (1H, m), 3.65-3.57 (1H, m), 3.44-3.37 (1H, m), 3.32-3.24 (1H, m), 1.54 (3H, d, J 7.2), 1.17 (3H, t, J 7.0), 1.08 (3H, t, J 7.0); δ_C (100 MHz, CDCl₃) 143.9, 133.6, 104.2, 64.5, 64.2, 60.9, 55.3, 15.2, 15.1, 14.7; HRMS (ESI) m/z: [M]⁺ Calcd for $C_{10}H_{17}IN_2O_2$ 324.0335; Found 324.0328.

General Procedure 2 for formylation of pyrazole derivatives. To a flask was added tetrahydrofuran (6 mL/g) and diisopropylamine (1.6 equiv.) at room temperature and the mixture was stirred in a dry-ice/acetone bath. To the mixture was added *n*-butyl lithium solution (2.5 M in hexanes, 1.5 equiv.) dropwise and the mixture was stirred in a dryice/acetone bath for 30 minutes. To the reaction mixture was added a solution of the pyrazole 7 (1 equiv.) in tetrahydrofuran (2 mL/g) dropwise and the mixture was stirred in a dryice/acetone bath for 30 minutes. To the reaction mixture was added a solution of N,N-dimethylformamide (1.8 equiv.) in tetrahydrofuran (2 mL/g) dropwise and the reaction mixture was stirred in a dry-ice/acetone bath for 1 hour. To the reaction mixture was added 2-propanol (2.5 equiv.) dropwise and the reaction mixture was transferred to an ice/water bath. To the reaction mixture was added sat. aq. ammonium chloride solution (20 mL/g) over 5 minutes and water (5 mL/g). The mixture was extracted with methyl tert-butyl ether (2 x 50 mL/g) and the combined organics were dried over sodium sulfate and concentrated to give a residue which was purified as specified.

1-(2,2-Diethoxyethyl)-4-iodo-1H-pyrazole-5-

carbaldehyde (8a). Pyrazole **7a** (0.516 g, 1.66 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde **8a** (0.427 g, 1.26 mmol, 75% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2974, 1684, 1125, 1057, 982; δ_{H} (400 MHz, CDCl₃) 9.81 (1H, s), 7.61 (1H, s), 4.81 (1H, t, *J* 5.7), 4.68 (2H, d, *J* 5.7), 3.74-3.66 (2H, m), 3.51-3.43 (2H, m), 1.13 (6H, t, *J* 7.0); δ_{C} (100 MHz, CDCl₃) 180.6, 144.8, 136.3, 100.3, 68.7, 62.7, 53.7, 15.1; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₀H₁₅IN₂O₃ 338.0127; Found 338.0118.

4-Bromo-1-(2,2-diethoxyethyl)-1H-pyrazole-5-

carbaldehyde (8b). Pyrazole **7b** (1.59 g, 6.07 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde **8b** (1.53 g, 5.27 mmol, 86% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2976, 1686, 1126, 1059, 976; δ_{H} (400 MHz, CDCl₃) 9.90 (1H, s), 7.56 (1H, s), 4.82 (1H, t, *J* 5.6), 4.65 (2H, d, *J* 5.5), 3.74-3.66 (2H, m), 3.52-3.44 (2H, m), 1.14 (6H, t, *J* 7.0); δ_{C} (100 MHz, CDCl₃) 179.3, 139.9, 134.9, 103.6, 100.3, 62.6, 53.9, 15.1; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₀H₁₅BrN₂O₃ 290.0266; Found 290.0256.

1-(2,2-Diethoxyethyl)-4-fluoro-1H-pyrazole-5-

carbaldehyde (8c). Pyrazole **7c** (1.61 g, 7.98 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde **8c** (1.63 g, 7.11 mmol, 89% yield) as a pale yellow oil. v_{max} (thin film)/cm⁻¹ 2978, 1690, 1126, 1063; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.89 (1H, s), 7.41 (1H, d, *J* 3.9), 4.80 (1H, t, *J* 5.6), 4.56 (2H, d, *J* 5.7), 3.74-3.66 (2H, m), 3.51-3.44 (2H, m), 1.14 (6H, t, *J* 7.0); $\delta_{\rm C}$ (100 MHz, CDCl₃); 177.0 (d, *J* 2.9), 153.9 (d, *J* 266.3), 125.7 (d, *J* 11.7), 125.6 (d, *J* 16.9), 100.3, 62.7, 54.4, 15.1; $\delta_{\rm F}$ (¹H decoupled, 376 MHz, CDCl₃) –167.7; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₀H₁₅FN₂O₃ 230.1067; Found 230.1062.

1-(2,2-Diethoxyethyl)-4-(trifluoromethyl)-1*H*-pyrazole-5carbaldehyde (8d). Pyrazole 7d (0.898 g, 3.56 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde **8d** (0.779 g, 2.78 mmol, 78% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2980, 1703, 1254, 1215, 1126, 1069; $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.05 (1H, s), 7.79 (1H, s), 4.83 (1H, t, *J* 5.6), 4.71 (2H, d, *J* 5.7), 3.75-3.68 (2H, m), 3.51-3.43 (2H, m), 1.13 (6H, t, *J* 7.1); $\delta_{\rm C}$ (125MHz, CDCl₃) 178.7, 137.2 (q, *J* 3.6), 136.3 (q, *J* 3.6), 122.0 (q, *J* 268.0), 118.3 (q, *J* 39.1), 100.3, 63.0, 54.1, 15.1; $\delta_{\rm F}$ (¹H decoupled, 376 MHz, CDCl₃) -54.5; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₁H₁₅F₃N₂O₃ 280.1035; Found 280.1063.

Ethyl 1-(2,2-diethoxyethyl)-5-formyl-1*H***-pyrazole-4carboxylate (8e). Pyrazole 7e (1.83 g, 7.13 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde 8e (1.52 g, 5.55 mmol, 77% yield corrected for 4:1 mixture of 8e:10) as a pale yellow oil. Data listed for major product. v_{max} (thin film)/cm⁻¹ 2978, 1717, 1688, 1209, 1049; δ_H (400 MHz, CDCl₃) 10.50 (1H, s), 7.95 (1H, s), 4.85 (1H, t,** *J* **4.3), 4.72 (2H, d,** *J* **4.3), 4.37 (2H, q,** *J* **7.2), 3.73-3.66 (2H, m), 3.51-3.44 (2H, m), 1.39 (3H, t,** *J* **6.9), 1.13 (6H, t,** *J* **6.6); δ_C (100 MHz, CDCl₃) 182.4, 162.2, 140.9, 138.7, 119.2, 100.3, 62.5, 61.1, 54.0, 15.1, 14.2; HRMS (ESI)** *m/z***: [M]⁺ Calcd for C₁₃H₂₀N₂O₅ 284.1372; Found 284.1365.**

1-(2,2-Diethoxyethyl)-5-formyl-N,N-dimethyl-1H-

pyrazole-4-carboxamide (8f). To a flask was added tetrahydrofuran (2.45 mL) and diisopropylamine (0.472 mL, 3.36 mmol) at room temperature and the mixture was stirred in a dry-ice/acetone bath. To the mixture was added *n*-butyl lithium solution (2.5 M in hexanes, 1.28 mL, 3.20 mmol) dropwise and the mixture was stirred in a dry-ice/acetone bath for 30 minutes. To the reaction mixture was added a solution of pyrazole **7f** (408 mg, 1.60 mmol) in tetrahydrofuran (0.816 mL) dropwise and the mixture was stirred in a dry-ice/acetone bath for 30 minutes. To the reaction mixture was added a solution of N,N-dimethylformamide (0.223 mL, 2.88 mmol) in tetrahydrofuran (0.816 mL) dropwise and the reaction mixture was stirred in a dry-ice/acetone bath for 1 hour. To the reaction mixture was added 2-propanol (0.305 mL, 4.00 mmol) dropwise and the reaction mixture was transferred to an ice/water bath. To the reaction mixture was added sat. aq. ammonium chloride solution (20 mL) over 5 minutes and water (5 mL). The mixture was extracted with 2-methyltetrahydrofuran (3 x 30 mL) and then with 9:1 ethyl acetate/2-propanol (3 x 30 mL) and the combined organics were dried over sodium sulfate and concentrated to give a residue which was purified by flash column chromatography (SiO₂, eluting with 50-80% ethyl acetate/heptane) to give pyrazole-aldehyde 8f (0.356 g, 1.26 mmol, 78% yield) as a pale yellow oil. v_{max} (thin film)/cm⁻¹ 2976, 1688, 1624, 1396, 1126, 1057; δ_H (400 MHz, CDCl₃) 10.09 (1H, s), 7.62 (1H, s), 4.84 (1H, t, J 5.5), 4.67 (2H, d, J 5.5), 3.75-3.68 (2H, m), 3.52-3.45 (2H, m), 3.12 (6H, s), 1.14 (6H, t, J 6.8); δ_C (100 MHz, CDCl₃) 181.1, 163.4, 137.8, 137.6, 123.3, 100.4, 62.8, 53.8, 39.2, 35.4, 15.1; HRMS (ESI) m/z: [M]⁺ Calcd for C₁₃H₂₁N₃O₄ 283.1532; Found 283.1537.

Ethyl 1-(2,2-diethoxyethyl)-5-formyl-1*H*-pyrazole-3carboxylate (8h). Pyrazole 7h (1.11 g, 4.33 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde 8h

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 (0.549 g, 1.96 mmol, 45% yield corrected for 13:1 mixture of **8h:11**) as a white solid. Data listed for major product. m.p. 39-42 °C; v_{max} (thin film)/cm⁻¹ 2978, 1722, 1692, 1213, 1123, 1057; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.93 (1H, s), 7.41 (1H, s), 4.86 (1H, t, *J* 5.6), 4.74 (2H, d, *J* 5.3), 4.44 (2H, q, *J* 7.1), 3.75-3.68 (2H, m), 3.49-3.41 (2H, m), 1.41 (3H, t, *J* 7.2), 1.12 (6H, t, *J* 7.0); $\delta_{\rm C}$ (100 MHz, CDCl₃) 179.5, 161.2, 143.3, 141.0, 115.3, 100.6, 63.2, 61.3, 53.8, 15.0, 14.2; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₃H₂₀N₂O₅ 284.1372; Found 284.1376.

4-Bromo-1-(2,2-diethoxyethyl)-3-isopropyl-1*H***-pyrazole-5-carbaldehyde (8i).** Pyrazole **7i** (0.415 g, 1.36 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazole-aldehyde **8i** (0.212 g, 0.636 mmol, 46% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2972, 1686, 1119, 1061, 1030; δ_H (400 MHz, CDCl₃) 9.85 (1H, s), 4.81 (1H, t, *J* 5.6), 4.59 (2H, d, *J* 5.7), 3.74-3.67 (2H, m), 3.49-3.41 (2H, m), 3.07 (1H, septet, *J* 7.0), 1.31 (6H, d, *J* 7.0), 1.12 (6H, t, *J* 7.0); δ_C (100 MHz, CDCl₃) 179.7, 155.7, 135.1, 102.4, 100.3, 62.4, 53.5, 26.5, 21.4, 15.1; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₃H₂₁BrN₂O₃ 332.0736; Found 332.0729.

4-Bromo-1-(2,2-diethoxyethyl)-3-(trifluoromethyl)-1*H***pyrazole-5-carbaldehyde (8j).** Pyrazole **7j** (0.592 g, 1.79 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazolealdehyde **8j** (0.491 g, 1.37 mmol, 76% yield) as a pale yellow oil. v_{max} (thin film)/cm⁻¹ 2980, 1695, 1225, 1130, 1059, 1009; δ_H (400 MHz, CDCl₃) 9.92 (1H, s), 4.84 (1H, t, *J* 5.7), 4.69 (2H, d, *J* 5.7), 3.75-3.67 (2H, m), 3.52-3.45 (2H, m), 1.13 (6H, t, *J* 7.0); δ_C (126 MHz, CDCl₃) 179.1, 140.3 (q, *J* 37.2), 136.7, 120.0 (q, *J* 269.8), 100.9, 98.8, 62.8, 54.2, 15.0; δ_F (¹H decoupled, 376 MHz, CDCl₃) –62.2; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₁H₁₄BrF₃N₂O₃ 358.0140; Found 358.0120.

1-(2,2-Dimethoxypropyl)-4-iodo-1H-pyrazole-5-

carbaldehyde (8k). Pyrazole 7k (0.573 g, 1.94 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde 8k (0.535 g, 1.65 mmol, 85% yield) as a pale yellow solid. m.p. 76-79 °C; v_{max} (thin film)/cm⁻¹ 2992, 1686, 1045; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.81 (1H, s), 7.63 (1H, s), 4.74 (2H, s), 3.28 (6H, s), 1.17 (3H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 180.7, 145.0, 136.6, 100.3, 69.1, 54.3, 48.7, 19.9; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₁₃IN₂O₃ 323.9971; Found 323.9964.

1-(1,1-Diethoxypropan-2-yl)-4-iodo-1H-pyrazole-5-

carbaldehyde (81). Pyrazole **71** (0.509 g, 1.57 mmol) was subjected to General Procedure 2. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-20% ethyl acetate/heptane) to give pyrazole-aldehyde **81** (0.490 g, 1.39 mmol, 88% yield) as a pale yellow oil. v_{max} (thin film)/cm⁻¹ 2976, 1688, 1113, 1061, 1015, 957; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.82 (1H, s), 7.62 (1H, s), 5.47 (1H, quint, *J* 7.0), 4.69 (1H, d, *J* 7.2), 3.75-3.68 (1H, m), 3.59-3.49 (2H, m), 3.29-3.21 (1H, m), 1.55 (3H, d, *J* 6.8), 1.22 (3H, t, *J* 7.0), 0.94 (3H, t, *J* 7.0); $\delta_{\rm C}$ (100 MHz, CDCl₃) 180.8, 144.6, 136.4, 104.2, 68.6, 63.5, 62.7, 57.9, 15.9, 15.2, 15.1; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₁H₁₇IN₂O₃ 352.0284; Found 352.0274.

General Procedure 3 for deprotection and cyclization of pyrazole derivatives. To a flask was added the pyrazole-5carbaldehyde 8 (1 equiv.), trifluoroacetic acid (4 mL/g), water

(2 mL/g) and 2-methyltetrahydrofuran (2 mL/g) at room temperature. The reaction mixture was stirred in a 40 °C heating block for 3 hours, then was cooled to room temperature and concentrated to give a residue, which was concentrated from toluene (3 x 5 mL/g). The resultant residue was combined with ethanol (8 mL/g), acetic acid (3 equiv.) and ammonium acetate (3 equiv.) and the mixture was stirred at room temperature for 1 hour. The reaction mixture was concentrated and then water (20 mL/g) and 2-methyltetrahydrofuran (20 mL/g) were added. The mixture was stirred at room temperature and solid potassium carbonate was added portionwise until the aqueous laver reached pH 8, then the lavers were separated and the aqueous layer was extracted with 2-methyltetrahydrofuran (20 mL/g). The combined organics were dried over sodium sulfate and concentrated to give a residue which was purified as specified.

3-Iodopyrazolo[1,5-*a*]**pyrazine (9a).** Pyrazole-aldehyde **8a** (0.337 g, 1.00 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine **9a** (0.205 g, 0.837 mmol, 83% yield) as a white solid. m.p. 114-116 °C; v_{max} (thin film)/cm⁻¹ 3105, 1506, 1339, 1287, 1227; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.97 (1H, s), 8.36 (1H, d, *J* 4.9), 8.05 (1H, s), 7.93 (1H, d, *J* 4.9); $\delta_{\rm C}$ (100 MHz, CDCl₃) 146.7, 144.6, 136.1, 130.0, 121.9, 50.0; HRMS (ESI) *m*/*z*: [M]⁺ Calcd for C₆H₄IN₃ 244.9450; Found 244.9448.

3-Bromopyrazolo[1,5-*a*]pyrazine (9b). *Method A*: Pyrazole-aldehyde 8b (0.538 g, 1.85 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-a]pyrazine 9b (0.301 g, 1.52 mmol, 82% yield) as a pale yellow solid. Method B: 4-Bromo-1H-pyrazole (3.08 g, 21.0 mmol) was subjected to General Procedure 1. The resultant residue was taken forward without any further purification and subjected to General Procedure 2, assuming 100% yield for the first step. The resultant residue was taken forward without any further purification and subjected to General Procedure 3, assuming 100% yield for the second step. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-a]pyrazine 9b (2.65 g, 13.4 mmol, 63% overall yield from 4-bromo-1*H*-pyrazole) as a pale yellow solid. m.p. 103-106 °C; v_{max} (thin film)/cm⁻¹ 3015, 1514, 1425, 1346, 1310, 1294, 1269, 1225; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.04 (1H, s), 8.34 (1H, d, J 4.9), 8.01 (1H, s), 7.93 (1H, d, J 5.1); δ_H (400 MHz, (CD₃)₂SO) 9.13 (1H, s), 8.85 (1H, d, J 4.5), 8.36 (1H, s), 8.02 (1H, d, J 4.5); δ_C (100 MHz, CDCl₃) 143.6, 142.1, 133.6, 129.9, 121.8, 86.5; HRMS (ESI) m/z: [M]⁺ Calcd for C₆H₄BrN₃ 196.9589; Found 196.9578. Data were consistent with those previously reported in the literature.²⁰

3-Fluoropyrazolo[1,5-*a*]**pyrazine** (9c). Pyrazole-aldehyde **8c** (1.44 g, 6.24 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine **9c** (0.574 g, 4.18 mmol, 67% yield) as a white solid. m.p. 65-68 °C; v_{max} (thin film)/cm⁻¹ 3101, 1622, 1558, 1481, 1362, 1105; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.07 (1H, s), 8.21 (1H, d, *J* 3.9), 7.87 (1H, d, *J* 3.5), 7.83 (1H, d, *J* 4.9); $\delta_{\rm C}$ (100 MHz, CDCl₃) 142.3 (d, *J* 5.9), 141.2 (d, *J* 251.6), 129.2, 127.6 (d, *J* 11.7), 123.2 (d, *J* 27.9), 121.3; $\delta_{\rm F}$ (¹H decoupled, 376 MHz, CDCl₃) -178.2; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₆H₄FN₃ 137.0389; Found 137.0391.

3-(Trifluoromethyl)pyrazolo[1,5-*a*]**pyrazine**(9d). Pyrazole-aldehyde **8d** (0.637 g, 2.27 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine **9d** (0.294 g, 1.57 mmol, 69% yield) as a white solid. m.p. 68-71 °C; v_{max} (thin film)/cm⁻¹ 3134, 1545, 1362, 1217, 1117, 1007; δ_H (400 MHz, CDCl₃) 9.25 (1H, s), 8.46 (1H, d, *J* 4.7), 8.26 (1H, s), 8.09 (1H, d, *J* 4.3); δ_C (125 MHz, CDCl₃) 143.6, 140.3 (q, *J* 3.0), 132.9, 131.0, 122.5 (q, *J* 268.0), 121.9, 104.6 (q, *J* 40.9); δ_F (¹H decoupled, 376 MHz, CDCl₃) –55.2; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₇H₄F₃N₃ 187.0357; Found 187.0355.

Ethyl pyrazolo[1,5-a]pyrazine-3-carboxylate (9e). Pyrazole-aldeyhde 8e (1.42 g, 5.19 mmol corrected for 4:1 mixture of 8e:10) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-a]pyrazine 9e (0.919 g, 4.81 mmol, 92% yield) as a yellow solid. m.p. 85-87 °C; v_{max} (thin film)/cm⁻¹ 3100, 1697, 1487, 1352, 1285, 1233, 1057, 743; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.61 (1H, s), 8.48 (1H, s), 8.45 (1H, dd, J 4.7, 1.4), 8.09 (1H, d, J 4.5), 4.44 (2H, q, J 7.0), 1.45 (3H, t, J 7.1); δ_H (400 MHz, (CD₃)₂SO) 9.49 (1H, s), 8.99 (1H, d, J 4.9), 8.62 (1H, s), 8.20 $(1H, d, J 4.7), 4.37 (2H, q, J 7.1), 1.37 (3H, t, J 7.2); \delta_{C} (100)$ MHz, CDCl₃) 162.3, 145.6, 144.7, 135.1, 131.3, 122.1, 106.2, 60.7, 14.4; HRMS (ESI) m/z: $[M]^+$ Calcd for C₉H₉N₃O₂ 191.0695; Found 191.0695. Data were consistent with those previously reported in the literature.²⁰

N,*N*-Dimethylpyrazolo[1,5-*a*]pyrazine-3-carboxamide (9f). Pyrazole-aldeyhde 8f (0.365 g, 1.29 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 0-10% methanol/ethyl acetate) to give pyrazolo[1,5-*a*]pyrazine 9f (0.244 g, 1.28 mmol, 99% yield) as a white solid. m.p. 123-126 °C; v_{max} (thin film)/cm⁻¹ 3115, 1628, 1611, 1526, 1410, 1042; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.55 (1H, s), 8.40 (1H, d, *J* 4.5), 8.18 (1H, s), 8.03 (1H, d, *J* 4.7), 3.26 (6H, br. s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 163.6, 146.3, 141.4, 136.0, 130.9, 121.5, 108.9, 39.0, 35.9; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₁₀N₄O 190.0855; Found 190.0871.

Ethyl pyrazolo[1,5-*a*]pyrazine-2-carboxylate (9h). Pyrazole-aldeyhde 8h (0.449 g, 1.60 mmol corrected for 13:1 mixture of 8h:11) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine 9h (0.240 g, 1.25 mmol, 78% yield) as an off-white solid. m.p. 111-113 °C; v_{max} (thin film)/cm⁻¹ 3105, 1209, 1105, 1016; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.15 (1H, s), 8.45 (1H, d, *J* 4.5), 8.00 (1H, d, *J* 4.7), 7.36 (1H, s), 4.51 (2H, q, *J* 7.1), 1.46 (3H, t, *J* 7.0); $\delta_{\rm C}$ (100 MHz, CDCl₃) 161.9, 146.0, 145.3, 136.2, 131.2, 121.9, 102.0, 61.7, 14.3; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₉N₃O₂ 191.0695; Found 191.0695.

3-Bromo-2-isopropylpyrazolo[1,5-*a***]pyrazine (9i).** Pyrazole-aldeyhde **8i** (0.168 g, 0.503 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine **9i** (0.102 g, 0.423 mmol, 84% yield) as a yellow solid. m.p. 45-49 °C; v_{max} (thin film)/cm⁻¹ 2968, 1512, 1489, 1314, 1271; δ_{H} (400 MHz,

CDCl₃) 8.93 (1H, s), 8.27 (1H, d, J 4.3), 7.85 (1H, d, J 4.7), 3.32 (1H, septet, J 7.0), 1.40 (6H, d, J 7.0); $\delta_{\rm C}$ (100 MHz, CDCl₃) 159.0, 143.0, 134.2, 129.3, 121.6, 84.8, 27.0, 21.6; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₁₀BrN₃ 239.0058; Found 239.0048.

3-Bromo-2-(trifluoromethyl)pyrazolo[1,5-*a***]pyrazine** (9j). Pyrazole-aldehyde **8**j (0.427 g, 1.19 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine **9**j (0.279 g, 1.05 mmol, 88% yield) as an off-white solid. m.p. 72-75 °C; v_{max} (thin film)/cm⁻¹ 3094, 1207, 1182, 1136, 1024; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.14 (1H, s), 8.38 (1H, dd, *J* 4.9, 1.4), 8.10 (1H, d, *J* 4.9); $\delta_{\rm C}$ (125 MHz, CDCl₃) 144.7, 142.2 (q, *J* 37.2), 134.9, 132.0, 121.7, 120.4 (q, *J* 270.7), 85.0; $\delta_{\rm F}$ (¹H decoupled, 376 MHz, CDCl₃) –61.5; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₇H₃BrF₃N₃ 264.9462; Found 264.9455.

3-Iodo-6-methylpyrazolo[1,5-*a***]pyrazine (9k).** Pyrazolealdehyde **8k** (0.482 g, 1.49 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine **9k** (0.345 g, 1.33 mmol, 89% yield) as an off-white solid. m.p. 117-120 °C; v_{max} (thin film)/cm⁻¹ 3103, 1520, 1420, 1321, 1277; δ_{H} (400 MHz, CDCl₃) 8.87 (1H, s), 8.19 (1H, s), 7.97 (1H, s), 2.57 (3H, s); δ_{C} (100 MHz, CDCl₃) 146.2, 143.4, 139.2, 134.7, 119.0, 49.2, 20.7; HRMS (ESI) *m*/*z*: [M]⁺ Calcd for C₇H₆IN₃ 258.9606; Found 258.9604.

3-Iodo-7-methylpyrazolo[1,5-*a*]**pyrazine (91).** Pyrazolealdehyde **81** (0.423 g, 1.20 mmol) was subjected to General Procedure 3. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-*a*]pyrazine **91** (0.259 g, 1.00 mmol, 83% yield) as a white solid. m.p. 107-110 °C; v_{max} (thin film)/cm⁻¹ 3084, 1526, 1321, 1300, 1092; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.88 (1H, s), 8.08 (1H, s), 7.81 (1H, s), 2.74 (3H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 146.3, 142.2, 136.0, 131.9, 128.9, 50.0, 14.2; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₇H₆IN₃ 258.9606; Found 258.9605.

(±)-1-(1-(2,2-Diethoxyethyl)-4-iodo-1*H*-pyrazol-5-

yl)ethan-1-ol (16). To a flask was added pyrazole-aldehyde 8a (0.612 g, 1.81 mmol) and tetrahydrofuran (6.12 mL) at room temperature and the mixture was stirred in a dry-ice/acetone bath. To the reaction mixture was added methylmagnesium bromide solution (3.0 M in diethyl ether, 1.81 mL, 5.43 mmol) dropwise and the mixture was stirred in a dry-ice/acetone bath for 1 hour. The reaction mixture was transferred to a -50 °C cooling bath and stirred for 30 minutes, then 2-propanol (0.346 mL, 4.52 mmol) was added dropwise and the reaction mixture was transferred to an ice/water bath. To the reaction mixture was added sat. aq. ammonium chloride solution (20 mL) over 5 minutes and water (5 mL). The mixture was extracted with methyl tert-butyl ether (2 x 30 mL) and the combined organics were dried over sodium sulfate and concentrated to give a residue which was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazole 16 (0.494 g, 1.40 mmol, 77% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 3356, 2976, 1373, 1115, 1061; δ_H (400 MHz, CDCl₃) 7.45 (1H, s), 5.18-5.10 (1H, m), 4.79 (1H, t, J 5.2), 4.60 (1H, dd, J 14.0, 7.0), 4.35 (1H, dd, J 13.7, 4.1), 3.78-3.67 (2H, m), 3.59-3.49 (2H, m), 3.36-3.28 (1H, m), 1.54 (3H, d, J 6.4), 1.19 (3H, t, J 6.9), 1.08 (3H, t, J 6.9); δ_C

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 (100 MHz, CDCl₃) 145.5, 144.5, 101.8, 65.0, 63.7, 63.6, 56.9, 53.3, 22.8, 15.2, 15.0; HRMS (ESI) m/z: [M]⁺ Calcd for $C_{11}H_{19}IN_2O_3$ 354.0440; Found 354.0434.

1-(1-(2,2-Diethoxyethyl)-4-iodo-1*H*-pyrazol-5-yl)ethan-1-

one (13). To a flask was added pyrazole 16 (0.417 g, 1.18 mmol) and dichloromethane (4.17 mL) at room temperature and the mixture was stirred in an ice/water bath. To the mixture was added iodobenzene diacetate (773 mg, 2.35 mmol) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (0.0184 g, 0.118 mmol) and the mixture was stirred at room temperature for 2 hours. To the reaction mixture was added sat. aq. sodium thiosulfate solution (5mL) and the mixture was stirred at room temperature for 30 minutes, then water (10 mL) was added. The mixture was extracted with dichloromethane (3 x 10 mL) and the combined organics were dried over sodium sulfate and concentrated to give a residue which was purified by flash column chromatography (SiO2, eluting with 0-20% ethyl acetate/heptane) to give pyrazole 13 (0.377 g, 1.07 mmol, 91% yield) as a colourless oil. v_{max} (thin film)/cm⁻¹ 2976, 1678, 1244, 1125, 1061; δ_H (400 MHz, CDCl₃) 7.57 (1H, s), 4.74 (1H, t, J 5.3), 4.64 (2H, d, J 5.3), 3.71-3.64 (2H, m), 3.49-3.41 (2H, m), 2.76 (3H, s), 1.13 (6H, t, J 7.1); $\delta_{\rm C}$ (100 MHz, CDCl₃) 190.4, 145.5, 141.1, 100.7, 62.7, 62.7, 54.5, 31.6, 15.1; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₁H₁₇IN₂O₃ 352.0284; Found 352.0284.

3-Iodo-4-methylpyrazolo[1,5-a]pyrazine (14). To a flask was added pyrazole 13 (329 mg, 0.934 mmol), trifluoroacetic acid (1.32)mL), water (0.658)mL) and 2methyltetrahydrofuran (0.658 mL) at room temperature. The reaction mixture was stirred in a 40 °C heating block for 3 hours, then was cooled to room temperature and concentrated to give a residue, which was concentrated from toluene (3 x 5 mL). The resultant residue was combined with ethanol (2.08 mL), acetic acid (0.164 mL, 2.80 mmol) and ammonium acetate (0.216 g, 2.80 mmol) and the mixture was stirred at room temperature for 1 hour. The reaction mixture was concentrated and then water (20 mL) and 2-methyltetrahydrofuran (20 mL) were added. The mixture was stirred at room temperature and solid potassium carbonate was added portionwise until the aqueous layer reached pH 8. The layers were then separated and the aqueous layer was extracted with methyltetrahydrofuran (20 mL). The combined organics were dried over sodium sulfate, and concentrated to give a residue which was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give pyrazolo[1,5-a]pyrazine 14 (0.195 g, 0.754 mmol, 80% yield) as a yellow solid. m.p. 137-139 °C; v_{max} (thin film)/cm⁻¹ 3082, 1487, 1377, 1325; δ_H (400 MHz, CDCl₃) 8.30 (1H, d, J 4.7), 8.00 (1H, s), 7.73 (1H, d, J 4.7), 3.07 (3H, s); δ_C (100 MHz, CDCl₃) 154.0, 147.8, 134.6, 128.9, 121.2, 49.1, 23.6; HRMS (ESI) m/z: $[M]^+$ Calcd for C₇H₆IN₃ 258.9606; Found 258.9601.

General Procedure 4 for deprotection and reductive amination of pyrazole derivatives. To a flask was added the pyrazole-aldehyde 8a (1 equiv.), trifluoroacetic acid (4 mL/g), water (2 mL/g) and 2-methyltetrahydrofuran (2 mL/g) at room temperature. The reaction mixture was stirred in a 40 °C heating block for 3 hours, then was cooled to room temperature and concentrated to give a residue, which was concentrated from toluene (3 x 5 mL/g). The resultant residue was combined with ethyl acetate (13 mL/g) at room temperature. The mixture was stirred in an ice/water bath and a solution of amine (1.2 equiv.) in ethyl acetate (12 mL/g) was added, followed by sodium triacetoxyborohydride (3.0 equiv.). The mixture was stirred at room temperature for 2 hours, then was transferred to an ice/water bath and sat. aq. sodium bicarbonate solution (20 mL/g) was added. The layers were separated and the aqueous layer was extracted with ethyl acetate (20 mL/g). The combined organics were dried over sodium sulfate and concentrated to give a residue which was purified as specified.

3-Iodo-5-(4-methoxybenzyl)-4,5,6,7-

tetrahydropyrazolo[1,5-*a*]pyrazine (15a). Pyrazole-aldehyde 8a (0.507 g, 1.50 mmol) was subjected to General Procedure 4. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give tetrahydropyrazolo[1,5-*a*]pyrazine 15a (0.264 g, 0.715 mmol, 47% yield) as a red solid. m.p. 90-95 °C; v_{max} (thin film)/cm⁻¹ 2930, 1510, 1348, 1244, 1173, 1032; δ_H (400 MHz, CDCl₃) 7.47 (1H, s), 7.27 (2H, d, *J* 8.5), 6.89 (2H, d, *J* 8.4), 4.15 (2H, t, *J* 5.3), 3.82 (3H, s), 3.69 (2H, s), 3.57 (2H, s), 2.88 (2H, t, *J* 5.3); δ_C (100 MHz, CDCl₃) 159.1, 143.4, 138.8, 130.1, 129.1, 113.9, 61.1, 55.3, 53.6, 50.3, 49.3, 47.8; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₄H₁₆IN₃O 369.0338; Found 369.0334.

5-(*tert*-Butyl)-3-iodo-4,5,6,7-tetrahydropyrazolo[1,5*a*]pyrazine (15b). Pyrazole-aldehyde 8a (0.510 g, 1.51 mmol)

was subjected to General Procedure 4. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give tetrahydropyrazolo[1,5-*a*]pyrazine **15b** (0.350 g, 1.15 mmol, 75% yield) as a yellow solid. m.p. 66-70 °C; v_{max} (thin film)/cm⁻¹ 2968, 1350, 1204, 1179, 933; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.46 (1H, s), 4.15 (2H, t, *J* 5.2), 3.68 (2H, s), 2.96 (2H, t, *J* 5.2), 1.19 (9H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 143.3, 139.4, 54.2, 53.7, 49.0, 43.9, 43.8, 25.9; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₀H₁₆IN₃ 305.0389; Found 305.0387.

5-Cyclopropyl-3-iodo-4,5,6,7-tetrahydropyrazolo[1,5*a*]**pyrazine (15c).** Pyrazole-aldehyde **8a** (0.506 g, 1.50 mmol) was subjected to General Procedure 4. The resultant residue was purified by flash column chromatography (SiO₂, eluting with 20-50% ethyl acetate/heptane) to give tetrahydropyrazo-lo[1,5-*a*]pyrazine **15c** (0.234 g, 0.808 mmol, 53% yield) as a pink oil. v_{max} (thin film)/cm⁻¹ 2926, 1346, 1229, 970;δ_H (400 MHz, CDCl₃) 7.47 (1H, s), 4.16 (2H, t, *J* 5.5), 3.71 (2H, s), 3.10 (2H, t, *J* 5.5), 1.95-1.90 (1H, m), 0.62-0.58 (2H, m), 0.55-0.52 (2H, m); δ_{C} (100 MHz, CDCl₃) 143.3, 138.7, 53.5, 50.3, 50.2, 47.7, 37.5, 6.5; HRMS (ESI) *m/z*: [M]⁺ Calcd for C₉H₁₂IN₃ 289.0076; Found 289.0071.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

NMR spectra (PDF).

AUTHOR INFORMATION

Corresponding Author

*Email: lindsay-scott_peter@lilly.com Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Christopher Reutter (Eli Lilly) for his assistance with high resolution mass spectrometry samples. We thank Nicholas A. Magnus (Eli Lilly) and Andrew Faller (Eli Lilly) for useful discussions during the preparation of this manuscript.

REFERENCES

- 1. Gomtsyan, A. Chem. Heterocycl. Compd. (New York, NY, U.S.) 2012, 48, 7.
- 2. Pennington, L. D.; Moustakas, D. T., J. Med. Chem. 2017, 60, 3552.
- (a) Bach Taña, J.; Pages Santacana, L. M.; Taltavull Moll, J.; Eastwood, P. R.; Gonzalez Rodrigues, J.; Giulio Matassa, V. Pyrazole derivatives as JAK inhibitors. WO 2011101161, 2011. (b) Siegel, S.; Wilman, A.; Roehrig, S.; Svenstrup, N.; Gnoth, M. J.; Heitmeier, S.; Rester, U.; Tersteegen, A.; Gerisch, M. Imidazo-, pyrazolopyrazines and imidazotriazines and their use. Patent Appl. 20110053929, 2011. (c) Pastor Fernandez, J.; Martinez Gonzales, S.; Rodriguez Hergueta, A.; Ramos Lima, F. J.; Alvarez Eecobar, R. M.; Higueras Hernandez, A. I. New bicyclic compounds as PI3-K and MTOR inhibitors. WO 2011141713, 2011. (d) Ninkovic, S.; Braganza, J. F.; Collins, M. R.; Kath, J. C.; Li, H.; Richter, D. T. 6 Substituted 2-heterocyclyamino pyrazine compounds as CHK-1 inhibitors. WO 2010016005, 2010.
- Gray, D. L. F.; Davoren, J. E.; Dounay, A. B.; Efremov, I. V.; Mente, S. R.; Subramanyam, C. Heteroaromatic compounds and their use as dopamine D1 ligands. WO 2015166370, 2015.
- Di Fabio, R.; Terreni, S.; Tarsi, L.; Pozzan, A.; Gentile, G.; Tonelli, F. Pyrazolo[1,5-a]pyrazine derivatives as antagonists of V1B receptors. WO 2009130232, 2009.
- Liverton, N.; Kuduk, S. D.; Beshore, D. C.; Meng, N.; Luo, Y. Fused heteroaryl derivatives as orexin receptor antagonists. WO 2016101119, 2016.
- Braganza, J. F.; Bernier, L.; Botrous, I.; Collins, M. R.; Li, B.; McAlpine, I.; Ninkovic, S.; Ren, S.; Sach, N.; Tran-Dubé, M.; Zeng, Q.; Zheng, B. *Tetrahedron Lett.* 2015, *56*, 5757.
- Mousseau, J. J.; Bull, J. A.; Ladd, C. L.; Fortier, A.; Sustac Roman, D.; Charette, A. B. J. Org. Chem. 2011, 76, 8243.
- 9. Mendiola, J.; Rincon, J. A.; Mateos, C.; Soriano, J. F.; De Frutos, O.; Niemeier, J. K.; Davis, E. M. Org. Process Res. Dev. 2009, 13, 263.
- 10. Zvonok, A. M.; Kuz'menok, N. M.; Stanishevskii, L. S. Chem. Heterocycl. Compd. (New York, NY, U.S.) 1989, 25, 1164.
- Woll, M. G.; Qi, H.; Turpoff, A.; Zhang, N.; Zhang, X.; Chen, G.; Li, C.; Huang, S.; Yang, T.; Moon, Y.-C.; Lee, C.-S.; Choi, S.; Almstead, N. G.; Naryshkin, N. A.; Dakka, A.; Narasimhan, J.; Gabbeta, V.; Welch, E.; Zhao, X.; Risher, N.; Sheedy, J.; Weetall, M.; Karp, G. M. J. Med. Chem. 2016, 59, 6070.
- Allen, S.; Boys, M. L.; Chicarelli, M. J.; Fell, J. B.; Fischer, J. P.; Gaudino, J.; Hicken, E. J.; Hinklin, R. J.; Kraser, C. F.; Laird, E.; Robinson, J. E.; Tang, T. P.; Burgess, L. E.; Rieger, R. A.; Pheneger, J.; Satoh, Y.; Leftheris, K.; Raheja, R. K.; Bennett, B. L. 4,6-Substituted-pyrazolo[1,5-a]pyrazines as janus kinase inhibitors. WO 2016090285, 2016.
- For the alkylation of pyrazole 4 with SEM-Cl (2-(chloromethoxy)ethyl)trimethylsilane), see: (a) Lin, R.; Chiu, G.; Yu, Y.; Connolly, P. J.; Li, S.; Lu, Y.; Adams, M.; Fuentes-Pesquera, A. R.; Emanuel, S. L.; Greenberger, L. M. *Bioorg. Med. Chem. Lett.* 2007, *17*, 4557. (b) Lee, Y.-K.; Parks, D. J.; Lu, T.; Thieu, T. V.; Markotan, T.; Pan, W.; McComsey, D. F.; Milkiewicz, K. L.; Crysler, C. S.; Ninan, N.; Abad, M. C.; Giardino, E. C.; Maryanoff, B. E.; Damiano, B. P.; Player, M. R. J. Med. Chem. 2008, *51*, 282.
- 14. Despotopoulou, C.; Klier, L.; Knochel, P. Org. Lett. 2009, 11, 3326.

- For examples of 2,2-dialkoxyethyl-substituted pyrazoles as heterocycle precursors, see: Seneci, P.; Nicola, M.; Inglesi, M.; Vanotti, E.; Resnati, G. Synth. Commun. 1999, 29, 311.
- 16. The regioselectivity during the alkylation and formylation steps was confirmed by ¹H NMR NOESY correlations.
- 2-MeTHF was selected as a co-solvent during the deprotection of 8 due to its stability towards aqueous acid, see: Aycock, D. F. Org. Process Res. Dev. 2007, 11, 156.
- For an example of dialdehydes with limited stability, see: Lu, Y.; Kim, I. S.; Hassan, A.; Del Valle, D. J.; Krische, M. J. *Angew. Chem. Int. Ed.* 2009, *48*, 5018.
- Blackburn, C.; Barrett, C.; Brunson, M.; Chin, J.; England, D.; Garcia, K.; Gigstad, K.; Gould, A.; Gutierrez, J.; Hoar, K.; Rowland, R. S.; Tsu, C.; Ringeling, J.; Wager, K.; Xu, H. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 5450.
- Eastwood, P. R.; Gonzalez Rodriguez, J.; Gomez Castillo, E.; Bach Taña, J. Heteroaryl imidazolone derivatives as JAK inhibitors. WO 2011157397, 2011.